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1. Introduction. Let p be a prime. Let Fq be the field with q = pr

elements. For a global function field K over Fq, let JK be the Jacobian of
KF̄q, where F̄q is an algebraic closure of Fq. Let gK be the genus of K. The
p-primary subgroup JK(p) of JK satisfies

JK(p) '
λK⊕
i=1

Qp/Zp.

The above integer λK is called the Hasse–Witt invariant of K, and satisfies
0 ≤ λK ≤ gK . In particular, we call K ordinary if λK = gK .

Our aim of this paper is to clarify the ordinarity of cyclotomic function
fields. We put k = Fq(T ) and A = Fq[T ]. For a monic polynomial m ∈ A,
let Km and K+

m be the mth cyclotomic function field and its maximal real
subfield, respectively. Let gm, g+m be the genuses of Km, K+

m, respectively.
Let λm, λ+m be the Hasse–Witt invariants of Km, K+

m, respectively. For
definitions and properties of cyclotomic function fields, see [Go], [Ha], [Ro].

First, we state our previous results. In the irreducible case, the author
showed the following.

Theorem 1.1 (cf. [Sh2]). Assume that q 6= p and m ∈ A is monic
irreducible. Then:

(1) Km is ordinary if and only if degm ≤ 1.
(2) K+

m is ordinary if and only if degm ≤ 2.

Next we consider the general case. In [Sh3], by using explicit formulas
for λm in the case of degree two, we showed the following result.

Theorem 1.2 (cf. [Sh3]). Assume that q 6= p and m ∈ A is monic. Then
Km is ordinary if and only if degm = 1.
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In this paper, we consider the plus part. Our main theorem is the fol-
lowing.

Theorem 1.3. Assume that q 6= p and m ∈ A is monic. Then K+
m is

ordinary if and only if degm ≤ 2.

Remark 1.4. Theorem 1.3 is not true in the case q = p. For example, if
we consider q = 3 and m = T 4 +T 2 + 2 ∈ F3[T ], then K+

m is ordinary. Many
monic irreducible polynomials m such that K+

m is ordinary and degm ≥ 3
have been found in the case q = p. However, it is not known whether there
are infinitely many such polynomials.

This paper is organized as follows. In Section 2, we review some results
on zeta functions and Hasse–Witt invariants. In Section 3, we derive explicit
formulas for λ+m in the case of degree three, and show that K+

m is not ordinary
if r ≥ 2 and degm = 3. In Section 4, we prove Theorem 1.3.

2. Preparations

2.1. Zeta functions. In this subsection, we review some results on zeta
functions. For the details, see [G-R] and [Ro].

For a global function field K over Fq, we define the zeta function of K
by

ζ(s,K) =
∏

p: prime

(
1− 1

Nps

)−1
,

where p runs through all primes of K, and Np is the number of elements of
the residue class field of p.

Theorem 2.1 (cf. [Ro, Theorem 5.9]). There exist ZK(u) ∈ Z[u] of
degree 2gK with ZK(0) = 1 such that

ζ(s,K) =
ZK(q−s)

(1− q−s)(1− q1−s)
.

It is well-known that λK can be expressed in terms of ZK(u) as follows.

Proposition 2.2 (cf. [Ro, Proposition 11.20]). Let Z̄K(u) ∈ Fp[u] be
the reduction of ZK(u) modulo p. Then

λK = deg Z̄K(u).

We write

ZK(u) =

2gK∏
i=1

(1− πiu).

Let L be a number field containing Q(π1, . . . , π2gK ). Let P be a prime of L
above p, and let ordP be the valuation of P satisfying ordP(L×) = Z.
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Proposition 2.3. In the above notation,

K is ordinary ⇔ ordP(πi) ∈ ordP(q)Z (i = 1, . . . , 2gK).

Proof. The polynomial ZK(u) can be written as follows:

ZK(u) =

gK∏
i=1

(1− πiu)(1− πi+gKu),

where πiπi+gK = q. Therefore

deg((1− πiu)(1− πi+gKu) mod P) ≤ 1.

Hence, by Proposition 2.2,

λK = gK ⇔ ordP(πi) = 0 or ordP(πi+gK ) = 0 (i = 1, . . . , gK).

This yields Proposition 2.3.

Next we focus on the cyclotomic function field case. Let m ∈ A be a
monic polynomial of degree d. Let ζ(s,Km), ζ(s,K+

m) be the zeta functions
of Km, K+

m, respectively. By Theorem 2.1, there exist polynomials Zm(u)

and Z
(+)
m (u) such that

ζ(s,Km) =
Zm(q−s)

(1− q−s)(1− q1−s)
, ζ(s,K+

m) =
Z

(+)
m (q−s)

(1− q−s)(1− q1−s)
.

Let Xm be the group of Dirichlet characters modulo m. For χ ∈ Xm,
let fχ be the conductor of χ. We call χ real if χ(F×q ) = 1, and imaginary
otherwise. Let X+

m be the set of all real characters of Xm. Then

ζ(s,Km) =
{ ∏
χ∈Xm

L(s, χ)
}

(1− q−s)−[K
+
m:k],(2.1)

ζ(s,K+
m) =

{ ∏
χ∈X+

m

L(s, χ)
}

(1− q−s)−[K
+
m:k].(2.2)

The L-function L(s, χ) is defined by

L(s, χ) =
∑

a:monic

χ(a)

N(a)s
,

where a runs through all monic polynomials of A, and N(a) = qdeg a. Here,
we view χ as a primitive character when we write L(s, χ). Let χ0 be the
trivial character. Then L(s, χ) can be described as follows:

L(s, χ) =

{
1/(1− q1−s) if χ = χ0,∑d−1

i=0 si(χ)q−si otherwise,
(2.3)
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where si(χ) =
∑

a:monic, deg(a)=i χ(a). We set

Φχ(u) =

{
(
∑d−1

i=0 si(χ)ui)/(1− u) if χ ∈ X+
m\{χ0},∑d−1

i=0 si(χ)ui if χ ∈ X−m,

where X−m = Xm\X+
m. Assume that χ is a non-trivial real character. Then

d−1∑
i=0

si(χ) = 0.

Therefore

Φχ(u) =
d−2∑
i=0

s+i (χ)ui, where s+i (χ) =
i∑

j=0

sj(χ).

Proposition 2.4.

Zm(u) =
∏
χ∈Xm
χ 6=χ0

Φχ(u), Z(+)
m (u) =

∏
χ∈X+

m
χ 6=χ0

Φχ(u).

Proof. This follows from Theorem 2.1 and equalities (2.1)–(2.3).

Remark 2.5. For later use, we consider some special cases. If χ is a
non-trivial real character with deg fχ ≤ 2, then Φχ(u) = 1. Hence we have
the following results.

If degm = 3, then

(2.4) Z(+)
m (u) =

∏
χ∈X+

m
fχ=m

(1 + s+1 (χ)u).

If m = Q1Q2 where Q1, Q2 are distinct monic irreducible polynomials
of degree two, then

(2.5) Z(+)
m (u) =

∏
χ∈X+

m
fχ=m

(1 + s+1 (χ)u+ s+2 (χ)u2).

Proposition 2.6. Let m1,m2 ∈ A be monic polynomials with m1 |m2.

(1) If Km2 is ordinary, then Km1 is ordinary.
(2) If K+

m2
is ordinary, then K+

m1
is ordinary.

Proof. By Proposition 2.4, we see that Zm1(u) |Zm2(u) and Z
(+)
m1 (u) |

Z
(+)
m2 (u). Hence Proposition 2.6 follows from Proposition 2.3.
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2.2. The Hasse–Witt invariant. Let m ∈ A be a monic irreducible
polynomial of degree d. For 0 ≤ i ≤ d− 1, we set

si(n) =
∑
a∈Ai

an, s+i (n) =

i∑
j=0

sj(n),

where Ai is the set of monic polynomials in A of degree i. For 1 ≤ n ≤ qd−2,
we define Bn(u) ∈ A[u] by

(2.6) Bn(u) =

{∑d−2
i=0 s

+
i (n)ui if n ≡ 0 mod q − 1,∑d−1

i=0 si(n)ui if n 6≡ 0 mod q − 1.

In a previous work, the author showed that λm and λ+m can be expressed
via Bn(u). In this subsection, we review these results. For more details, see
[Sh2].

Let us denote the p-adic field by Qp. Fix an algebraic closure Q̄ of Q,
an algebraic closure Q̄p of Qp, and an embedding σ : Q̄ → Q̄p. Via this

embedding, we regard Q̄ ⊆ Q̄p. Let ordp be the p-adic valuation of Q̄p with
ordp(p) = 1. We set

M = Qp(W ),

where W is the group of (qd − 1)th roots of unity. Let OM be the valuation
ring of M . Since M/Qp is unramified, the residue class field FM = OM/pOM
consists of qd elements.

Let Rm = A/mA. Then the cardinality of Rm is qd. Hence Rm is isomor-
phic to FM . Fix an isomorphism φ : Rm → FM . This map induces a group
isomorphism φ# : R×m → F×M , and a ring isomorphism φ∗ : Rm[u]→ FM [u].
Since the cardinality of W is prime to p, we have the isomorphism

τ : W → F×M (ζ 7→ ζ mod pOM ).

Put ω = τ−1 ◦ φ#. Then ω is a generator of Xm. We see that ωn ∈ X+
m if

and only if n ≡ 0 mod q − 1. Notice that

(2.7) φ(an mod mA) ≡ ωn(a mod mA) mod pOM
for a ∈ A. Hence

φ∗(B̄n(u)) = Φ̄ωn(u),

where Φ̄ωn(u) = Φωn(u) mod pOM and B̄n(u) = Bn(u) mod m. From Propo-
sition 2.4, we obtain the following results.

Proposition 2.7.

φ∗

(qd−2∏
n=1

B̄n(u)
)

= Z̄m(u), φ∗

( qd−2∏
n=1

n≡0 mod q−1

B̄n(u)
)

= Z̄(+)
m (u).
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Therefore, by Proposition 2.2, we have the following relations between
the Hasse–Witt invariant and Bn(u).

Corollary 2.8.

λm =

qd−2∑
n=1

deg B̄n(u), λ+m =

qd−2∑
n=1

n≡0 mod q−1

deg B̄n(u).

3. Explicit formulas for λ+m in the case of degree three. In this
section, we derive explicit formulas for λ+m in the case of degree three. As
an application, we show that K+

m is not ordinary if q 6= p and degm = 3.

Theorem 3.1. Assume that m ∈ A is monic and q = pr. Let m =
Qn1

1 · · ·Q
nt
t be the irreducible decomposition of m. Let di = degQi.

(1) If degm ≤ 2, then λ+m = 0.
(2) If degm = 3, then

λ+m =



0 if m = Q3
1 and d1 = 1, (I)

0 if m = Q2
1Q2 and d1 = d2 = 1, (II)

(p(p+ 1)/2)r − 3q + 3

if m = Q1Q2Q3 and d1 = d2 = d3 = 1, (III)

(p(p+ 1)/2)r − q − 1 if m = Q1Q2, d1 = 2, and d2 = 1, (IV)

(p(p+ 1)/2)r if m = Q1 and d1 = 3. (V)

Remark 3.2. Assume that degm ≤ 2. By the Kida–Murabayashi for-
mula, we have g+m = 0 (cf. [K-M, Corollary 1]). Hence λ+m = 0. This proves
Theorem 3.1(1).

Remark 3.3. Cases (I) and (II) follow from more general results (cf.
[Sh1, Theorem 1.1]):

(I) λ+Qn1
= 0 if d1 = 1 and n ≥ 0,

(II) λ+Qn1Q2
= 0 if d1 = d2 = 1 and n ≥ 0.

We give a sketch of the proof of (I) for the reader’s convenience. By the
Kida–Murabayashi formula, we have g+Q1

= 0. Hence λ+Q1
= 0. We notice

that K+
Qn1
/K+

Q1
is a Galois p-extension. Therefore, by applying the Deuring–

Shafarevich formula in K+
Qn1
/K+

Q1
, we obtain λ+Qn1

= qnλ+Q1
. Hence λ+Qn1

= 0.

By the same argument, we deduce (II).

Remark 3.4. If degm ≥ 4, then λ+m is not determined only from the
irreducible decomposition of m. For example, consider q = 3, m1 = T 4 +
T + 2, and m2 = T 4 + T 2 + 2. Then m1,m2 ∈ F3[T ] are both irreducible
monic polynomials of degree four. However, λ+m1

= 38 and λ+m2
= 39.
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By the Kida–Murabayashi formula, we can calculate g+m as follows:

g+m =



q(q − 1)/2 if m = Q3
1 and d1 = 1, (I)

(q − 2)(q − 1)/2 if m = Q2
1Q2 and d1 = d2 = 1, (II)

q(q + 1)/2− 3q + 3 if m = Q1Q2Q3 and d1 = d2 = d3 = 1, (III)

q(q + 1)/2− q − 1 if m = Q1Q2, d1 = 2, and d2 = 1, (IV)

q(q + 1)/2 if m = Q1 and d1 = 3. (V)

By comparing g+m and λ+m, we obtain the following result.

Corollary 3.5. Assume that q 6= p and degm = 3. Then K+
m is not

ordinary.

Remark 3.6. The above corollary does not hold for q = p. For example,
by comparing g+m and λ+m, we see that K+

m is ordinary in cases (III)–(V) if
q = p.

3.1. Case (III). Let m = (T −α)(T −β)(T −γ) where α, β, γ ∈ Fq are
distinct. Then we have the isomorphism

(A/mA)× → (F×q )3 (a(T ) mod m 7→ (a(α), a(β), a(γ))).

Hence any character χ : (A/mA)× → C× can be given by

a(T ) mod m 7→ χ1(a(α))χ2(a(β))χ3(a(γ)),

where χ1, χ2, χ3 are characters of F×q . We see that χ−13 = χ1χ2 if χ is real.
Hence we have the following one-to-one correspondence:

(3.1) {χ ∈ X+
m : fχ = m} 1:1←→

{
(χ1, χ2) ∈ (F̂×q )2 :

χ1, χ2, χ1χ2

are non-trivial

}
.

Take χ ∈ X+
m corresponding to (χ1, χ2). Then

s+1 (χ) = 1 +
∑
a∈Fq

a6=α,β,γ

χ(T − a)(3.2)

= 1 +
∑
a∈Fq

a6=α,β,γ

χ1

(
a− α
a− γ

)
χ2

(
a− β
a− γ

)

= χ1(1− τ)χ2(1− 1/τ)J(χ1, χ2),

where τ = (α− γ)/(β − γ) and J(χ1, χ2) is the Jacobi sum defined by

J(χ1, χ2) =
∑
a∈Fq
a6=0,1

χ1(a)χ2(1− a).

Let K = Q(e2πi/(q−1)) and OK the ring of integers of K. Let p be a
prime ideal of OK above p. Since r is the relative degree of p in K/Q (recall
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that q = pr), we see that Fq is isomorphic to OK/p. Fix an isomorphism
θ : Fq → OK/p. We define an isomorphism φ by

φ : W → (OK/p)× (ζ 7→ ζ mod p),

where W is the group of (q − 1)th roots of unity. We define χp by

χp : F×q →W (x 7→ φ−1(θ(x))).

Then χp is a generator of F̂×q . Therefore, by (3.1), we have the following
one-to-one correspondence:

{χ ∈ X+
m : fχ = m} 1:1←→

{
(χn1

p , χ
n2
p ) :

1 ≤ n1, n2 ≤ q − 2,

n1 + n2 6≡ 0 mod q − 1

}
.

Take χ ∈ X+
m corresponding to (χn1

p , χ
n2
p ). By (3.2), we have

s+1 (χ) 6∈ p ⇔ ordp(J(χn1
p , χ

n2
p )) = 0.

By (2.4) and Proposition 2.2,

λ+m = #

{
(n1, n2) ∈ [1, q − 2]2 :

n1 + n2 6≡ 0 mod q − 1,

ordp(J(χn1
p , χ

n2
p )) = 0

}
,

where [1, q − 2] = {1, . . . , q − 2}.
Next we investigate the value of ordp(J(χn1

p , χ
n2
p )). For n ∈ Z, we define

L(n) ∈ Z as follows:

0 ≤ L(n) < q − 1, L(n) ≡ n mod q − 1.

Consider the p-adic expansion

L(n) = a0(n) + a1(n)p+ · · ·+ ar−1(n)pr−1 (0 ≤ ai(n) < p),

and put

l(n) = a0(n) + a1(n) + · · ·+ ar−1(n).

By the Stickelberger theorem for Jacobi sums, we obtain

ordp(J(χn1
p , χ

n2
p )) = r − l(n1) + l(n2)− l(n1 + n2)

p− 1

= r −#{0 ≤ i ≤ r − 1 : L(n1p
i) + L(n2p

i) > q − 1}

for 1 ≤ n1, n2 ≤ q− 2 and n1 +n2 6= q− 1 (cf. [B-E-W, Corollary 11.2.4 and
Theorem 11.2.9]). Noting that

J(χn1
p , χ

n2
p )J(χq−1−n1

p , χq−1−n2
p ) = q,
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we have

λ+m = #

{
(n1, n2) ∈ [1, q − 2]2 :

n1 + n2 6≡ 0 mod q − 1,

ordp(J(χn1
p , χ

n2
p )) = r

}

= #

{
(n1, n2) ∈ [1, q − 2]2 :

n1 + n2 6≡ 0 mod q − 1,

l(n1) + l(n2) = l(n1 + n2)

}
.

We see that

l(n1) + l(n2) = l(n1 + n2)

⇔ L(n1p
r−1−i) + L(n2p

r−1−i) ≤ q − 1 (0 ≤ i ≤ r − 1)

⇔ ai(n1) + ai(n2) ≤ p− 1 (0 ≤ i ≤ r − 1).

Hence

λ+m = #

{
(n1, n2) ∈ [1, q − 2]2 :

n1 + n2 6≡ 0 mod q − 1,

ai(n1) + ai(n2) ≤ p− 1 (0 ≤ i ≤ r − 1)

}
.

Now,

(p(p+ 1)/2)r

= #{(n1, n2) ∈ [0, q − 1]2 : ai(n1) + ai(n2) ≤ p− 1 (0 ≤ i ≤ r − 1)},
3q − 3 = #{(n1, n2) ∈ [0, q − 1]2 : n1 = 0 or n2 = 0 or n1 + n2 = q − 1}.

Therefore

λ+m = (p(p+ 1)/2)r − 3q + 3.

3.2. Case (IV). Let m = m0(T − α) where α ∈ Fq and m0 ∈ A is a
monic irreducible polynomial of degree two. Then we have the isomorphism

(A/mA)× → (A/m0A)× × F×q (a(T ) mod m 7→ (a(T ) mod m0, a(α))).

Hence any character χ : (A/mA)× → C× can be given by

a(T ) mod m 7→ χ1(a(T ) mod m0)χ2(a(α)),

where χ1 is a character of (A/m0A)×, and χ2 is a character of F×q . If χ is

real, then χ2 = (χ1|F×
q

)−1. Hence we have the following one-to-one corre-

spondence:

{χ ∈ X+
m : fχ = m} 1:1←→ {χ1 ∈ X−m0

: fχ1 = m0}.

Take χ ∈ X+
m corresponding to χ1 ∈ X−m0

. Then
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s+1 (χ) = 1 +
∑
a∈Fq
a6=α

χ(T − a) = 1 +
∑
a∈Fq
a6=α

χ1(T − a)χ2(α− a)

= 1 +
∑
a∈Fq
a6=α

χ1

(
T − a
α− a

)
.

Let ω be the generator of Xm0 defined in Subsection 2.2. Take n ∈ [1, q2−2]
such that χ1 = ωn. Since χ1 is imaginary, we have n 6≡ 0 mod q−1. By (2.7),
we have

(3.3) s+1 (χ) ∈ pOM ⇔ 1 +
∑
a∈Fq
a6=α

(
T − a
α− a

)n
∈ m0A.

Lemma 3.7. For 1 ≤ n ≤ q2 − 2 (n 6≡ 0 mod q − 1), set

fn(T ) = 1 +
∑
a∈Fq
a6=α

(
T − a
α− a

)n
.

Consider the q-adic expansion n = a(n) + b(n)q (0 ≤ a(n), b(n) ≤ q − 1).
Then

fn(T ) 6∈ m0A ⇔
(

b(n)

q − 1− a(n)

)
6≡ 0 mod p,

where
(∗
∗
)

is a binomial coefficient.

Proof. We put gn(T ) = Tnfn(1/T + α). Then

(i) gn(T ) =
∑
a∈Fq

(T + a)n, (ii) fn(T ) = (T − α)ngn

(
1

T − α

)
.

Gekeler [Ge, Corollary 3.14] established the following equality:

gn(T ) =

−
(

b(n)

q − 1− a(n)

)
(T q − T )i(n) if a(n) + b(n) > q − 1,

0 if a(n) + b(n) < q − 1,

where i(n) = a(n) + b(n)− (q − 1). Hence

gn(T ) 6∈ m1A ⇔
(

b(n)

q − 1− a(n)

)
6≡ 0 mod p

for any irreducible polynomial m1 of degree two. Therefore, by (ii), we obtain
Lemma 3.7 .

By Proposition 2.2 and Lemma 3.7 and the equalities (2.4) and (3.3), we
have
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(3.4) λ+m = #

1 ≤ n ≤ q2 − 2 :
n 6≡ 0 mod q − 1,(

b(n)

q − 1− a(n)

)
6≡ 0 mod p

 .

For 1 ≤ n ≤ q2 − 2 (n 6≡ 0 mod q − 1), we write

a(n) = a0(n) + a1(n)p+ · · ·+ ar−1(n)pr−1,

b(n) = b0(n) + b1(n)p+ · · ·+ br−1(n)pr−1,

where 0 ≤ ai(n), bi(n) ≤ p− 1 (i = 0, 1, . . . , r − 1). Noting that

q − 1− a(n) =
r−1∑
i=0

(p− 1− ai(n))pi,

we have (
b(n)

q − 1− a(n)

)
≡

r−1∏
i=0

(
bi(n)

p− 1− ai(n)

)
mod p.

Hence(
b(n)

q − 1− a(n)

)
6≡ 0 mod p⇔ ai(n) + bi(n) ≥ p− 1 (0 ≤ i ≤ r − 1).

Therefore the equality (3.4) can be written as follows:

λ+m = #

{
1 ≤ n ≤ q2 − 2 :

n 6≡ 0 mod q − 1,

ai(n) + bi(n) ≥ p− 1 (0 ≤ i ≤ r − 1)

}
.

We see that

(p(p+ 1)/2)r = #{n ∈ [0, q2 − 1] : ai(n) + bi(n) ≥ p− 1 (0 ≤ i ≤ r − 1)},
q = #{n ∈ [0, q2 − 1] : a(n) + b(n) = q − 1},
1 = #{n ∈ [0, q2 − 1] : a(n) + b(n) = 2(q − 1)}.

Hence we obtain
λ+m = (p(p+ 1)/2)r − q − 1.

3.3. Case (V). Let m be a monic irreducible polynomial of degree
three. For n ∈ [1, q3−2] (n ≡ 0 mod q−1), we see that 1+s1(n)+s2(n) = 0
(cf. [Ge, Lemma 6.1]). Therefore

Bn(u) = 1 + s+1 (n)u = 1− s2(n)u.

By Corollary 2.8, we have

λ+m = #

{
1 ≤ n ≤ q3 − 2 :

n ≡ 0 mod q − 1,

s2(n) 6≡ 0 mod m

}
.

For n ∈ [1, q3 − 2] (n ≡ 0 mod q − 1), consider the q-adic expansion

n = a(n) + b(n)q + c(n)q2 (0 ≤ a(n), b(n), c(n) < q).
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Put l(n) = a(n) + b(n) + c(n). Then l(n) = q− 1 or 2(q− 1). If l(n) = q− 1,
then s2(n) = 0 (cf. [Ge, Corollary 2.12]). If l(n) = 2(q − 1), then Gekeler
[Ge, Theorem 3.13]) proved the equality

s2(n) = (−1)a(n)
(

c(n)

q − 1− a(n)

)
(T q − T )i(n)(T q

2 − T )j(n),

where the integers i(n), j(n) are defined by

i(n) = a(n) + b(n) + q(b(n) + c(n))− (q2 − 1),

j(n) = a(n) + c(n)− (q − 1).

Since m is irreducible of degree three, we have

s2(n) 6∈ mA ⇔
(

c(n)

q − 1− a(n)

)
6≡ 0 mod p.

Therefore

λ+m = #

{
1 ≤ n ≤ q3 − 2 :

l(n) = 2(q − 1),( c(n)
q−1−a(n)

)
6≡ 0 mod p

}
.

By the same argument of case (IV), we can calculate the right side of the
above equality to obtain

λ+m = (p(p+ 1)/2)r.

4. Proof of Theorem 1.3. In this section, we prove Theorem 1.3. The
difficult point is to show that K+

m is not ordinary when m is a product of
two distinct irreducible polynomials of degree two (see Subsection 4.2).

Assume that q 6= p. By Theorem 1.1 and Proposition 2.6, K+
m is not

ordinary if m has a prime factor Q with degQ ≥ 3. Hence we can assume
that the irreducible decomposition of m is

m = Qn1
1 · · ·Q

nt
t ,

where each Qi is monic with di = degQi ≤ 2. If we can show that K+
m

is not ordinary in the following two cases: (VI) m = Q2
1 (d1 = 2), (VII)

m = Q1Q2 (d1 = d2 = 2), then we obtain Theorem 1.3 by Proposition 2.6
and Corollary 3.5.

4.1. Case (VI). If m = Q2
1 (d1 = 2), by applying the Deuring–Shafare-

vich formula in K+
Q2

1
/K+

Q1
, we have

λ+
Q2

1
= λ+Q1

q2 + q2 − 1

(cf. [Sh1, Subsection 3.2]). Since d1 = 2, we have λ+Q1
= 0. Hence λ+

Q2
1

=

q2 − 1. On the other hand, the genus g+
Q2

1
can be calculated as follows:

g+
Q2

1
= (q2 − 1)(q + 1)

(cf. [K-M]). Hence K+
Q2

1
is not ordinary.
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4.2. Case (VII). If m = Q1Q2 (d1 = d2 = 2), we see that

(A/mA)× ' (A/Q1A)× × (A/Q2A)×.

This leads to the following isomorphism of character groups:

̂(A/mA)× ' ̂(A/Q1A)× × ̂(A/Q2A)×.

Hence we have the following one-to-one correspondence:

{χ ∈ X+
m : fχ = m} 1:1←→

{
(χ1, χ2) ∈ XQ1 ×XQ2 :

fχ1 = Q1, fχ2 = Q2,

χ1χ2 is real

}
.

Define Q1 = T 2 + u1T + u2 and Q2 = T 2 + v1T + v2 (u1, u2, v1, v2 ∈ Fq).
Let χ ∈ X+

m correspond to (χ1, χ2) ∈ XQ1 ×XQ2 .

Lemma 4.1. Assume that u1 = v1. Then

s+2 (χ) =

{
s1(χ1)s1(χ2) if χ1 is imaginary,

q if χ1 is real.

Lemma 4.2. Assume that u1 6= v1. Set ε = (u2 − v2)/(u1 − v1), α =
u1 − ε, and β = v1 − ε. Then

χ1(T + α)χ2(T + β)s+2 (χ) =

{
s1(χ1)s1(χ2) if χ1 is imaginary,

q if χ1 is real.

Let M = Q(e2πi/(q
2−1)), and let p be a prime ideal of M above p. We set

L = Q(π1, . . . , π2g+m , e
2πi/(q2−1)),

where Z
(+)
m (u) =

∏2g+m
i=1 (1− πiu). Let P be a prime ideal of L over p.

Proposition 4.3. Assume that χ1 is imaginary. Then

ordP(s+2 (χ)) = ordP(s1(χ1)) + ordP(s1(χ2)).

Proof. This follows from Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. We see that

s2(χ) =
∑
a,b∈Fq

χ(T 2 + aT + b)

=
∑
a,b∈Fq

χ1((a− u1)T + (b− u2))χ2((a− u1)T + (b− v2)) = H + I,

where



238 D. Shiomi

H =
∑
a∈Fq
a6=0

∑
b∈Fq

χ1(aT + b)χ2(aT + b+ u2 − v2),

I =
∑
b∈Fq

χ1(b)χ2(b+ u2 − v2).

Notice that u2 6= v2. If χ1 is real, then s1(χ1) = s1(χ2) = −1. Hence

H =

{
s1(χ1)s1(χ2)− s1(χ) if χ1 is imaginary,

1− s1(χ) if χ1 is real,

I =

{−1 if χ1 is imaginary,

q − 2 if χ1 is real.

This proves Lemma 4.1.

Proof of Lemma 4.2. We see that

(T + α)(T 2 + aT + b)

≡ (−ε(a− u1) + b− u2)T − (a− u1)u2 + α(b− u2) mod Q1,

(T + β)(T 2 + aT + b)

≡ (−ε(a− v1) + b− v2)T − (a− v1)v2 + β(b− v2) mod Q2.

Noting that

−ε(a− u1) + b− u2 = −ε(a− v1) + b− v2,

we have

χ1(T + α)χ2(T + β)s2(χ)

=
∑
a,b∈Fq

χ1

(
(−ε(a− u1) + b− u2)T − (a− u1)u2 + α(b− u2)

)
× χ2

(
(−ε(a− u1) + b− u2)T − (a− v1)v2 + β(b− v2)

)
=

∑
a,b∈Fq

χ1(bT + a(−u2 + αε) + bα)

× χ2

(
bT + a(−v2 + βε) + bβ − v2(u1 − v1) + β(u2 − v2)

)
= H + I,

where

H =
∑
a,b∈Fq
b 6=0

χ1(bT + aγ + bα)χ2(bT + aγ + bβ + δ),

I =
∑
a∈Fq

χ1(aγ)χ2(aγ + δ).
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Here, γ = −u2 + αε = −v2 + βε and δ = −v2(u1 − v1) + β(u2 − v2). Notice
that γ 6= 0 and δ 6= 0. Hence

H =

{
s1(χ1)s1(χ2)− J if χ1 is imaginary,

1− J if χ1 is real,

I =

{−1 if χ1 is imaginary,

q − 2 if χ1 is real,

where

J =
∑
a∈Fq

χ1(T + a)χ2(T + a+ v1 − u1).

On the other hand, we see that

(T + α)(T + a) ≡ (a− ε)T + aα− u2 mod Q1,

(T + β)(T + a) ≡ (a− ε)T + aβ − v2 mod Q2.

Hence we have

χ1(T + α)χ2(T + β)(1 + s1(χ))

= χ1(T + α)χ2(T + β)

+
∑
a∈Fq

χ1((a− ε)T + aα− u2)χ2((a− ε)T + aβ − v2)

= χ1(T + α)χ2(T + β) +
∑
a∈Fq

χ1(aT + aα+ γ)χ2(aT + aβ + γ)

= 1 +
∑
a∈Fq

χ1(T + a)χ2(T + a+ v1 − u1) = 1 + J.

This yields Lemma 4.2.

Now we prove Theorem 1.3. Assume that r ≥ 2. We see that A/Q1A,
A/Q2A, and OM/p are finite fields of the same cardinality. Fix isomor-
phisms

σ1 : A/Q1A→ OM/p, σ2 : A/Q2A→ OM/p.

Define an isomorphism τ by

τ : Wq2−1 → (OM/p)× (ζ 7→ ζ mod p).

Set

ω1 = τ−1 ◦ σ1|(A/Q1A)× , ω2 = τ−1 ◦ σ2|(A/Q2A)× .

Then ω1, ω2 are generators of XQ1 , XQ2 , respectively.
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Lemma 4.4.

s1(n) ≡ 0 mod Q1 ⇔ s1(ω
n
1 ) ∈ P,

s1(n) ≡ 0 mod Q2 ⇔ s1(ω
n
2 ) ∈ P.

Proof. This follows from s1(ω
n
1 ) ≡ σ1(s1(n) mod Q1) mod p, and s1(ω

n
2 )

≡ σ2(s1(n) mod Q2) mod p.

Let γ1 be a generator of (A/Q1A)×. Write α = γq+1
1 and ζ = ω1(γ1).

Then α is a generator of F×q , and ζ is a primitive (q2 − 1)th root of unity.

Lemma 4.5. There exists a generator γ2∈(A/Q2A)× such that γq+1
2 =α.

Proof. Let γ be a generator of (A/Q2A)×. Since γq+1 is a generator
of F×q , we can take i0 ∈ Z such that γ(q+1)i0 = α. We notice that gcd(i0, q−1)
= 1. The map

(Z/(q2 − 1))× → (Z/(q − 1))× (x mod (q2 − 1) 7→ x mod (q − 1))

is surjective. Hence we can take i ∈ Z such that

i ≡ i0 mod q − 1, gcd(i, q2 − 1) = 1.

Set γ2 = γi. Then γ2 is a generator of (A/Q2A)× such that γq+1
2 = α.

Take n ∈ Z such that ζn = ω2(γ2). Then ζn is a primitive (q2−1)th root
of unity. Therefore gcd(n, q2 − 1) = 1. Take m1 ∈ Z such that

1 ≤ m1 ≤ q2 − 2, nm1 ≡ (q − pr−1) + pr−1q mod q2 − 1.

Since l((p − 1) + q) = p < q − 1 (definition of l(n), see Subsection 3.3), we
have

s1((q − pr−1) + pr−1q) = s1((p− 1) + q)p
r−1

= 0

(cf. [Ge, Corollary 2.12]). By Lemma 4.4, we have

s1(ω
nm1
1 ) = s1(ω

(q−pr−1)+pr−1q
1 ) ∈ P.

Next we consider the complex conjugate ωnm1
1 . We see that

−nm1 ≡ (pr−1 − 1) + (q − pr−1 − 1)q mod q2 − 1.

Since l((pr−1 − 1) + (q − pr−1 − 1)q) = q − 2 < q − 1, we have

s1((p
r−1 − 1) + (q − pr−1 − 1)q) = 0.

Again by Lemma 4.4,

s1(ω
nm1
1 ) = s1(ω

(pr−1−1)+(q−pr−1−1)q
1 ) ∈ P.
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Since nm1 ≡ 1 mod q − 1, we see that ωnm1
1 is imaginary. Therefore,

s1(ω
nm1
1 )s1(ω

nm1
1 ) = q.

Hence
1 ≤ ordP(s1(ω

nm1
1 )) < ordP(q).

Let c ∈ Z be such that

1 ≤ c ≤ q − 2, c ≡ m1 mod q − 1.

Set m2 = c+ (q − 1)q. Then

s1(m2) = −
(
q − 1

c

)
(T q − T )c

(cf. [Ge, Corollary 3.14]). Notice that
(
q−1
c

)
6≡ 0 mod p. Therefore s1(m2) 6≡ 0

mod Q2. By Lemma 4.4, we see that s1(ω
m2
2 ) 6∈ P. Since ωm2

2 is imaginary,
we have

ordP(s1(ω
−m2
2 )) = ordP(q).

Let χ = ωnm1
1 ω−m2

2 . Then χ(α) = 1 since m1 ≡ m2 mod q − 1. Hence χ is a
real character of conductor m = Q1Q2. By Proposition 4.3, we have

ordP(s+2 (χ)) = ordP(s1(ω
nm1
1 )) + ordP(s1(ω

−m2
2 )) 6∈ ordP(q)Z.

By (2.5), there exist πi, πj (i 6= j) such that s+2 (χ) = πiπj . Therefore, by
Proposition 2.3, we see that K+

m is not ordinary. This completes the proof
of Theorem 1.3.

Acknowledgements. The author wishes to thank the referee for point-
ing out some minor errors and misprints in an earlier version of this paper.

References

[B-E-W] B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi Sums, Canad.
Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1998.

[G-R] S. Galovich and M. Rosen, The class number of cyclotomic function fields,
J. Number Theory 13 (1981), 363–375.

[Ge] E.-U. Gekeler, On power sums of polynomials over finite fields, J. Number
Theory 30 (1988), 11–26.

[Go] D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1998.
[Ha] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer.

Math. Soc. 189 (1974), 77–91.
[K-M] M. Kida and N. Murabayashi, Cyclotomic function fields with divisor class

number one, Tokyo J. Math. 14 (1991), 45–56.
[Ro] M. Rosen, Number Theory in Function Fields, Springer, Berlin, 2002.
[Sh1] D. Shiomi, The Hasse–Witt invariant of cyclotomic function fields, Acta Arith.

150 (2011) 227–240.
[Sh2] D. Shiomi, Ordinary cyclotomic function fields, J. Number Theory 133 (2013),

523–533.

http://dx.doi.org/10.1016/0022-314X(81)90021-4
http://dx.doi.org/10.1016/0022-314X(88)90023-6
http://dx.doi.org/10.1090/S0002-9947-1974-0330106-6
http://dx.doi.org/10.3836/tjm/1270130486
http://dx.doi.org/10.4064/aa150-3-2
http://dx.doi.org/10.1016/j.jnt.2012.08.008


242 D. Shiomi

[Sh3] D. Shiomi, Explicit formulas for Hasse–Witt invariants of cyclotomic function
fields with conductor of degree two, RIMS Kôkyûroku Bessatsu B34 (2013),
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