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Points on X (N) over quadratic fields
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1. Introduction. In this article, we study points on the modular curve
X (N) over quadratic fields, and show that such points consist of cusps and
CM points under certain conditions.

Let N > 1 be an integer. Let Xo(/N) be the modular curve over Q
associated to the subgroup {(§ %)} € GL2(Z/NZ) (cf. [5]). A non-cuspidal
point on X(N) corresponds to a pair (F, A) where F is an elliptic curve
and A is a cyclic subgroup of E of order N. For rational points on Xy(V),
we know the following.

THEOREM 1.1 ([8, p. 129, Theorem 1]). If N > 163, then Xo(N)(Q) =
{cusps}.
The second author studied points on X (V) over quadratic fields when

N is a prime number.

THEOREM 1.2 ([12, p. 330, Theorem B|). Let K be a quadratic field
which is not an imaginary quadratic field of class number one. Then for
every sufficiently large prime number p, we have Xo(p)(K) = {cusps}.

For any number field K, it seems likely that
Xo(N)(K) = {cusps, CM points}

for every sufficiently large integer N (cf. [I6] p. 187]). But this still remains
unsolved. Here a point 2 on a modular curve (e.g. Xo(N), Xy (N) defined
below) is called a CM point if = is represented by an elliptic curve with
complex multiplication.

Define an involution wy on Xo(N) by

(B, A) — (E/A, E[N]/A),
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where E[N] is the kernel of multiplication by N in E. Put
X3 (N) = Xo(N) /wy.
We have the following open question: For a number field K, does
X (N)(K) = {cusps, CM points}
hold for every sufficiently large integer N7 Notice that there are arbitrarily

large N such that X, (N)(Q) = {cusps} does not hold. We know the fol-
lowing partial answers (Theorem m Theorem to the above question.

THEOREM 1.3 ([2]). For every sufficiently large prime number p, we have
X (*)(Q) = {cusps, CM points}.

REMARK 1.4. We have a natural isomorphism X (p?) 2 Xy,1i(p), where
Xepiit(p) is the modular curve (over Q) associated to the subgroup {(9),
(26)} € GL2(Z/pZ).

Let p be a prime number. We have an involution w, on Xo(p) as above.
By abuse of notation, we also write w, for the induced map Jy(p) — Jo(p).
Put

Jo (p) == Jo(p)/(1 + wp)Jo(p)-
Let
C = {cl((0) — (00))) € Jo(p)(Q)

be the subgroup generated by the divisor class ¢l((0) — (00)) (for the pre-
cise definition of the cusps 0 and oo, see the next section). Then C =
Jo(p)(Q)tor (the torsion subgroup of Jy(p)(Q)) and C maps isomorphically to
Jy (9)(Q)tor by the natural map ([6l, p. 143, Corollary (1.4)], cf. [14] p. 229]).
By abuse of notation we identify C'= J; (p)(Q)tor- The order of C is equal
to the numerator of % ([14, p. 228, Theorem]| or [6, p. 98, Proposition

(11.1)]).

THEOREM 1.5 ([11, p. 269, Theorem (0.1)], cf. [9], [I0]). Let N be a
composite number. If N has a prime divisor p which satisfies the following
conditions (1) and (2), then X (N)(Q) = {cusps, CM points}.

(1) p>17 or p =11.
(2) p# 37 and £.J; (p)(Q) < ox.

We generalize Theorem [I.5] to quadratic fields. The following is the main
theorem of this article.

THEOREM 1.6. Let N be a composite number. Let p be a prime divisor of
N such that (p =11 or p > 17) and p # 37. Suppose ord, N =1 if p = 11.
Let K be a quadratic field where p is unramified. Assume Xo(N)(K) =
{cusps} and Jy (p)(K) = C. Then Xy (N)(K) = {cusps, CM points}.
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REMARK 1.7. Since the modular curve X(37) is peculiar ([15]), we ex-
clude p = 37 in the above theorems. But we have recently shown that
Theorem holds even if p = 37, and have generalized the result to certain
imaginary quadratic fields ([1]).

REMARK 1.8. (1) For N as in Theorem we have Xo(N)(Q) =
{cusps} ([8, pp. 129-131]).

(2) The assumption Xo(N)(K) = {cusps} in Theorem is usually
satisfied by Theorem [1.2

We have the following examples of the condition J (p)(K) = C in The-
orem For a number field K, let hx be the class number of K.

PRrROPOSITION 1.9. Let K be an imaginary quadratic field.

(1) Suppose 11 does not split in K and 5 does not divide hyx. Then
Jy (11)(K) = C.

(2) Suppose 17 does not split in K and 2 does not divide hx. Then
Jy A7)(K) =C.

(3) Suppose 19 does not split in K and 3 does not divide hy. Then
Jy (19)(K) =C.

In Section [2, we prepare the necessary material on modular curves. In

Section [3| we introduce a key proposition (Proposition and from it we

deduce Theorem In Section [ we prove Proposition In Section

we prove Proposition [1.9

2. Modular curves. For a prime number p, let g : Xo(p) — X (p)
be the quotient map. We know that the Jacobian variety J;" (p) of X, (p)
is isomorphic to (1 4+ wy)Jo(p) and there is an exact sequence of abelian
varieties )
0= Ji (p) © Jolp) = Jy (p) = 0,
where ¢g* is the pull back and w is the quotient map ([11, p. 278)).
For an integer N > 1, let Ay(NN) be the normalization of the composite

Xo(N) - Xo(1) = P C Py,
where j : (E,A) — E. If pis a prime divisor of N with r = ord, N, then the
special fiber Xy(N) ®z [, has r + 1 irreducible components Ey, Ey, ..., E,.
They are defined over [F, and intersect at the supersingular points. Let
¢ = (n be a primitive Nth root of unity. For each positive divisor d of N and
an integer ¢, 0 < i < d, prime to d, let A4; be the subgroup of Gy xXZ/(N/d)Z
generated by (¢%, 1 mod N/d). Let (;) be the cuspidal section of Xy (V) which
is represented by the pair (G xZ/(N/d)Z, Ag,;) for the integers d, i as above.
For d = 1, N, we write 0 = ((13) and oo = (]1,) We choose the irreducible
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components F; so that (Zl) ® [F), are sections of F; for a positive divisor d
of N with t = ord,d. For 0 <t < r, let Ef be the open subscheme of E;
obtained by excluding the supersingular points.

The special fiber Xy(p) ®z F), has go(p) + 1 supersingular points. They
can be described as follows. Let «;, af = wp(a;) be the non-Fp-rational
supersingular points on Xy(p) ®z F, for 1 < i < gj (p), and let 3; be the
F,-rational supersingular points on Xy (p)®zF, for 1 < < go(p)—2g4 (p)+1.
The involution w, exchanges o; and o} and fixes 5; ([I1}, p. 279]).

For a finite abelian group G and an integer n > 1, let G be the prime-
to-n subgroup of G. For an abelian group (or a commutative group scheme)
G and an integer n, let G[n] be the kernel of multiplication by n in G. For
a group scheme G, let G° be the connected component of the identity in G.
For a morphism of schemes X — S, let X be the smooth locus of X.
For a prime number p, let Q)™ be the maximal unramified extension of Qy,
and let Z;™ be the ring of integers of Q™. For a number field or a discrete
valuation field L, let O be the ring of integers. For an abelian variety J
over a number field or a discrete valuation field L, let J,», be the Néron
model of J over Oy, (later we take Jo(p) or J; (p) as J).

Let p be a prime number and M > 1 be an integer. Let

m: Xo(pM) — Xo(p), (E,A) — (E, Alp]).
Define
h: Xo(pM) — Jo(p),  h(x) := c((wpm(x)) — (Twprr(x))).
Put
h™: Xo(pM) % Jo(p) = Jg (p),

where Jy(p) — J;, (p) is the quotient map. The map h~ factors as X (pM) —
X (pM) — Jy (p), where Xo(pM) — X (pM) is the quotient map. We
call the induced map h~ : X, (pM) — J; (p). Thus we have the following
commutative diagram:

Xo(pM) —— Jo(p)

| |

X§ (M) —— J5 (p)
See [1, p. 2276].

3. Key proposition

PRrROPOSITION 3.1. Let K be a quadratic field. Let p be a prime num-

ber such that p = 11 or p > 17. Let M > 2 be an integer and suppose
Xo(pM)(K) = {cusps}. Lety € Xy (pM)(K) be a non-cuspidal point, and z,
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wpm () be sections of the fiber Xo(pM),. Let L be the quadratic extension
of K over which x and wyr(x) are defined. Take a prime p of L above p,
and let k(p) be the residue field of p. Assume pt M if p=11.

(1) If p| M or xz ® k(p) is not a supersingular point, then h(x) @ k(p)
is a section of the connected component (Jo(p) o, ® K(p))? of the
identity.

(2) Suppose otherwise (i.e. pt M and x ® k(p) is a supersingular point).
(2-a) If one of the following three conditions is satisfied, then h(z)®

k(p) is a section of (Jo(p) 0, ® K(p))°.

p is unramified in L/Q.

p is ramified in L/K and p is split in K.

p is inert in L/K and p is ramified in K.

p is ramified in L/K and p is ramified in K.

(2-b) If p is ramified in L/ K and p is inert in K, then h™ (y) ® k(p)

is a section of (Jy (p) /0, @ K(p))°.

REMARK 3.2. (1)In Proposition h~(y)®k(p)isasection of (Jy (p) 0,
® k(p))? in any case.

(2) We do not treat the case where p is split in L/K and p is ramified
in K in Proposition In that case the proof does not work.

(3) We do not use the last two cases of (2-a) in Proposition[3.1]for proving
Theorem [1.6

LEMMA 3.3 ([11, p. 278 Proposition (2.8)]). Let L' be an extension of
Qp™ of degree < 2. Let C C Jy (p)jo,, be the finite flat subgroup scheme
generated by C. Then (C ® Fp) N (Jy (p))0,, ® Fp)® = {0}.

PROPOSITION 3.4. Under the hypothesis in Proposition [3.1], further as-
sume that p is unramified in K and Jy (p)(K) = C. Then h™(y) = 0.

Proof. By assumption we have h™(y) € J; (p)(K) = C. Let L' be the
maximal unramified extension of the completion Ly. Then [L' : Qp™] < 2 be-
cause p is unramified in K. Since h™(y) € C C J; (p)(L'), we have h™(y) €
C(OL/) g Jo_(p)/oL,(OL/). Hence h*(y) & Fp S C(Fp) g J()_(p)/OL/ (Fp). On
the other hand h™ (4) 2T, € (J; ()0, @x(#))°(Fy) = (Jg (1) 0, @Fy)(F,)
by Proposition Notice that taking the connected component is compat-
ible with base change since J; (p) is semi-stable ([4, p. 183, Corollary 4]).
Then h~(y) @ F, = 0 by Lemma Since the order of C' is prime to p, the
group scheme C over Oy, is étale. Therefore h™(y) = 0. m

The condition A~ (y) = 0 implies that y is a CM point since p # 37 ([L1,
p. 274, Proposition (2.2)]). Thus Theorem [1.6] follows from Proposition
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4. Calculation of connected components. Now we prove Proposi-
tion Bl

For simplicity write N = pM. Let Jjo(p) — Spec O, be the mini-
mal proper regular model of Xy(p) ®g L. We may canonically identify
Xo(N)(Op) =Xo(N)(L) and Xo(p)(OL) = Xo(p)(L) = Yo(p)(OL). If wpm(x)
and mwy (z) define sections of the same irreducible component of Yy (p)*™ ®
k(p), then h(x) ® k(p) is a section of (Jo(p) 0, @ £(p))° ([6, p. 179, Propo-
sition (1.4)]). Put r = ord, N. If z ® s(p) is a section of E} U E", then
wpm(x) and mwy(x) define sections of the same irreducible component of
Vo(p)™ ® k(p). To see this, we use the following: m maps Ey to Ey and E,
to Eq; wy exchanges Ey and E,; w, exchanges Ey and E; ([10, p. 446]).
Notice that here we use the symbol E; in two ways.

Xo(N) @7 (p) +  Yo(N)@o, K(p)
\/ EO N
/ By blow-up o
/ wn () Er B wy(z)
Xo(p) ®z k(p) ") g o (z) Yo(p) ®o, K(p)
Ey hlowip __
Twy () wpm(z) Twy () wpm(z)

If p| M, then = ® k(p) is a section of E} U E" since er/o(p) < 4 and
3er o) < p—1 ([I0, p. 452, Corollary (2.3)], cf. [I3, p. 159, Main Theo-
rem]). Here we used p > 17. If p t M and = ® k(p) is not a supersingular
point, then  ® k(p) is a section of E} U E for r = 1.

From now on we consider the case when pt M and z ® k(p) is a super-
singular point.

CASE (i): p is unramified in L/Q. In this case j(z ® x(p)) = 0 or 1728,
and X
OXQ(N)@Z;“Y,I = Z;nr[[uv UH/(UU - pz)
where ¢ = 3 (resp. 2) if j(z ® k(p)) = 0 (resp. 1728) ([6, p. 63]). Here
@) Xo(N)@ZT is the completion of the local ring Oy, N)@zun 5 at the maxi-
mal ideal. Since wy is an automorphism, we have

~J unr

@XO(N)Q@ZEUT,HJN(@ = &y [[U, UH/(UU - pi)'
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Then j(wy(x) @ k(p)) = j(x @ k(p)) = 0 (resp. 1728). Hence j(mwn(z) ®
k(p)) = j(m(z)®kK(p)). Since w), fixes all the Fp-rational supersingular points
on Xp(p) ® Fpy, we have mwy(z) ® k(p) = m(x) ® k(p) = wpm(x) @ K(p).

If j(z ® k(p)) = 1728, then wyr(z) ® £(p) and Twy(z) ® k(p) define
sections of the unique exceptional irreducible component B of )70 (p)™ ®o,
#(p). Therefore h(z) ® k(p) is a section of (Jo(p),0, ® K(p))°.

Twn(x)
blow-up wyn ()
Xo(p) ®z K(p) B Yo(p) ®o, #(p)

Assume j(z ® r(p)) = 0. Then Yy(p)™ ®p, k(p) has two exceptional
irreducible components, say By, Bs. Also Yo(N)*™ ®o, k(p) has two excep-
tional irreducible components over z ® k(p) (resp. wy(x) R K(p)), say A1, Ag
(resp. As, A4). See the figure below. We may assume z ® x(p) is a section
of A™. Then wy(x) ® k(p) is a section of AS™. Hence m(x) @ k(p) (resp.
mwy(z) ® k(p)) is a section of Bi™ (resp. B3™). Therefore wym(z) ® k(p)
and mwy (z) @ k(p) are sections of the same irreducible component B§™, and
so h(z) ® k(p) is a section of (Jo(p) o, ® k(p))°. Note that = ® x(p) and
wn(x) ® k(p) may be equal in Xy(N) ®z k(p). Then A; = Az, Ay = Ay.

Yo(N) @0y, k()

A As
Xo(N) ®z K(p) Ey
x
>
o (2 blow-up
wy(z)
By
A Ay
By
Ey
m(x)
blow-up Ty (z)
wpm ()
B

Xo(p) ®z K(p)

Yo(p) ®o,, K(p)
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CASE (ii): p is ramified in L/K and p is split in K. Let o € Gal(L/K)
be the non-trivial element. Since p is ramified in L/K, we have 27 ® k(p) =
r®@~K(p). Since k(p) = F), the sections 2@ k(p) and wy (x) Rk(p) = 27 D K(p)
are [F-rational. Thus 7(z) ® k(p) and Twy(x) ® k(p) are also Fp-rational.
Since wy, fixes all the [F,-rational supersingular points on Xy(p) ®F,, we have

T (2)@n(p) = 7(2) () = wpm(@)@A(p) € Xo(p) (k). T j(z @ r(p)) #
0,1728, then wyn(z) ® k(p) and Twy (z) ® k(p) correspond to sections in the
unique exceptional irreducible component of Y (P)™ ®o, k(p).

Suppose j(z ® k(p)) = 0,1728. Let Xo(N) (resp. Xo(p)) be the minimal
regular model of Xo(N) (resp. Xo(p)) over Z,. Then Vo(p) ®0p, is obtained
from X (p) ® O, by blowing-up at the singular points of the special fiber.
Assume j(z ® r(p)) = 1728. If £ ® k(p) define a section of Xo(N)™™ @ k(p),
then 7(z) ® k(p), mwn(z) ® k(p) and wym(z) @ k(p) define sections of the
unique exceptional irreducible component of Xy(p)™ ® r(p). Hence m(z) @
k(p), Twy (2)R~K(p) and w,m(z)@k(p) define sections of the same irreducible
component of Yo (p)™ @ r(p).

Xo(N) ® k(p) Xo(N) ® ri(p)
>©]\;(<)<W wy(x)
Yo(p) @ K(p)
l” : A

m(x) @)
blow-up TN (.%‘) blow-up ﬂ-wN(x)
wym () wpm ()

Xo(p) ® ri(p)

—~—

If # @ k(p) corresponds to a singular point of Xo(N) @ x(p), then by an
easy calculation, wym(z) ® k(p) and Twy(z) ® k(p) define sections of the
same irreducible component of Yy (p)*™ ® k(p) (see the figure below).
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Xo (N)@r(p) Fo(N)@r(p)
xT
o ( blow-up
w ()
l Yo(p)®r(p)
()
(z)
blow-up blow-up
Tw (z)
Xo(p)®k(p) wpT(x) nwy (z)
Fo(p)@n(p) o)
Assume j(z ® k(p)) = 0. Looking at a similar figure, we can show

wpm(x) @ Kk(p) and Twy(x) @ k(p) define sections of the same irreducible
component of Yo(p)*™ & k(p).

CASE (iii): p is inert in L/K and p is ramified in K. We have k(p) =
[F,2. The sections x and wy(x) = x7 correspond to Gal(L/K)-conjugate
L-rational points. Hence 7(z) ® k(p) and mwy(x) ® k(p) correspond to
Gal(F,2 /IF,)-conjugate FF2-rational supersingular points. If one of them is
[F,-rational, they coincide. Then w,n(z) ® k(p) = 7(x) ® k(p) = Twn(T) ®
k(p) € Xp(p)(Fp). (When j(z ® k(p)) = 0,1728, look at some figures.) Oth-
erwise they correspond to distinct but Gal(FF,2/IF,)-conjugate F,2-rational
supersingular points. Then w,m(z) @ k(p) = 7rwN( )@ k(p) € Xo(p)(k(p)).
In any case wpm(x) ® ﬁ(p) and Twy(z) @ k(p) define sections of the same
irreducible component of Yo(p)™ ® x(p).

CASE (iv): p is ramified in L/ K and p is ramified in K. We have x(
F, and 2®k(p) = 27@k(p) = wn(2)®k(p) € X(INV)(Fp). Then m(x)®@k(
7(11)]\[([13) ® k(p), which is Fp-rational. Hence w,m(z) ® k(p) = 7(z) @ K(
Twn () @ k(p) € Xo(p)(Fp). For j(z ® k(p)) # 0,1728, see the figures below
(there are two cases).

p)
p) =
p)
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Yo(N) ®o,, &(p)

Xo(N) ®z k(p)

x
XX

o () blow-up

wy(z)

m(x)
blow-up
Twn(x)
wpm(x)

Yo(p) @0, K(p)

y()(N) ®o, H(p)

Xo(N) @z k(p)

T
X2
(D) blow-up wn(z)

wym(x)
blow-up :Ej}?} (@)

Yo(p) ®o, #(p)
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For j(x ®k(p)) = 0,1728 we need more complicated figures, but we omit
them.

CASE (v): p is ramified in L/ K and p is inert in K. We have k(p) = F 2.
Since L/K is ramified at p, we have z ® k(p) = 2% @ k(p) = wn(z) ® K(p).
Hence 7(x) ® k(p) = mwy(x) ® K(p).

If 7(z) ® k(p) is Fp-rational, we have w,m(z) ® k(p) = 7(z) ® k(p) =
mwy(z) ® k(p) € Xo(p)(Fp). (When j(zx ® k(p)) = 0,1728, look at some
figures.) Then w,m(x) ® k(p) and 7wy (z) ® £(p) define sections of the same
irreducible component of Yo (p)™™ ®o, K(p).

Suppose 7(z)®@k(p) is not Fp-rational. Note that j(m(z)®@k(p)) # 0, 1728
in this case. Then w,m(z) ® £(p) and Twy () ® k(p) (= 7(x) ® K(p)) corre-
spond to distinct I 2-rational supersingular points. Hence w,7(z)®x(p) and
mwn(z) ® k(p) define sections of two distinct exceptional irreducible com-
ponents of YVo(p)*™ ®p, £(p). Let J (resp. JT, J~) be the Néron model of
Jo(p) @ Ly (resp. Ji (p) ® Ly, J; (p) ® Ly) over Oy, . Considering the rami-
fication index e(Ly/Qp) = 2 < p — 1, we have an induced exact sequence

0-J"—-T—-TJ
([, p. 187, Theorem 4]). To simplify the notation let J; (resp. J5", J;)
be the geometric special fiber J ®o,  Fp (resp. JT ®o,, Fp, T~ ®0,, Fp).
Then the natural composite map
TENIE = T )(T6)° — T /(T5)°

is the zero map. Let y+— Spec Or, be the minimal proper regular model
of )EJ (p) ®q L,. Let :[VCZ} (iesp. {C%}) be the set of irreducible components
of Yo(p) @ F), (resp. YT @ Fp). Let D (resp. D4) be the free abelian group
generated by the divisors C; (resp. C7). Let DY C D (resp. D} C D) be
the subgroup of divisors of degree 0. Let aw: D — D (resp. oy : Dy — Dy)
be the Z-linear map defined by

a(B)=> (B,C;)C; (resp. ar(B)=> (B, C})C))
i J
where (B, C;) (resp. (B', C})) is the intersection number. Then we have the
following commutative diagram:

\73+/(\-75+)0 - ‘-78/(\78)0 - jsi/(jsi)o

-| - |
DY /as(Dy) —L— Dfa(D)

where ¢g* is the natural map induced by the quotient map g : Xo(p) — Xa' (p)
and the vertical maps are the natural isomorphisms ([6, p. 179, Proposition
(1.4)]). Let Z (resp. Z') be the irreducible component of Vy(p) ® F,, over Ej
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(resp. E1), and let Fy;_; (resp. Fj;) be the exceptional divisor of )%(p) ®F,
over ; (resp. of) for 1 <i < gj (p). Let F; := F; — Z' and Z := Z — Z' be
the elements of DY (cf. [11], p. 281]).

R o8

Yo(p) ® Fy,

Z

D E— wym(z) Twn(x)

Z/

We may assume wyn(z) @ Fy, = o1, mwy(z) @ F, = of in Xo(p) @ Fp.
Then w,m(xz) @ F), (resp. mwy(x) ® Fp) defines a section of F7™ (resp.

F5™) in Yo(p) ® Fp. In the isomorphism J5/(J5)° = DY/a(D), the sec-
tion h(x) ® Fp corresponds to Fy — Fy. We have F} — F», = F — Fy €
g*(DY /o (D)) € D°/a(D) by the discussion in [IT, pp. 279-281] (espe-
cially by the line “g* (?i) = ngfl + FQZ‘ -7 = FQifl — FQZ' mod Oé(D)” on
p. 281). Therefore we get h=(y) @ F, = 0 in 7, /(J;)°.

Now we have completed the proof of Proposition and hence that of
Theorem [L.6l O

5. Mordell-Weil groups over quadratic fields. In this section we
prove Proposition Notice that go(p) = 1 if and only if p € {11,17,19}.
In this case we have J; (p) = Jo(p) = Xo(p) and Jo(p)(Q) = C ([6, p. 151,
Theorem (4.1)]). Let F' (resp. G, H) be the Néron models of Jy(11) (resp.
J0<17), J0(19)) over Z.

PROPOSITION 5.1.

(1) We have F(Fq) = F(Fy) = Z/5Z. For any quadratic field K, we
have F (K)o = C.

(2) We have G(Q(v/—1))tor = G(F5) =2 Z/AZ x 7./27. For any quadratic
field K other than Q(v/—1), we have G(K)ior = C.

(3) We have H(F2) = Z/3Z and H(Q(v/—3))tor = H(Fy) = (Z/37)3.
For any quadratic field K other than Q(v/—3), we have H(K )ior=C.

Proof. (1) Let f11 be the cusp form of weight 2 and level 11 corresponding
to Jo(11). Then ag(f11) = —2 and asz(f11) = —1, where a;(f11) is the ith
Fourier coefficient of fi; for ¢ = 2,3 ([3, p. 117]). We then have §F(Fq) =
tF(F3) = $F(Fq) = 5, tF(Fg) = 15. Now F(F2) = F(F4) = Z/5Z has been
shown.

For any quadratic field K, we have inclusions C' = F(Q)[5] C F(K)[5] C

F(K)? < F(Fy) = 2/5Z, where F(K)!?)

tor tor 15 the prime-to-2 subgroup of
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F(K)ior (the notation introduced in Section [2). Since C' = 5, the above
inclusions are all isomorphisms. Finally we show F (K )83 = F(K)tor. Since
F(K)[2] — F(Fg) and §F(F9) = 15, we have F(K)[2] = {0}. Thus indeed
F(K){2) = F(K)ior

(2) Let f17 be the cusp form of weight 2 and level 17 corresponding to
Jo(17). Then we know the Fourier coefficients as(f17) = —1, ag(f17) = 0 and
as(fi7) = —2 (loc. cit.). We then have §G(F4) = 8, tG(F3) = 4, 4G(Fy) = 16,
:G(Fs) = 5.

For any quadratic field K, we have an inclusion Z/47Z = C = G(Q) C
G(K )tor. Since G(K)2) < G(F,) and §G(F4) = 8, we have G(K)Z) = {0}.

tor

We know that G(Q(v/—1)) has a subgroup which is isomorphic to Z/47Z x
Z/2Z ([6, p. 103]). Since G(Q(v/—1))[5] = {0}, we have G(Q(v/—1))tor =
G(@(ﬁ))égz — G(F5). By using #G(F5) = 8, we conclude G(Q(v/—1))tor
~ G(Fs) = Z/AZ x Z,)2.

Let Gg = Gal(Q/Q) be the absolute Galois group of Q. Let r : Gg —
GL2(F2) be the Galois representation determined by the Gg-action on
G(Q)[2]. Since G(Q) = C =2 Z/AZ, we have G(Q)[2] = Z/2Z. Then the image
r(Gq) is conjugate to the subgroup {({9),({1)}. Since G(Q(v/-1))[2] =
Z)27 x ZJ2Z, the restriction r]GQ(ﬁ) is trivial, where Gg /=1y =
Gal(Q/Q(y/—1)) is the absolute Galois group of Q(y/—1) considered as a
subgroup of Gg. Then Ker r corresponds to the quadratic field Q(v/—1). So,
for any quadratic field K other than Q(y/—1), the restriction r|g, is not
trivial. Then G(K)[2] & Z/2Z. Since G(K)) = {0} and G(Q) = C = 7,/47,
we have G(K )ior = Z/2"Z for n > 2.

Since Z/4Z x 7/27 = G(Q(V=1))ior = G(Q(H/=1))) — G(Fy) and
4G(Fy) = 16, we have G(Fg) = Z/AZ x ZJAZ or /ST x Z,/2.

Let Gp, = Gal(F3/F3) be the absolute Galois group of Fs. Let p : Gp, —
GL2(Z/AZ) be the Galois representation determined by the Gp,-action on

G/(F3)[4]. Since Z/4Z = C = G(Q) = G(Q)®) — G(F3) and #G(F3) = 4, we
have G(F3) = Z/4Z. Then G(Fs3)[4] = Z/AZ, and so we may assume that p is
of the form ( § Y )» Where  is the mod 4 cyclotomic character. Let p : Gp; —
GL2(Z/27Z) be the reduction of p modulo 2. Since G(F3)[2] = Z/27Z, we have
p(Gry) = {(49), (1)} Since x(Gpy) = {1,—1} and the Galois group Gp,
is topologically generated by one element, we have p(Gr,) = {(§9),(§ 1)}
or {(59). (31},

Let Gp, = Gal(F3/Fg) be the absolute Galois group of Fg considered as
a subgroup of Gr,. Since G(F9)[2] = Z/27Z x Z/2Z, the restriction p|cy, is
trivial. Then p(Gr,) € {(§ 1), (§ 1)}, because x|gy, is trivial. This combined
with the above consideration of p(Gr,) implies that the restriction plgg, is
trivial. Therefore G(Fg) = Z /47 x 7 /4Z.
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Hence, for any quadratic field K other than Q(v/—1), we have Z/2"Z =
G(K)tor = G(K)Y) < G(Fg) = Z/AZ x Z.JAZ. Since n > 2, we have n = 2.

tor

Therefore we conclude G(K)or = C.

(3) Let fig be the cusp form of weight 2 and level 19 corresponding
to Jo(19). Then aa(fi9) = 2 and as(fig9) = 3 (loc. cit.). We then have
¢H(Fy) = $H (Fs) = 3, $H(Fy) = 9 and £H (Fos) = 27. Thus H(F5) = Z/3Z.

By [6, p. 125, Corollary (16.3)], we have H([3| = Z/3Z & u3 as group
schemes over Z, where uz = Spec(Z[X]/(X? — 1)). Then we have
H[3](Q(v/-3)) = (Z/32Z)? and H[3]|(K) = Z/37Z for any quadratic field K
other than Q(y/—3). Since H(F25) has an odd order, so do H(Q(v/=3))tor
and H (K )tor- Then we have inclusions H[3](Q(v/—3)) € H(Q(v—=3))tor —
H(F,). Comparing the orders, we get H(Q(v/—3))or = H(F4) = (Z/37)%.
So, for any quadratic field K other than Q(v/—3), we have C = H[3](K) C
H(K)tor — H(Fy) = (Z/3Z)?. Therefore H(K)ior = H[3](K) =C. m

Proof of Proposition [1.9. It suffices to show #.Jo(p)(K) < oo for p =
11,17,19. But this is done in [7, p. 143, Corollary 1]. For p = 11,19, the
same method as in [Il p. 2278, Proposition 4.3] also works. m

Acknowledgements. This work was supported in part by Japan Soci-
ety for the Promotion of Science Core-to-Core Program [18005]; and Japan
Society for the Promotion of Science Grant-In-Aid [19204002]. We would like
to thank the anonymous referee for useful comments, which have helped us

to improve Proposition [1.9)(2) and Proposition [5.1](2).

References

[1] K. Arai and F. Momose, Rational points on Xg (37M), J. Number Theory 130
(2010), 2272-2282.

[2] Y. Bilu and P. Parent, Serre’s uniformity problem in the split Cartan case, Ann. of
Math. 173 (2011), 569-584.

[3] B.J. Birch and W. Kuyk (eds.), Modular Functions of One Variable IV (Antwerp,
1972), Lecture Notes in Math. 476, Springer, Berlin, 1975.

[4] S. Bosch, W. Liitkebohmert and M. Raynaud, Néron Models, Ergeb. Math. Grenz-
geb. (3) 21, Springer, Berlin, 1990.

[5] P. Deligne et M. Rapoport, Les schémas de modules de courbes elliptiques, in: Mod-
ular Functions of One Variable, II, Lecture Notes in Math. 349, Springer, Berlin,
1973, 143-316.

[6] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. LH.E.S. 47 (1977),

33-186.

[7] —, Rational points on modular curves, in: Modular Functions of One Variable V,
Lecture Notes in Math. 601, Springer, Berlin, 1977, 107-148.

[8] —, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent.

Math. 44 (1978), 129-162.


http://dx.doi.org/10.1016/j.jnt.2010.04.003
http://dx.doi.org/10.4007/annals.2011.173.1.13
http://dx.doi.org/10.1007/BF01390348

Points on X, (N) over quadratic fields 173

[9] F. Momose, Rational points on the modular curves Xspit(p), Compos. Math. 52
(1984), 115-137.

[10] —, Rational points on the modular curves X (p"), J. Fac. Sci. Univ. Tokyo Sect.
TA Math. 33 (1986), 441-466.

[11] —, Rational points on the modular curves X (N), J. Math. Soc. Japan 39 (1987),
269-286.

[12] —, Isogenies of prime degree over number fields, Compos. Math. 97 (1995), 329-348.

[13] F. Momose and M. Shimura, Lifting of supersingular points on Xo(p") and lower
bound of ramification indezx, Nagoya Math. J. 165 (2002), 159-178.

[14] A. P. Ogg, Rational points on certain elliptic modular curves, in: Analytic Number
Theory (St. Louis, MO, 1972), Proc. Sympos. Pure Math. 27, Amer. Math. Soc.,
Providence, RI, 1973, 221-231.

[15] —, Uber die Automorphismengruppe von Xo(N), Math. Ann. 228 (1977), 279-292.

[16] J.-P. Serre, Représentations l-adiques, in: Algebraic Number Theory (Kyoto, 1976),
Japan Soc. Promotion Sci., Tokyo, 1977, 177-193.

Keisuke Arai Fumiyuki Momose
Department of Mathematics Department of Mathematics
School of Engineering Faculty of Science and Engineering
Tokyo Denki University Chuo University
2-2 Kanda-Nishiki-cho, Chiyoda-ku 1-13-27 Kasuga, Bunkyo-ku
Tokyo, Japan 101-8457 Tokyo, Japan 112-8551
E-mail: araik@mail.dendai.ac.jp E-mail: momose@math.chuo-u.ac.jp

Received on 19.11.2010
and in revised form on 19.4.2011 (6555)


http://dx.doi.org/10.2969/jmsj/03920269
http://dx.doi.org/10.1007/BF01420295




	Introduction
	Modular curves
	Key proposition
	Calculation of connected components
	Mordell–Weil groups over quadratic fields

