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On the ordinarity of the maximal real subfield
of cyclotomic function fields

by

DAISUKE SHIOMI (Yamagata)

1. Introduction. Let p be a prime. Let F;, be the field with ¢ = p”
elements. For a global function field K over F,, let Jx be the Jacobian of
K Fq, where Fq is an algebraic closure of Fy. Let gx be the genus of K. The
p-primary subgroup Jx (p) of Jx satisfies

AK
JK (p) ~ @ Qp/Zp.
i=1

The above integer A is called the Hasse—Witt invariant of K, and satisfies
0 < Ak < gk In particular, we call K ordinary if A\ = gk.

Our aim of this paper is to clarify the ordinarity of cyclotomic function
fields. We put k = F,(T") and A = F,[T]. For a monic polynomial m € A,
let K,, and K}, be the mth cyclotomic function field and its maximal real
subfield, respectively. Let g, g,&. be the genuses of K,,, K, respectively.
Let A, A be the Hasse-Witt invariants of K,,, K, respectively. For
definitions and properties of cyclotomic function fields, see [Go|, [Hal, [Ro].

First, we state our previous results. In the irreducible case, the author
showed the following.

THEOREM 1.1 (cf. [Sh2]). Assume that ¢ # p and m € A is monic
irreducible. Then:

(1) K, is ordinary if and only if degm < 1.
(2) K} is ordinary if and only if degm < 2.

Next we consider the general case. In [Sh3|, by using explicit formulas
for A, in the case of degree two, we showed the following result.

THEOREM 1.2 (cf. [Sh3]). Assume that ¢ # p and m € A is monic. Then
Ky, is ordinary if and only if degm = 1.
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In this paper, we consider the plus part. Our main theorem is the fol-
lowing.

THEOREM 1.3. Assume that ¢ # p and m € A is monic. Then K is
ordinary if and only if degm < 2.

REMARK 1.4. Theorem [I.3]is not true in the case ¢ = p. For example, if
we consider ¢ = 3 and m = T* +T? +2 € F3[T], then K, is ordinary. Many
monic irreducible polynomials m such that K is ordinary and degm > 3

have been found in the case ¢ = p. However, it is not known whether there
are infinitely many such polynomials.

This paper is organized as follows. In Section 2, we review some results
on zeta functions and Hasse-Witt invariants. In Section 3, we derive explicit
formulas for A}, in the case of degree three, and show that K is not ordinary
if r > 2 and degm = 3. In Section 4, we prove Theorem

2. Preparations

2.1. Zeta functions. In this subsection, we review some results on zeta
functions. For the details, see [G-R] and [Rol.

For a global function field K over F,, we define the zeta function of K
by

)= T (1- Nlp)

p: prime
where p runs through all primes of K, and Np is the number of elements of
the residue class field of p.

THEOREM 2.1 (cf. [Rol Theorem 5.9]). There exist Zx(u) € Zlu] of
degree 29 with Zx(0) = 1 such that
Zr(q®
C(S’K) = fs( ) 1-s)"
(1=g7)(1-¢"7)
It is well-known that A can be expressed in terms of Zx (u) as follows.
PROPOSITION 2.2 (cf. [Ro, Proposition 11.20]). Let Zk(u) € Fpu] be
the reduction of Zx (u) modulo p. Then

)\K = deg ZK(U)

We write
29K

Zi(u) = [ (1 = muw).

i=1
Let L be a number field containing Q(71, ..., mag, ). Let P be a prime of L
above p, and let ordp be the valuation of P satisfying ordp(L*) = Z.
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PROPOSITION 2.3. In the above notation,
K is ordinary < ordp(m;) € ordp(q)Z (i =1,...,2g9K).

Proof. The polynomial Zx (u) can be written as follows:

9K

Zie(w) = [J(1 = m) (1 =m0,

i=1
where m;m;44,, = q. Therefore
deg((1 — mju)(1 — miqgu) mod P) <1
Hence, by Proposition
Ak =gk & ordp(m;) =0 or ordp(mitg,) =0 (i =1,...,9K).
This yields Proposition "
Next we focus on the cyclotomic function field case. Let m € A be a

monic polynomial of degree d. Let ((s, K;,,), ¢(s, K}) be the zeta functions
of K, K\, respectively. By Theorem there exist polynomials Z,,(u)

and Zr(n )( ) such that
Zun(q™*) Z(a)
(1—qg*)(1—qg'75)’ (1—qg )1 —qg'=2)

Let X,, be the group of Dirichlet characters modulo m. For x € X,,,
let fy be the conductor of x. We call x real if X(]F;) = 1, and imaginary
otherwise. Let X,/ be the set of all real characters of X,,,. Then

(2.1) (o, Kom) = { TT L) J1 = g~) 155,

XEXm

(2.2) (s, K1) = { H L(s,x) } 1 —qfs)*[K*T’:k].

XGX+

The L-function L(s,x) is defined by

(s, Kom) = C(s, Kp,) =

CL

Na

a: monic

where a runs through all monic polynomials of A, and N(a) = ¢%°8®. Here,
we view x as a primitive character when we write L(s, x). Let xo be the
trivial character. Then L(s, x) can be described as follows:

1/(1-¢"*)  ifx=xo,
Z(zj:_ol Si(X)qfsi otherwise,

(2.3 Ls.0 = {
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where 5;(X) = >~ monic, deg(a)=: X(a). We set

B (u) = { (Cd sibou)/(L—w) i x € X\ [xo),

Sy si(0u! if x € X,
where X, = X,,\X,}. Assume that x is a non-trivial real character. Then
d—1
si(x) =0
i=0
Therefore
d—2 i
Dy (u) = st(x)u', where sf(x)= ZSJ(X)
i=0 j=0

PROPOSITION 2.4.

Zm(u) = H Py (u), Zr(nJr)(u) = H Dy (u).
XEXm xeXh
X#X0 X#X0

Proof. This follows from Theorem and equalities (2.1)—(2.3)). =

REMARK 2.5. For later use, we consider some special cases. If y is a
non-trivial real character with deg f, < 2, then @, (u) = 1. Hence we have
the following results.

If degm = 3, then

(2.4) Ziw) = [ 1+ 57 00u).
et

If m = Q1Q2 where @)1, Q2 are distinct monic irreducible polynomials
of degree two, then

(2.5) ZE(w) = T @+ sf ()u+ s3(x)u?).
XEX
fx=m

PROPOSITION 2.6. Let mi,mg € A be monic polynomials with my | mo.

(1) If Ky, is ordinary, then K, is ordinary.
(2) If K}, is ordinary, then K} is ordinary.

mi

Proof. By Proposition we see that Z,,, (u) | ZmQﬁ and Z,(ﬂt) (u) ]

anJ;) (u). Hence Proposition follows from Proposition
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2.2. The Hasse—Witt invariant. Let m € A be a monic irreducible
polynomial of degree d. For 0 < i < d — 1, we set
i
sin) =Y _a", sf(n)=> s;n),
(lGAi ]:0

where A; is the set of monic polynomials in A of degree i. For 1 < n < ¢¢—2,
we define B, (u) € Afu] by

(2.6) By (u) = Z?:_OQ sj‘(n)ul ifn=0mod qg—1,
' S si(n)ul if n# 0mod g — 1.

In a previous work, the author showed that A, and X can be expressed
via By (u). In this subsection, we review these results. For more details, see
[Sh2].

Let us denote the p-adic field by @Q,. Fix an algebraic closure Q of Q,
an algebraic closure Qp of Qp, and an embedding o : Q — Qp. Via this
embedding, we regard Q C @p. Let ord, be the p-adic valuation of @p with
ord,(p) = 1. We set

M= @p(W)’
where W is the group of (¢? — 1)th roots of unity. Let Oy be the valuation
ring of M. Since M /Q, is unramified, the residue class field Fys = Onr/pOnr
consists of qd elements.

Let R,, = A/mA. Then the cardinality of R, is q®. Hence R,, is isomor-
phic to Fj;. Fix an isomorphism ¢ : R,, — Fas. This map induces a group
isomorphism ¢4 : R, — F;;, and a ring isomorphism ¢ : Ry, [u] — Faslu].
Since the cardinality of W is prime to p, we have the isomorphism

T: W — Fy; (¢~ ¢ mod pOyy).
Put w=r71"lo ¢4. Then w is a generator of X,,. We see that w" € X if
and only if n = 0 mod ¢ — 1. Notice that
(2.7) #(a" mod mA) = w"(a mod mA) mod pOys
for a € A. Hence

¢+ (Bn(u)) = Pun (u),

where @ n (1) = Dyn(u) mod pOys and By, (u) = By, (u) mod m. From Propo-
sition [2.4] we obtain the following results.

PRrRoOPOSITION 2.7.

. (q]I_Qan)) = Zu(u), o il Bu(w)) = 2D (w)
n=1 n=1
n=0 mod g—1
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Therefore, by Proposition [2.2] we have the following relations between
the Hasse-Witt invariant and By, (u).

COROLLARY 2.8.

d—2 q¢-2
Am =Y degBn(u), M,= > degB,(u).
n=1 n=0 Télf)(li q—1

3. Explicit formulas for )} in the case of degree three. In this
section, we derive explicit formulas for A} in the case of degree three. As
an application, we show that K is not ordinary if ¢ # p and degm = 3.

THEOREM 3.1. Assume that m € A is monic and ¢ = p". Let m =
T QP be the irreducible decomposition of m. Let d; = deg Q;.

(1) If degm <2, then A} = 0.
(2) If degm = 3, then

;

0 if m=Q3 and dy =1, (1)
Zf m = Q%QQ and d1 = d2 = 1, (H)
(p(p+1)/2)" =3¢ +3

+
Am B Zf m = Q1Q2Q3 and d1 — d2 B d3 e 1, (IH)
(p(p—i— 1)/2)T—q—1 if m:QlQQ, d1:2, and d2:]., (IV)
(p(p +1)/2)" if m=Q1 and dy = 3. (V)

REMARK 3.2. Assume that degm < 2. By the Kida—Murabayashi for-
mula, we have g, = 0 (cf. [K=M| Corollary 1]). Hence A}, = 0. This proves
Theorem [3.1{(1).

REMARK 3.3. Cases (I) and (II) follow from more general results (cf.
[Shil Theorem 1.1]):

(I) )\5? =0ifd;=1andn >0,

(1) A&LQQ =0ifd; =dy=1and n > 0.
We give a sketch of the proof of (I) for the reader’s convenience. By the
Kida—Murabayashi formula, we have 951 = 0. Hence )\51 = (0. We notice
that K 5? /K 51 is a Galois p-extension. Therefore, by applying the Deuring—
Shafarevich formula in K 5? /K +1, we obtain /\5? = q")\zgl. Hence )\57{ = 0.

By the same argument, we deduce (II).

REMARK 3.4. If degm > 4, then \} is not determined only from the
irreducible decomposition of m. For example, consider ¢ = 3, m; = T* +

T + 2, and my = T* + T? + 2. Then my, ma € F3[T] are both irreducible
monic polynomials of degree four. However, )\7‘;1 = 38 and )\,‘;2 = 39.
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By the Kida—Murabayashi formula, we can calculate g, as follows:
(q(q—1)/2 if m=Q3and dy =1, (
(@—-2)(¢-1)/2  ifm=QiQanddi =dy =1, (
glg+1)/2—=3¢+3 ifm=0Q1Q2Q3 and d; =dy =d3 =1, (III)
(
(

N
3+
I

ql¢g+1)/2—q—1 ifm=Q1Q2, d =2, and ds =1,
qlg+1)/2 if m = Qy and d; = 3.

By comparing g;;, and A}, we obtain the following result.

COROLLARY 3.5. Assume that q # p and degm = 3. Then K is not
ordinary.

REMARK 3.6. The above corollary does not hold for ¢ = p. For example,
by comparing g, and A, we see that K is ordinary in cases (IIT)—(V) if
q=p.

3.1. Case (IIT). Let m = (T'— o)(T' — B)(T — ) where a, 5, € I, are
distinct. Then we have the isomorphism

(A/mA)* — (Fy)? (a(T) mod m — (a(a), a(B), a(y)))-

Hence any character x : (A/mA)* — C* can be given by

a(T) mod m — x1(a(e))xa(a(B))xs(a(7)),

where x1, X2, x3 are characters of F;. We see that Xgl = y1Xe if x is real.
Hence we have the following one-to-one correspondence:

(31) {X I~ XTJ;; : fX = m} &) {(X17X2) c (:[EqI)Q . X1, X2, X1X2 } .

are non-trivial

Take y € X, corresponding to (1, Xx2). Then

(3:2) st =1+ > x(T-a)
aclFy
a¢a7ﬁ7,y

a— a—f
=1
- 2 (=)=
G'#a?lB?PY
=x1(1 = 7)x2(1 = 1/7)J(x1. Xx2),
where 7 = (oo — %) /(8 — ) and J(x1, x2) is the Jacobi sum defined by
J(xix2) = Y xi(@)xe(l—a).

a€ly
a#0,1

Let K = Q(e*™/(@=1) and O the ring of integers of K. Let p be a
prime ideal of O above p. Since r is the relative degree of p in K/Q (recall
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that ¢ = p"), we see that [, is isomorphic to Ok /p. Fix an isomorphism
0 :Fy; — Ok /p. We define an isomorphism ¢ by

¢: W — (Ok/p)" (= (mod p),
where W is the group of (¢ — 1)th roots of unity. We define x, by
Xp:Fy =W (24— o 1(0(x))).

Then x, is a generator of Fy. Therefore, by 1D we have the following
one-to-one correspondence:

1:1 1<n,ne <q-2,
{XGXJI:fx:m}H{(xSHxQQ): :

ni+ne Z0modq—1

Take x € X}, corresponding to (xy*, xp?)- By , we have
st(0) €0 & ordp(J(x;", xp?)) = 0.

By and Proposition

)‘jn:#{(nbnz)e [1’q_2]2_m—l—m?é()modq—l,}’

“ordy (J(xpt, xp?)) =0

where [1,¢ — 2] ={1,...,q — 2}.
Next we investigate the value of ord,(J(xp", xp>)). For n € Z, we define
L(n) € Z as follows:

0<L(n)<gqg—1, L(n)=nmodq-— 1.
Consider the p-adic expansion
L(n) = ao(n) + ar(n)p+ -+ ar1(n)p" ™" (0 < ai(n) < p),
and put
l(n) =ao(n) +ar(n) +- -+ ar—1(n).
By the Stickelberger theorem for Jacobi sums, we obtain

o l(n1) +1l(n2) —l(n1 +n
R R @

=r—#{0<i<r—1:Lmp")+ L(nap') > q—1}

for 1 <nj,ne < g—2and ny +ng # q—1 (cf. [B-E-WJ, Corollary 11.2.4 and
Theorem 11.2.9]). Noting that

. .
JOGh )0 s ) =g,
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we have

)\ﬁl:#{(nl,w) c [1’q2]2:n1+n27‘é0modq—17}

ordy (J(xp's xp°)) =7
ni+mne Z0modq—1,
I(n1) 4+ 1(ng) = l(ny +no) |

# {(nl,ng) cll,q—2):

We see that

l(nl) + l(ng) = l(’l”Ll =+ no
& Lnp VU 4+ Lngp 1) <q-10<i<r-—1)
< ai(n1) +ai(ne) <p—-10<i<r-—1).

)‘72:#{(”17712)6[17Q—2]2:n1+n2¢0m0dq—1, }

ai(n1) +ai(ne) <p—10<i<r-—1)
Now,
(plp+1)/2)"

=#{(n1,n2) € [0,¢ —1]* s aj(n1) + ai(ng) <p—1(0<i<r—1)},
3¢ —3=#{(n1,n2) €[0,q—1]>:n1=0o0rng =0o0r ny +ng =q— 1}.
Therefore

A = (p(p+1)/2)" — 3¢ + 3.

3.2. Case (IV). Let m = mo(T — o) where a € F; and mg € A is a
monic irreducible polynomial of degree two. Then we have the isomorphism

(A/mA)* = (A/moA)* x Fy (a(T) mod m — (a(T) mod mg, a(a))).
Hence any character x : (A/mA)* — C* can be given by
a(T) mod m — x1(a(T) mod mo)x2(a(w)),

where x1 is a character of (A/mgA)*, and 2 is a character of F;. If x is
real, then yo = (thg;)fl- Hence we have the following one-to-one corre-
spondence:

1:1 _
{XEXnt:fX:m}(H{XléXmO:le =myp}.

Take x € X} corresponding to x1 € X, Then
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+x)zl+2x( —a—l—l—ZXl —a)xz2(a —a)

aclky acFy
aFa aFa
=1
+ ZXl(a_a>
a€ly
a#a

Let w be the generator of X,,, defined in Subsection 2.2. Take n € [1, ¢* — 2]
such that x; = w™. Since x; is imaginary, we have n # 0 mod ¢— 1. By (2.7)),
we have

T
+
(3.3) s1(x) €pOn & 1+ E <a
aclky
aFa

LEMMA 3.7. For1<n<¢®> -2 (n#0modq—1), set

> € moA.
—a

Consider the g-adic expansion n = a(n) + b(n)q (0 < a(n),b(n) < ¢ —1).
Then
b(n)

rngma = (0

);‘éOmodp,

where (I) 18 a binomial coefficient.
Proof. We put g,(T) =T"f,(1/T + «). Then
) ) = ST+ al’s ) fulD) = (T - a5 )
a€lFy

Gekeler [Gel, Corollary 3.14] established the following equality:

b(n) q i(n :
o (T) = —<q_ 1_a(n)>(T — 1)) Tfa(n)—i—b(n) >q—1,
0 if a(n) +b(n) < ¢—1,
where i(n) = a(n) + b(n) — (¢ — 1). Hence
mm gma e (") zomody

for any irreducible polynomial m; of degree two. Therefore, by (ii), we obtain
Lemma .-

By Proposition [2.2|and Lemma|3.7] E and the equalities (2.4 and (3.3 ., we

have
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) n # 0mod g — 1,
3.4 1<n<g¢g--2: b
(3-4) =# =n=a () Z 0 mod p
qg—1-a(n)
For 1<n<¢®—-2(n#0modq— 1), we write

(
a(n) = ag(n) + ar(n)p + -+ + ar_1(n)p" ",
b(n) =bo(n) +bi(n)p+ -+ b_1(n)p" ",

where 0 < a;(n),b;(n) <p—1(:=0,1,...,r —1). Noting that
r—1
g=1-an) =3 (p—1-am)p,
we have _1:0
(o) =T ) ot
Hence

( v )iomodp@ai(”)"‘bi(”)zp_l (O<isr—1).

qg—1-a(n)
Therefore the equality can be written as follows:
A;:#{lgnqu—Q:niomOdq_l’ }
ai(n)+bi(n)>p—-10<i<r-—1)
We see that
(p(p+1)/2)" = #{nec[0,¢* —1] :a;(n) +bi(n) >p—1 (0<i<r—1)},
a=#{ne0.¢>~ 1] : a(n) +b(n) =g 1},
1=#{nel0,¢*—1]:a(n)+bn) =2(qg—1)}.

Hence we obtain
A =p+1)/2)" —q—1.

3.3. Case (V). Let m be a monic irreducible polynomial of degree
three. For n € [1,¢®> —2] (n = 0 mod ¢ —1), we see that 14 s1(n)+s2(n) =0
(cf. [Gel, Lemma 6.1]). Therefore

Bp(u) =1+ s] (n)u=1— sa(n)u.
By Corollary we have
A= g 1§ngq?,_2:nEOmodq—l, .
s2(n) # 0 mod m
For n € [1,¢% — 2] (n = 0 mod ¢ — 1), consider the g-adic expansion

n = a(n) +b(n)g +cn)g® (0 < a(n),b(n),c(n) < q).
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Put i(n) = a(n) +b(n) +c(n). Then l(n) =qg—1or 2(¢—1). If i(n) = ¢—1,
then sa(n) = 0 (cf. [Ge, Corollary 2.12]). If I(n) = 2(¢ — 1), then Gekeler
[Ge, Theorem 3.13]) proved the equality
s2(n) = (—1)a(”)< ctn) ( ))(Tq—T)i(”)(Tq
n

g—1—a

2

_ T)J‘(n)7

where the integers i(n), j(n) are defined by

i(n) = a(n) +b(n) + q(b(n) + c(n)) — (¢* = 1),

j(n) = a(n) +c(n) — (¢ = 1),
Since m is irreducible of degree three, we have

c(n)
A .

s2(n) € mA < (q—l—a(n)) % 0 mod p

Therefore
I(n) = 2(q — 1),
A;—#{1§n§q3—2:(n) (4—1) }

(qff(fna?(n)) $é 0 mod p

By the same argument of case (IV), we can calculate the right side of the
above equality to obtain

A= (p(p+1)/2)".

4. Proof of Theorem In this section, we prove Theorem The
difficult point is to show that K is not ordinary when m is a product of
two distinct irreducible polynomials of degree two (see Subsection 4.2).

Assume that ¢ # p. By Theorem and Proposition K is not
ordinary if m has a prime factor ) with deg@ > 3. Hence we can assume
that the irreducible decomposition of m is

m=Qu QM
where each Q; is monic with d; = deg@; < 2. If we can show that K
is not ordinary in the following two cases: (VI) m = Q3% (d1 = 2), (VII)
m = Q1Q2 (di = da = 2), then we obtain Theorem by Proposition
and Corollary

4.1. Case (VI). If m = Q? (d; = 2), by applying the Deuring-Shafare-
vich formula in ng /K +1, we have
1

)\5% =\ P+ -1
(cf. [Shil Subsection 3.2]). Since d; = 2, we have )\251 = 0. Hence )\25? =
q?> — 1. On the other hand, the genus ggf can be calculated as follows:

9o = (@* = 1)(g+1)
(cf. [K-M]). Hence Kg% is not ordinary.
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4.2. Case (VII). If m = @Q1Q2 (d1 = d2 = 2), we see that
(A/mA)" ~ (A/Q1A)" x (A/Q24)".

This leads to the following isomorphism of character groups:

o —

(A/mA)* = (A/Q1A)* x (A/Q24)*.
Hence we have the following one-to-one correspondence:

fa = Q1 fo :Q%}.

1:1
{XEX:w:fx:m}{ >{(X17X2)€XQ1XXQ2: .
X1X2 is real

Define @1 = T2 4+ w11 + uo and Q9 = T2 + T + vy (ul,u2,v1,02 S Fq)
Let x € X,} correspond to (x1, x2) € Xg, X Xq,-

LEMMA 4.1. Assume that u; = v1. Then

() = s1(x1)s1(x2) if x1 is imaginary,
q if x1 1s real.

LEMMA 4.2. Assume that u; # vy. Set € = (ug —v2)/(u1 —v1), a =
uy —¢&, and 8 =v1 —e. Then

s1(x1)s1(x2) if xa is imaginary,

x1(T + a)x2(T + B)s3 (x) = ‘ ‘
q if x1 s real.
Let M = Q(ez’”/(qul)), and let p be a prime ideal of M above p. We set

L=Q(m,...,my, e2ﬂi/(q2_1)),

where Z57 (u) = Hfi’?(l — mu). Let P be a prime ideal of L over p.
PRrROPOSITION 4.3. Assume that x1 is imaginary. Then
ordp(s3 (x)) = ordp(s1(x1)) + ordp(s1(x2))-
Proof. This follows from Lemmas and .
Proof of Lemmal[f.1. We see that

s200) = Y x(T? + aT +b)
a,belfy

= > xi(la—w)T+ (b—u2))x2((a —u)T + (b—v2)) = H +1,
a,bely

where
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H= Z Z x1(aT + b)x2(aT + b+ uz — v2),
acF, belFy
a#0

I=> " x1(b)xa(b+ ug — vg).
beF,

Notice that ug # va. If x1 is real, then s1(x1) = s1(x2) = —1. Hence
" { s1(x1)s1(x2) — s1(x) if x1 is imaginary,
1—s1(x) if x1 is real,
I { -1 if x1 is imaginary,
qg—2 if x1 is real.
This proves Lemma n
Proof of Lemma[].3. We see that
(T + a)(T? + aT +b)
=(—¢ela—u1)+b—u2)T — (a —ur)uz + a(b — u2) mod Q1,
(T + B)(T? + aT + b)
= (—e(a—v1) +b—v2)T — (a — vi)vz + B(b — v2) mod Q2.
Noting that

—e(a—uy) +b—us =—¢c(a—v1) +b— vy,

we have
X1(T + a)x2(T + B8)s2(x)
= Z x1((—e(a—w) +b—u)T — (a—ur)uz + a(b — ug))
a,belfy
x x2((—e(a—w1) +b—u2)T — (a — v1)va + B(b — v2))
= Z x1(0T + a(—uz + ag) + ba)
a,belfy
X X2 (bT + a(—ve2 + fe) + b8 — va(ug — v1) + Blug — 1)2))
—H+1,
where

H = E x1(bT + ay + ba)x2(bT 4+ ay + bB + 9),
a,belfy
b0

I=>" xi(ay)xz(ay +9).

aclF,
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Here, v = —ug + ae = —vg + fe and § = —vy(u1 — v1) + B(ug — v2). Notice
that v # 0 and § # 0. Hence

o {51(X1)81(Xz) —J if x; is imaginary,
1-J if x1 is real,

7o { -1 if x1 is imaginary,
q— 2 if x1 is real,

where

J = Z X1(T + a)x2(T + a+ vy —up).
a€lfy

On the other hand, we see that

(T+a)(T+a)=(a—e)T + ax — ug mod Q1,
(T+B)(T+a)=(a—e)T + af — vy mod Qs.

Hence we have

x1(T + a)x2(T + B)(1 + s1(x))

= x1(T + a)x2(T + B)
+ Z x1((a — )T + aa — u2)x2((a — )T + aff — v2)
a€lFy
= x1(T+ a)x2(T+ )+ Y x1(aT + ac+7)xa(aT + af +7)
aclFy
=1+ ZX1(T—|—a)X2(T+a+Ul—u1)=1—|—J.
a€ly

This yields Lemma .

Now we prove Theorem Assume that r > 2. We see that A/Q1A4,
A/Q2A, and Oy /p are finite fields of the same cardinality. Fix isomor-
phisms

o1: A/Q1A — Opm/p, o02: A/Q2A — On/p.
Define an isomorphism 7 by
T We1 = (Oum/p)” (¢ ¢ mod p).
Set
w1 =7""o01|(a/gay, w2=T " 002la/Qa)x-

Then w, wa are generators of Xg,, Xq,, respectively.
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LEMMA 4.4.
s1(n) =0mod @1 & s1(w]) € P,
s1(n) =0mod Q2 & s1(wy) € P.

Proof. This follows from s;(w}") = o1(s1(n) mod Q1) mod p, and s1(w5)
= 03(s1(n) mod Q2) mod p. =

Let v1 be a generator of (A/Q1A)*. Write o = 'yfﬂ and ¢ = wi(71).
Then « is a generator of F', and ( is a primitive (¢*> — 1)th root of unity.

LEMMA 4.5. There exists a generator y2 € (A/Q2A)™ such that ’ygﬂ =a.

Proof. Let v be a generator of (A/QQA)X. Since 9*! is a generator
of )\, we can take ig € Z such that ~y(a+1)io — o, We notice that ged(ig, ¢—1)
= 1. The map

(Z/(q* = 1))* = (Z/(q - 1))* (¢ mod (¢* — 1) = & mod (g — 1))
is surjective. Hence we can take ¢ € Z such that
i=igmodq—1, ged(i,¢®>—1)=1.
Set 7o = . Then 72 is a generator of (A/Q2A4)* such that 'ng =a. =

Take n € Z such that (" = wy(7y2). Then (" is a primitive (¢% — 1)th root
of unity. Therefore gcd(n,¢?> — 1) = 1. Take m; € Z such that

1<mi<¢®=2, nmy=(q—p ") +p 'gmodg’ —1.

Since I((p — 1) + ¢) = p < g — 1 (definition of I(n), see Subsection 3.3), we
have
— r— r—1
si(g=p" )+ =si(lp -1+ =0
(cf. [Ge, Corollary 2.12]). By Lemma we have

nml)

s1(w] (q—p”l)ﬂf*lq) cP.

= 51(w,
Next we consider the complex conjugate w;™'. We see that
—nmy = (p" ' = 1)+ (¢—p" " — 1)gmod ¢* — 1.
Since I(p" ' - 1)+ (¢q—p" "1 —1)g) =q¢—2 < qg— 1, we have
(@ = 1)+ (g — 1)) =0,
Again by Lemma [1.4]

sl(wqmn) _ 51(wgpr_l—l)-F(q—PT_l—l)Q) cP.
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1

Since nm; = 1 mod ¢ — 1, we see that w]™* is imaginary. Therefore,

sp(wf™)s1(@7™) =g
Hence
1 < ordp(si(wi™)) < ordp(q).
Let ¢ € Z be such that
1<ec<qg—2, c=mimodg—1.
Set ma = ¢+ (¢ — 1)g. Then
sa(m) == (7)1

C

(cf. [Gé, Corollary 3.14]). Notice that (q;l) # 0 mod p. Therefore s1(ms) # 0
mod Q2. By Lemma we see that sq(wj?) ¢ P. Since wy'? is imaginary,
we have

ordp(si(wy ™?)) = ordp(q).
Let x = w]™w, ™2. Then x(a) = 1 since m; = mg mod g — 1. Hence x is a
real character of conductor m = (Q1Q2. By Proposition we have
ordp (53 (x)) = ordp(s1 (™)) + ordp(s1(w5 ™)) & ordp(g)Z.

By (2.5), there exist m;, 7; (i # j) such that sj (x) = mmj. Therefore, by
Proposition we see that K is not ordinary. This completes the proof
of Theorem [L.3]
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