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A criterion for potentially good reduction in
nonarchimedean dynamics
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Robert L. Benedetto (Amherst, MA)

Introduction and main result. Fix the following notation through-
out this paper:

K: a field,
K: an algebraic closure of K,
| · |v: a nonarchimedean absolute value on K,
OK : the ring of integers {x ∈ K : |x|v ≤ 1} of K,
MK : the maximal ideal {x ∈ K : |x|v < 1} of OK ,
k: the residue field OK/MK of K,
OK : the ring of integers of K,
MK : the maximal ideal of OK ,

k: the residue field of K.

For example, K could be the field Qp of p-adic rationals, with ring of inte-
gers Zp, maximal ideal pZp, and algebraic closure Qp. Since Qp is complete,

the absolute value | · |p on Qp extends uniquely to Qp.
Let φ(z) ∈ K(z) be a rational function. We define the degree of φ = f/g

to be deg φ := max{deg f,deg g}, where f, g ∈ K[z] have no common factors.
We will view φ as a dynamical system acting on P1(K ) = K ∪ {∞}. For a
thorough treatment of dynamics over such nonarchimedean fields, see [BR].

If deg φ ≥ 2, then φ fixes exactly 1 + deg φ points in P1(K ), counted
with appropriate multiplicity. The multiplier λ ∈ K of such a fixed point
x ∈ P1(K ) is

(∗) λ :=

{
φ′(x) if x ∈ K,

ψ′(0) if x =∞, where ψ(z) = 1/φ(1/z).

If |λ|v > 1, we say the fixed point x is repelling ; if |λ|v = 1, we say x is
indifferent ; and if |λ|v < 1, we say x is attracting. The multiplier of x is
exactly 1 (as opposed to merely having absolute value 1) if and only if x has
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multiplicity at least two as a fixed point. The multiplier is 0 if and only if x
is a critical point of φ.

If we change coordinates on P1(K ) by applying a linear fractional trans-
formation h ∈ PGL(2,K ), the effect on φ is to conjugate by h. In particular,
if x is a fixed point of φ, then h(x) is a fixed point of h ◦ φ ◦ h−1 ∈ K(z),
and with the same multiplier. This invariance justifies the definition of the
multiplier of a fixed point at ∞ in equation (∗).

The notion of good reduction of φ ∈ K(z) was first stated in [MS]; see
Definition 1.1 below. We will say that φ has potentially good reduction if φ
is conjugate over K to a map of good reduction. It is easy to see whether
or not a given map φ ∈ K(z) has good reduction as written, but in general,
it is not so obvious how to tell whether or not φ is conjugate to a map of
good reduction.

In [Ru], Rumely presents two somewhat involved algorithms for deciding
whether or not φ has potentially good reduction. A much simpler necessary
and sufficient condition for potential good reduction when φ ∈ K[z] is a
polynomial appeared in Corollary 4.6 of [B1]. In this paper, we generalize
that simpler criterion to apply to arbitrary rational functions φ ∈ K(x), as
follows.

Theorem. Let K be a field with algebraic closure K and with nonar-
chimedean absolute value | · |v on K. Let φ ∈ K(z) be a rational function
of degree d ≥ 2. Let x1, . . . , xd+1 ∈ P1(K ) be the fixed points of φ, repeated
according to multiplicity. If xi is repelling for some i, then φ does not have
potentially good reduction. Otherwise, define h ∈ PGL(2,K ) as follows:

(i) If xi is indifferent for some i, then one can choose y1∈ φ−1(xi)r{xi}
and y2 ∈ φ−1(y1). The three points xi, y1, y2 ∈ P1(K ) are necessarily
distinct, and so there is a unique h ∈ PGL(2,K ) such that h(xi) = 0,
h(y1) = 1, and h(y2) =∞.

(ii) Otherwise, all the fixed points are attracting, and x1, x2, and x3 are
necessarily distinct. Thus, there is a unique h ∈ PGL(2,K ) such
that h(x1) = 0, h(x2) = 1, and h(x3) =∞.

Let ψ = h◦φ◦h−1. The original map φ has potentially good reduction if and
only if ψ has good reduction; in that case, h provides the desired coordinate
change.

If φ does have potentially good reduction, the map h ∈ PGL(2,K ) of
the above Theorem is defined over an extension of degree at most d3 − d
over K, a priori. After all, the fixed points of φ are all roots of a polynomial
of degree d+ 1, and the preimages of any given point of P1(K ) are roots of
a polynomial of degree d. In case (i) above, then, xi contributes degree up
to d + 1, y1 contributes up to d − 1, and y2 contributes up to d. Similarly,
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in case (ii), x0, x1, and x2 contribute up to d+ 1, d, and d− 1. However, in
a separate paper [B2], we will show that this bound may be reduced from
d3 − d to max{d+ 1, d2 − d}, and usually even lower.

We will recall some general facts about good reduction in Section 1.
Then, in Section 2, we will state some simple lemmas and prove the Theorem.

1. Reduction of rational maps. Given a polynomial f(z) ∈ OK [z],

denote by f (z) ∈ k[z] the polynomial formed by reducing all coefficients of
f modulo MK .

Definition 1.1. Let φ(z) ∈ K(z) be a rational function of degree d ≥ 1.
Write φ = f/g with f, g ∈ OK [z] and with at least one coefficient of f or g
having absolute value 1. Let φ := f/g. We say that φ has good reduction if
deg φ = deg φ. Otherwise, we say that φ has bad reduction.

We say that φ has potentially good reduction if there exists some h in
PGL(2,K ) such that h ◦ φ ◦ h−1 ∈ K(z) has good reduction.

There is some inconsistency in the literature as to whether “bad reduc-
tion” of a dynamical system φ should mean the lack of good reduction,
or, more restrictively, the lack of good reduction even after a K-rational
change of coordinates. For example, if a ∈ K is a uniformizer, then the
map φ(z) = az2 has bad reduction as written, but its K-rational conjugate
aφ(a−1z) = z2 has good reduction. Meanwhile, the map ψ(z) = az3 also
has bad reduction, and in fact it can be shown to have bad reduction even
after any K-rational coordinate change. However, ψ has potentially good
reduction, because a1/2ψ(a−1/2z) = z3 has good reduction.

Given φ ∈ K(z), it is easy to check that polynomials f, g ∈ OK [z]
exist as specified in Definition 1.1, and that the reduction type of φ does
not change if two other such polynomials f̃ , g̃ ∈ OK [z] are chosen in their
stead. Note that deg φ ≤ deg φ, but the degree could drop if the formerly
relatively prime f, g ∈ OK [z] gain a common factor when they are reduced,
or if max{deg f , deg g} is strictly smaller than max{deg f, deg g}.

The reduction map red : OK → k induces a map red : P1(K )→ P1(k),
which coincides with the original reduction map onOK and mapsP1(K )rOK

to the point∞ ∈ P1(k). It is easy to check that a rational function φ ∈ K(z)
has good reduction if and only if it respects the reduction map, i.e., if

φ(x) = φ(x) for all x ∈ P1(K ).

As a result, the composition of two maps of good reduction again has good
reduction. In addition, among maps of degree 1, i.e., in PGL(2,K ), the good
reduction maps are precisely the elements of PGL(2,OK).

Lemma 1.2. Let ψ ∈ K(z) have good reduction, and write ψ = f/g
with f, g ∈ OK [z] as in Definition 1.1. Suppose that 0 is a fixed point of ψ,



254 R. L. Benedetto

and let λ be the associated multiplier. Then f(0) = 0, |g(0)|v = 1, and
|λ|v = |f ′(0)|v.

Proof. Since f and g are relatively prime, we have f(0) = 0 and g(0) 6= 0.
However, because f, g ∈ OK [z] are also relatively prime, we must in fact have
|g(0)|v = 1. Thus,

|λ|v =

∣∣∣∣f ′(0)g(0)− f(0)g′(0)

g(0)2

∣∣∣∣
v

=
|f ′(0)g(0)|v
|g(0)|2v

= |f ′(0)|v.

2. Proof of the Theorem. The following lemmas are well known in
the more general setting of dynamics on a nonarchimedean disk, but their
proofs in our context are very short and simple, and so we include them for
the convenience of the reader.

Lemma 2.1. Let ψ ∈ K(z) be a rational function of good reduction, and
let x ∈ P1(K ) be a fixed point. Then x is indifferent or attracting.

Proof. There is some degree one map h ∈ PGL(2,OK) of good reduc-
tion such that h(x) = 0. Since conjugating by h preserves good reduction
and multipliers, we may assume without loss of generality that x = 0. Let
λ := ψ′(0) be the associated multiplier.

Write ψ = f/g as in Definition 1.1. Then f ′ ∈ OK [z], since f ∈ OK [z].
Thus, by Lemma 1.2, we have |λ|v = |f ′(0)|v ≤ 1.

Lemma 2.2. Let ψ ∈ K(z) be a rational function of good reduction, and
let x ∈ P1(K ) be an attracting fixed point of ψ. Then for any other fixed

point y ∈ P1(K ) of ψ, the reductions red(x), red(y) ∈ P1(k) are distinct.

Proof. By a PGL(2,OK) change of coordinates, we may assume that
x = 0. Write ψ = f/g as in Definition 1.1, and let λ := ψ′(0) be the
associated multiplier. By Lemma 1.2, we have f(0) = 0, |g(0)|v = 1, and
|f ′(0)|v = |λ|v < 1. That is, f(z) = a1z + · · · + adz

d with |ai|v ≤ 1 and
|a1|v < 1, whereas g(z) = b0 + b1z + · · ·+ bdz

d with |bi|v ≤ 1 and |b0|v = 1.

For any y ∈ P1(K ) with red(y) = red(0), we have |y|v < 1. Thus, if
y 6= 0, then

|ψ(y)|v = |y|v ·
|a1 + · · ·+ ady

d−1|v
|b0 + · · ·+ bdyd|v

= |y|v ·
|a1 + · · ·+ ady

d−1|v
|b0|v

< |y|v,

and hence y cannot be fixed.

Lemma 2.3. Let ψ ∈ K(z) be a rational function of good reduction and
degree d ≥ 2, and let x ∈ P1(K ) be an indifferent fixed point of ψ. Then
ψ−1(x) r {x} is nonempty, and red(x) 6= red(y) for any y ∈ ψ−1(x) r {x}.

Proof. By a PGL(2,OK) change of coordinates, we may assume that
x = 0. Write ψ = f/g as in Definition 1.1, and let λ := ψ′(0) be the
associated multiplier. By Lemma 1.2, we have f(0) = 0, |g(0)|v = 1, and
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|f ′(0)|v = |λ|v = 1. Thus, f(z) = a1z+· · ·+adzd with |ai|v ≤ 1 and |a1|v = 1.
It is immediate that f , and hence ψ, has no roots in MK r {0}.

Meanwhile, the hypothesis on ψ′(0) also implies that 0 is not a critical
point. Since d ≥ 2, ψ−1(0) r {0} is nonempty. Given y ∈ ψ−1(0) r {0}, the
previous paragraph shows that y 6∈ MK , and hence red(y) 6= red(0).

Remark 2.4. Lemmas 2.2 and 2.3 are special cases of more general
statements about the fixed points of a map φ ∈ K(z) of good reduction.
Specifically, if x is an attracting fixed point (or more generally, periodic
point) of such a map, then the residue class of x contains no other periodic
points, although it almost certainly contains many other preperiodic points
that ultimately map to x itself. Similarly, if x is an indifferent periodic point
of a map of good reduction, then the residue class of x maps bijectively onto
itself, and hence the only preperiodic points in the residue class are in fact
periodic. (In fact, there are usually infinitely many periodic points in such
a residue class.)

Furthermore, these facts about preperiodic points near nonrepelling pe-
riodic points were generalized by Rivera-Letelier in his thesis [Ri] to maps
of bad reduction, by replacing residue classes with an appropriate notion of
Fatou components. However, we will only need the far simpler statements
of Lemmas 2.2 and 2.3 here.

Proof of the Theorem. For each i = 1, . . . , d + 1, let λi ∈ K be the
multiplier of the fixed point xi. We consider three cases.

Case 0. If |λi|v > 1 for some i, then by Lemma 2.1, φ does not have
potentially good reduction, proving the first statement of the Theorem.

Henceforth, we will assume that |λi|v ≤ 1 for all i.

Case 1. If |λi|v = 1 for some i, then the associated fixed point xi is not
a critical point (since λi 6= 0), and hence φ−1(xi) r {xi} is nonempty. Pick
y1 ∈ φ−1(xi)r {xi}, and pick y2 ∈ φ−1(y1). Then y1 6= xi by definition, and
hence also y2 6= y1. Moreover, y2 6= xi, because if y2 = xi, then taking φ of

both gives y1 = xi. Let h be the unique map in PGL(2,K ) with h(xi) = 0,
h(y1) = 1, and h(y2) =∞, and let ψ := h◦φ◦h−1. If ψ has good reduction,
then φ has potentially good reduction, and we are done.

Conversely, if φ has potentially good reduction, there is some H in
PGL(2,K ) such that Ψ := H ◦φ ◦H−1 has good reduction. By Lemma 2.3,
the indifferent fixed point H(xi) of Ψ and its preimage H(y1) (under Ψ)
have different reductions in P1(k). Since Ψ respects reduction, we must have
Ψ(H(y2)) = H(y1), and for the same reasons as in the previous paragraph,
the reductions H(xi), H(y1), and H(y2) must all be distinct points in P1(k).
Thus, there is some map r ∈ PGL(2,OK) such that

r(H(xi)) = 0, r(H(y1)) = 1, and r(H(y2)) =∞.
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Then we must have r ◦H = h, and ψ = r ◦ Ψ ◦ r−1. Since Ψ , r, and r−1 all
have good reduction, it follows that so does ψ.

Case 2. The remaining case is that |λi|v < 1 for all i. That is, all the
fixed points of φ are attracting. Then no λi is 1, and hence the d + 1 fixed
points all have multiplicity 1 and therefore are distinct. In particular, x1,
x2, and x3 are all distinct. Let h be the unique map in PGL(2,K ) with
h(x1) = 0, h(x2) = 1, and h(x3) = ∞, and let ψ := h ◦ φ ◦ h−1. If ψ has
good reduction, then φ has potentially good reduction, and we are done.

Conversely, if φ has potentially good reduction, there is some H in
PGL(2,K ) such that Ψ := H ◦φ ◦H−1 has good reduction. By Lemma 2.2,
the attracting fixed points H(x1), H(x2), and H(x3) of Ψ all have different
reductions in P1(k). Thus, there is some map r ∈ PGL(2,OK) such that

r(H(x1)) = 0, r(H(x2)) = 1, and r(H(x3)) =∞.
Then we must have r ◦H = h, and ψ = r ◦ Ψ ◦ r−1. Since Ψ , r, and r−1 all
have good reduction, it follows that so does ψ.
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