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Let F be a field and f(x, y) ∈ F[x, y] be a polynomial of two variables.
For non-empty sets A,B ⊂ F denote

f(A,B) = {f(x, y) : x ∈ A, y ∈ B}.

There are numerous works concerning estimates of |f(A,B)| in terms of
|A| and |B| for various polynomials f . Probably, the first result in this
area is the Cauchy–Davenport theorem, stating that for f(x, y) = x + y
and F = Fp for prime p one has |f(A,B)| ≥ min(|A| + |B| − 1, p). The
Combinatorial Nullstellensatz of Alon [1] is one of the most flexible ways
to prove the Cauchy–Davenport theorem. In particular, it easily generalizes
to restricted sumset estimates like the Erdős–Heilbronn conjecture (unlike
purely combinatorial methods).

There are many asymptotic results for other polynomials f . Bourgain
[2] proved that for f(x, y) = x2 + xy, given α ∈ (0, 1) there exists β > α
such that for F = Fp (here p is a large enough prime), and |A|, |B| ≥ pα

one has |f(A,B)| ≥ pβ. Several generalizations are given in [4]. This phe-
nomenon (the estimate is asymptotically much better than in the Cauchy–
Davenport case) is called polynomial expanding. It is intimately connected
to sum-product estimates and was intensively studied in recent papers (see,
e.g., [2–7]). The main methods are spectral graph theory and Fourier anal-
ysis. Tao in a recent paper [6] also uses some algebraic geometry.

The aim of this paper is to give a proof of some weak (Cauchy–Davenport
type) estimate for the Bourgain-type expanders g(x) + yh(x). The possible
advantage of this result is that estimates are very explicit (without implicit
asymptotical constants) and say something for all fields.
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Our proof is in the spirit of Combinatorial Nullstellensatz. However, we
do not use it as a blackbox, but apply the idea of the proof.

Theorem. Let F be a field, g(x), h(x) ∈ F[x], and A and B be non-
empty finite subsets of F with |A| = a and |B| = b. Assume also that d =
deg g(x) > deg h(x) and A does not contain roots of h(x). Assume further
that k ≤ (a− 1)/d+ b− 1 and the binomial coefficient

(
k
b−1
)

does not vanish
in F. Then

|{g(x) + yh(x) : x ∈ A, y ∈ B}| > k.

The theorem immediately yields the following

Corollary. Let p = charF (and p =∞ if charF = 0). Then

|{g(x) + yh(x) : x ∈ A, y ∈ B}| ≥ min(a/d+ b− 1, p).

In particular, for Bourgain’s expander we get |{x2 + xy : x ∈ A,
y ∈ B}| ≥ min(a/2 + b− 1, p) provided that 0 /∈ A.

Proof of the Theorem. Assume the contrary. The condition
(
k
b−1
)
6= 0

implies that k < |F|, hence there exists a set C of cardinality k such that
g(x) + yh(x) ∈ C for all x ∈ A and y ∈ B. Clearly k ≥ b (just fix x and
vary y). Denote

P (x, y) :=
∏
c∈C

(g(x) + yh(x)− c) =
∑
i,j

λi,jg(x)ih(x)jyj

for some pairs (i, j) of non-negative integers and some coefficients λi,j in F.
Such a polynomial P (x, y) vanishes on A×B. Consider some F-valued func-
tions α(x), β(y) defined on A and B respectively. Look at the following sum,
which eventually vanishes:

(0.1)
∑

x∈A, y∈B
α(x)β(y)P (x, y) =

∑
i,j

λi,j
∑

x∈A, y∈B
α(x)β(y)g(x)ih(x)jyj

=
∑
i,j

λi,j

(∑
x∈A

α(x)g(x)ih(x)j
)(∑

y∈B
β(y)yj

)
.

Our goal is to choose functions α, β so that there exists a unique non-zero
term in the last expression in (0.1). Let us choose β so that∑

y∈B
β(y)yj =

{
0 if 0 ≤ j ≤ b− 2,

1 if j = b− 1.

Such a β does exist, since the Vandermonde determinant for the set B does
not vanish. Then all terms in (0.1) with j < b− 1 vanish. If j ≥ b− 1, then
we may expand

g(x)ih(x)j = h(x)b−1
d(k−b+1)∑
ν=0

ηi,j(ν)xν .
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Let us choose α so that∑
x∈A

α(x)h(x)b−1xi =

{
0 if 0 ≤ i < d(k − b+ 1),

1 if i = d(k − b+ 1).

Since d(k − b + 1) ≤ a − 1, this is (part of) a Vandermonde system again
(for unknowns α(x) · h(x)b−1), and therefore has a solution. For this choice
of α all summands ∑

x∈A
α(x)h(x)b−1ηi,j(ν)xν

corresponding to fixed i, j and fixed ν < d(k− b+ 1) vanish. Now note that
ηi,j(d(k − b + 1)) = 0 unless j = b − 1, i = k − b + 1 (here we use the fact
that deg h(x) < d). And if j = b− 1, i = k − b+ 1, we have

ηk−b+1,b−1(d(k − b+ 1)) =

(
k

b− 1

)
Mk−b+1,

where M is the leading coefficient of g(x). So, by our assumption this expres-
sion does not vanish in F. Finally, we indeed have a unique non-vanishing
term in (0.1), as desired.

Remark. Let F be a field of pn elements for a prime p, B be any subfield,
of say pm elements, and A = B \{0}. Then f(A,B) = B for any polynomial
f and we get no non-trivial bound. But already for |B| = b = pm + 1 and
|A| = a ≥ C · pm, 0 < C < 1, for, say, f(x, y) = x2 + xy, we get an estimate
|f(A,B)| ≥ (1 + C/2)pm − 1, since the corresponding binomial coefficient
is not divisible by p. It would be interesting to have a structured version of
this result, i.e. to prove that if |f(A,B)| is close to |B|, then B is close to a
subfield. Also, the constant 1+C/2 does not seem to be sharp and probably
the correct constant is 1 + C.
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