
ACTA ARITHMETICA

C.1 (2001)

The joint distribution of q-additive functions

by

Michael Drmota (Wien)

1. Introduction. Let q > 1 be a given integer. A real-valued function
f , defined on the non-negative integers, is said to be q-additive if f(0) = 0
and

f(n) =
∑

j≥0

f(aq,j(n)qj) for n =
∑

j≥0

aq,j(n)qj ,

where aq,j(n) ∈ Eq := {0, 1, . . . , q − 1}. A special q-additive function is the
sum-of-digits function

sq(n) =
∑

j≥0

aq,j(n).

The statistical behaviour of the sum-of-digits function and, more generally,
of q-additive functions has been very well studied by several authors.

The most general result concerning the mean value of q-additive func-
tions is due to Manstavičius [20] (extending earlier work of Coquet [3]).
Let

mk,q :=
1
q

∑

c∈Eq
f(cqk), m2

2;k,q :=
1
q

∑

c∈Eq
f2(cqk)

and

Mq(x) :=
[logq x]∑

k=0

mk,q, B2
q (x) =

[logq x]∑

k=0

m2
2;k,q.

Then

(1.1)
1
x

∑

n<x

(f(n)−Mq(x))2 ≤ cB2
q (x),
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which implies
1
x

∑

n<x

f(n) = Mq(x) +O(Bq(x)).

For the sum-of-digits function sq(n) much more precise results are known,
e.g. Delange [5] proved (for integral x) that

1
x

∑

n<x

sq(n) =
q − 1

2
logq x+ γ(logq x),

where γ is a continuous, nowhere differentiable and periodic function with
period 1. (Higher moments of aq(n) were considered by Kirschenhofer [19]
and by Kennedy and Cooper [17] (for the variance) and by Grabner, Kirs-
chenhofer, Prodinger and Tichy [12].)

There also exist distributional results for q-additive functions. In 1972
Delange [4] proved an analogue to the Erdős–Wintner theorem. There exists
a distribution function F (y) such that, as x→∞,

(1.2)
1
x

#{n < x | f(n) < y} → F (y)

if and only if the two series
∑
k≥0 mk,q,

∑
k≥0 m

2
2;k,q converge. This theorem

was generalized by Kátai [16] who proved that there exists a distribution
function F (y) such that, as x→∞,

1
x

#{n < x | f(n)−Mq(x) < y} → F (y)

if and only if the series
∑
k≥0 m

2
2;k,q converges.

The most general theorem known concerning a central limit theorem is
again due to Manstavičius [20]. Suppose that, as x→∞,

max
cqj<x

|f(cqj)| = o(Bq(x))

and that Dq(x)→∞, where

D2
q(x) =

logq x∑

k=0

σ2
k,q and σ2

k,q :=
1
q

∑

c∈Eq
f2(cqk)−m2

k,q.

Then, as x→∞,

1
x

#
{
n < x

∣∣∣∣
f(n)−Mq(x)

Dq(x)
< y

}
→ Φ(y),

where Φ is the normal distribution function.
Similar distribution results for the sum-of-digits function of number sys-

tems related to substitution automata were considered by Dumont and
Thomas [8]. For number systems whose bases satisfy linear recurrences we
refer to [6].
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Furthermore, Bassily and Kátai [1] studied the distribution of q-additive
functions on polynomial sequences.

Theorem 1. Let f be a q-additive function such that f(cqj) = O(1) as
j →∞ and c ∈ Eq. Assume that Dq(x)/(logx)η →∞ as x→∞ for some
η > 0 and let P (x) be a polynomial with integer coefficients, degree r, and
positive leading term. Then, as x→∞,

1
x

#
{
n < x

∣∣∣∣
f(P (n))−Mq(xr)

Dq(xr)
< y

}
→ Φ(y),

1
π(x)

#
{
p < x

∣∣∣∣
f(P (p))−Mq(xr)

Dq(xr)
< y

}
→ Φ(y).

This result relies on the fact that suitably modified centralized moments
converge (cf. Lemma 4). Note also that this theorem was only stated (and
proved) for η = 1/3. However, a short inspection of the proof shows that
η > 0 is sufficient.

2. Joint distributions. It is a natural question to ask whether there
are analogue results for the joint distribution of ql-additive functions fl(n)
(if q1, . . . , qd > 1 are pairwise coprime integers). For example, Hildebrand
[14] announced that one always has

1
x

#{n < x | fl(n) < yl, 1 ≤ l ≤ d} → F1(y1) . . . Fd(yd)

if fl satisfies (1.2) for all l = 1, . . . , d and that there is a joint central limit
theorem of the form

1
x

#
{
n < x

∣∣∣∣
fl(n)−Mql(x)

Dql(x)
< yl, 1 ≤ l ≤ d

}
→ Φ(y1) . . . Φ(yd)

if Bql(x)→∞ and Bql(x
η) ∼ Bql(x) for every η > 0 as x→∞. (Note that

the sum-of-digits function sq(n) is not covered by this result.)
In this paper we will first extend the above result of Bassily and Kátai

to the joint distribution of ql-additive functions fl (1 ≤ l ≤ d) on specific
polynomial sequences if q1, . . . , qd are pairwise coprime.

Theorem 2. Let q1, . . . , qd > 1 be pairwise coprime integers and let fl,
1 ≤ l ≤ d, be ql-additive functions such that fl(cq

j
l ) = O(1) as j → ∞

and c ∈ Eql . Assume that Dql(x)/(logx)η → ∞ as x → ∞, 1 ≤ l ≤ d, for
some η > 0 and let Pl(x) be polynomials with integer coefficients of different
degrees rl and positive leading terms, 1 ≤ l ≤ d. Then, as x→∞,

1
x

#
{
n < x

∣∣∣∣
fl(Pl(n))−Mql(x

rl)
Dql(xrl)

< yl, 1 ≤ l ≤ d
}
→ Φ(y1) . . . Φ(yd),

1
π(x)

#
{
p < x

∣∣∣∣
fl(Pl(p))−Mql(x

rl)
Dql(xrl)

< yl, 1 ≤ l ≤ d
}
→ Φ(y1) . . . Φ(yd).
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Corollary 1. Let q1, . . . , qd > 1 be pairwise coprime integers and let
Pl(x) be polynomials with integer coefficients of different degrees rl and pos-
itive leading terms, 1 ≤ l ≤ d. Then, as x→∞,

1
x

#
{
n < x

∣∣∣∣
sql(Pl(n))− ql−1

2 logql x
rl

√
q2
l−1
12 logql x

rl

< yl, 1 ≤ l ≤ d
}
→ Φ(y1) . . . Φ(yd),

1
π(x)

#
{
p<x

∣∣∣∣
sql(Pl(p))− ql−1

2 logql x
rl

√
q2
l−1
12 logql x

rl

< yl, 1 ≤ l ≤ d
}
→Φ(y1) . . . Φ(yd).

This theorem contains an unnatural condition, namely that one has to
consider polynomials Pl(x) with different degrees rl. It would seem that this
condition is not necessary. However, this is the crux of the matter. By using
a variation of Bassily and Kátai’s proof (combined with Baker’s theorem
on linear forms of logarithms) we could handle the case d = 2 with linear
polynomals Pl(x) = Alx+Bl.

Theorem 3. Let q1, q2 > 1 be coprime integers and let fl be ql-additive
functions such that fl(cq

j
l ) = O(1) as j →∞ and c ∈ Eql , l = 1, 2. Assume

that Dql(x)/(logx)η →∞ as x→∞, l = 1, 2, for some η > 0. Let Pl(x) =
Alx + Bl, l = 1, 2, be arbitrary linear polynomials with integer coefficients
and positive leading terms Al coprime to ql. Then, as x→∞,

1
x

#
{
n < x

∣∣∣∣
fl(Pl(n))−Mql(x)

Dql(x)
< yl, l = 1, 2

}
→ Φ(y1)Φ(y2).

Corollary 2. Let q1, q2 > 1 be coprime integers. Then, as x→∞,

1
x

#
{
n < x

∣∣∣∣
sql(n)− ql−1

2 logql x√
q2
l−1
12 logql x

< yl, l = 1, 2
}
→ Φ(y1)Φ(y2).

Interestingly, there is even a local version of Corollary 2.

Theorem 4. Let q1, q2 > 1 be coprime integers and set d= gcd(q1 − 1,
q2 − 1). Then, as x→∞,

1
x

#{n < x | sq1(n) = k1, sq2(n) = k2}

= d
2∏

l=1

(
1√

2π q
2
l−1
12 logql x

exp
(
−
(
kl − ql−1

2 logql x
)2

2 q
2
l−1
12 logql x

))
+ o((log x)−1)

uniformly for all integers k1, k2 ≥ 0 with k1 ≡ k2 mod d.
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Note that sql(n) ≡ n mod (ql − 1). Thus we always have sq1(n) ≡
sq2(n) mod d and consequently

#{n < x | sq1(n) = k1, sq2(n) = k2} = 0

if k1 6≡ k2 mod d.
There are some other results indicating that the ql-ary digital expansions

are asymptotically independent for different bases ql; e.g. Kim [18] (1) showed
that for all integers c1, . . . , cd,

1
x
|{n < x | sqj (n) ≡ cj mod mj (1 ≤ j ≤ d)}| = 1

m1 . . .md
+O(x−δ)

with
δ =

1
120d2q2m2 ,

where q1, . . . , qd > 1 are pairwise coprime integers and m1, . . . ,md are pos-
itive integers such that

gcd(qj − 1,mj) = 1 (1 ≤ j ≤ d);

q = max{q1, . . . , qd}, m = max{m1, . . . ,md} and the O-constant depends
only on d and q. (This result sharpens a result by Bésineau [2] and solves a
conjecture of Gelfond [11].)

Drmota and Larcher [7] used a variation of Kim’s method to prove that a
d-dimensional sequence (α1sq1(n), . . . , αdsqd(n))n≥0 is uniformly distributed
modulo 1 if and only if α1, . . . , αd are irrational. (Grabner, Liardet and Tichy
[13] could prove a similar theorem by ergodic means.)

Another problem has been considered by Senge and Straus [26]. They
proved that if q1 and q2 are coprime and c is any given positive constant
then there are only finitely many n ≥ 0 such that

sq1(n) ≤ c and sq2(n) ≤ c.
This result was later generalized and sharpened by Stewart [28], Schlickewei
[22, 23] and by Pethő and Tichy [21]. The proofs use Baker’s method for
linear forms of logarithms and the p-adic version of Schmidt’s subspace
theorem by Schlickewei applied to S-unit equations.

One would get a much deeper insight into all these results if one could
prove a local version of Theorem 2, e.g. asymptotic expansions or general
estimates for the numbers

1
x

#{n < x | sq(n2) = k}
or for

1
π(x)

#{p < x | sq(p) = k}

(1) For brevity we restrict to the sum-of-digits function sq(n).
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(and of course multivariate versions). It seems that problems of this kind are
extremely difficult, e.g. it is an open question whether there are infinitely
many primes p with even sum-of-digits function s2(p). The best known re-
sults concerning these questions are due to Fouvry and Mauduit [9, 10] who
proved that

1
x

#{n < x | n ∈ P ∨ (n = n1 · n2 ∧ n1, n2 ∈ P), sq(n) ≡ 0 mod 2} ≥ c > 0

for some constant c > 0. (P denotes the set of primes.)
These questions are also related to two other conjectures of Gelfond [11],

namely that sq(P (n)) and sq(p) are uniformly distributed modulo m.

Remark. Schmidt [25] and Schmid [24] discussed the joint distribution
of s2(kln) for different odd integers kl, 1 ≤ l ≤ d. (The distribution modulo
m was investigated by Solinas [27].) It is surely possible to extend their result
to the joint distribution of fl(Pl(n)), 1 ≤ l ≤ d, where fl are ql-additive
functions, Pl are (certain) integer polynomials, and ql > 1 arbitrary integers
(e.g. all equal). However, we will not discuss this question here.

3. Proof of Theorem 2. As already mentioned, Theorem 2 is a direct
generalization of Bassily and Kátai’s result of [1]. Therefore we can proceed
as in [1].

The first two lemmata on exponential sums are stated in [1]; a proof can
also be found in [15].

Lemma 1. Let f(y) be a polynomial of degree k of the form

f(y) =
a

b
yk + α1y

k−1 + . . .+ αk

with gcd(a, b) = 1. Let τ be a positive number satisfying

τ ≥ 23(k−2) and (log x)τ < b < xk(log x)−τ .

Then, as x→∞,
1
x

∑

n<x

e(f(n)) = O((log x)−τ ).

Lemma 2. Let f(y) be as in Lemma 1 and τ0, τ arbitrary positive num-
bers satisfying

τ ≥ 26kτ0 and (log x)τ < b < xk(log x)−τ .

Then, as x→∞,
1

π(x)

∑

p<x

e(f(p)) = O((logx)−τ0).

The third lemma is proved in [1] with the help of Lemmata 1 and 2 and
the inequality of Erdős–Turán.
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Lemma 3. Let 0 < ∆ < 1 and

Ub,q,∆ := [0,∆] ∪
q−1⋃

b=1

[b/q −∆, b/q +∆] ∪ [1−∆, 1].

Suppose that P (x) is an integer polynomial of degree r with positive leading
term. Then for every ε > 0 and arbitrary λ > 0 we have uniformly for
(logq x)ε < j < r logq x− (logq x)ε and 0 < ∆ < 1/(2q), as x→∞,

1
x

#
{
n < x

∣∣∣∣
{
P (n)
qj+1

}
∈ Ub,q,∆

}
� ∆+ (log x)−λ,

1
π(x)

#
{
p < x

∣∣∣∣
{
P (p)
qj+1

}
∈ Ub,q,∆

}
� ∆+ (log x)−λ.

We will also make use of the following limiting relations for centralized
moments of q-additive functions (see [1]).

Lemma 4. Let f be a q-additive function such that f(cqj) = O(1) as
j → ∞ and c ∈ Eq and let P (x) be a polynomial with integer coefficients,
degree r, and positive leading term. Furthermore, suppose that for some
η > 0 we have Dq(xr)/(logx)η →∞ as x→∞. Define f1 for n < xr by

f1(n) =
∑

(logq x)η≤j≤r logq x−(logq x)η

f(aq,j(n)qj)

and set

Mq,1(xr) :=
∑

(logq x)η≤k≤r logq x−(logq x)η

mk,q,

D2
q,1(xr) :=

∑

(logq x)η≤k≤r logq x−(logq x)η

σ2
k,q.

Then, as x→∞,

1
x

#
∑

n<x

(
f1(P (n))−Mq,1(xr)

Dq,1(xr)

)k
→

∞�

−∞
zk dΦ(z),

1
π(x)

#
∑

p<x

(
f1(P (p))−Mq,1(xr)

Dq,1(xr)

)k
→

∞�

−∞
zk dΦ(z).

In [1] this property is only proved for η = 1/3. However, as already
mentioned, it is also true for any η > 0.

Proposition 1. Let Nl = [logql x], 1 ≤ l ≤ d, let λ > 0 be an arbitrary
constant and hl, 1 ≤ l ≤ d, be positive integers. Furthermore, let Pl(x), 1 ≤
l ≤ d, be integer polynomials with non-negative leading terms and different
degrees rl ≥ 1. Then for integers
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(3.1) Nη
l ≤ k

(l)
1 < k

(l)
2 < . . . < k

(l)
hl
≤ rlNl −Nη

l (1 ≤ l ≤ d)

(with some η > 0) we have, as x→∞,

(3.2)
1
x

#{n < x | a
ql,k

(l)
j

(Pl(n)) = b
(l)
j , 0 ≤ j ≤ hl, 1 ≤ l ≤ d}

=
1

qh1
1 . . . qhdd

+O((log x)−λ)

and

(3.3)
1

π(x)
#{p < x | a

ql,k
(l)
j

(Pl(p)) = b
(l)
j , 0 ≤ j ≤ hl, 1 ≤ l ≤ d}

=
1

qh1
1 . . . qhdd

+O((log x)−λ)

uniformly for b
(l)
j ∈ Eql and k

(l)
j in the given range, where the implicit

constant of the error term may depend on ql, on the polynomials Pl, on hl
and on λ.

Proof. We follow [1]. Let fb,q,∆(x) be defined by

fb,q,∆(x) :=
1
∆

∆/2�

−∆/2
1[b/q,(b+1)/q]({x+ z}) dz,

where 1A is the characteristic function of the set A and {x} = x − [x] the
fractional part of x. The Fourier coefficients of the Fourier series fb,q,∆(x)
=
∑
m∈Z dm,b,q,∆e(mx) are given by

d0,b,q,∆ = 1/q

and for m 6= 0 by

dm,b,q,∆ =
e(−mb/q)− e(−m(b+ 1)/q)

2πim
· e(m∆/2)− e(−m∆/2)

2πim∆
.

Note that dm,b,q,∆ = 0 if m 6= 0 and m ≡ 0 mod q and that

|dm,b,q,∆| ≤ min
(

1
π|m| ,

1
∆πm2

)
.

By definition we have
0 ≤ fb,q,∆(x) ≤ 1

and

fb,q,∆(x) =
{

1 if x ∈ [b/q +∆, (b+ 1)/q −∆],

0 if x ∈ [0, 1] \ [b/q −∆, (b+ 1)/q +∆].

So if we set

t(y1, . . . , yd) :=
d∏

l=1

hl∏

j=1

f
b
(l)
j ,ql,∆

(
yl

q
k

(l)
j +1
l

)
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then for ∆ < 1/(2q) we get
∣∣∣#{n < x | a

ql,k
(l)
j

(Pl(n)) = b
(l)
j , 0 ≤ j ≤ hl, 1 ≤ l ≤ d}

−
∑

n<x

t(P1(n), . . . , Pd(n))
∣∣∣

≤
d∑

l=1

hl∑

j=1

#
{
n < x

∣∣∣∣
{
Pl(n)

q
k

(l)
j +1
l

}
∈ U

b
(l)
j ,ql,∆

}
� ∆x+ x(log x)−λ

and∣∣∣#{p < x | a
ql,k

(l)
j

(Pl(p)) = b
(l)
j , 0 ≤ j ≤ hl, 1 ≤ l ≤ d}

−
∑

p<x

t(P1(p), . . . , Pd(p))
∣∣∣

≤
d∑

l=1

hl∑

j=1

#
{
n < x

∣∣∣∣
{
Pl(p)

q
k

(l)
j +1
l

}
∈ U

b
(l)
j ,ql,∆

}
� ∆π(x) + π(x)(logx)−λ,

where U
b
(l)
j ,ql,∆

is given in Lemma 3.

For convenience, let ml = (m(l)
1 , . . . ,m

(l)
hl

) denote hl-dimensional integer

vectors and vl = (q−k
(l)
1 −1

l , . . . , q
−k(l)

hl
−1

l ), 1 ≤ l ≤ d. Furthermore set

Tm1,...,md
:=

d∏

l=1

hl∏

j=1

d
m

(l)
j ,b

(l)
j ,ql,∆

.

Then t(P1(n), . . . , Pd(n)) has Fourier series expansion

t(y1, . . . , yd) =
∑

m1,...,md

Tm1,...,md
e(m1 · v1y1 + . . .+ md · vdyd).

Thus, we are led to consider the exponential sums

S1 =
∑

m1,...,md

Tm1,...,md

∑

n<x

e(m1 · v1P1(n) + . . .+ md · vdPd(n)),(3.4)

S2 =
∑

m1,...,md

Tm1,...,md

∑

p<x

e(m1 · v1P1(p) + . . .+ md · vdPd(p)).(3.5)

Let us consider for a moment just the first sum S1. If m1, . . . ,md are all
zero then

Tm1,...,md

∑

n<x

e(m1 · v1P1(n) + . . .+ md · vdPd(n)) =
x+O(1)

qh1
1 . . . qhdd

,

which provides the leading term. Furthermore, if there exist l and j with
m

(l)
j 6= 0 and m(l)

j ≡ 0 mod ql then Tm1,...,md
= 0. So it remains to consider
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the case where there exist l and j with m(l)
j 6≡ 0 mod ql. Here the exponent

is of the form

m1 · v1P1(n) + . . .+ md · vdPd(n) =
a1

b1
P1(n) + . . .+

ad
bd
Pd(n)

in which we assume that gcd(al, bl) = 1, 1 ≤ l ≤ d. The first observation
is that for any l for which there exists j with m

(l)
j 6≡ 0 mod ql there exists

ηl > 0 (only depending on ql) such that bl ≥ q
ηlk

(l)
s

l if m(l)
s 6= 0, m(l)

s 6≡
0 mod ql and m

(l)
s+1 = m

(l)
s+2 = . . . = m

(l)
hl

= 0 (cf. [1]). For the reader’s
convenience we repeat the argument. Suppose that the prime factorization
of ql is given by ql = pe11 . . . pekk . If m(l)

s 6≡ 0 mod ql then there exists t such
that m(l)

s 6≡ 0 mod pett . Now we have

bl(m(l)
s + q

k(l)
s −k

(l)
s−1

l m
(l)
s−1 + . . .+ q

k(l)
s −k

(l)
1

l m
(l)
1 ) = alq

k(l)
s +1
l .

Hence bl ≡ 0 mod pk
(l)
s et
t and consequently bl ≥ p

k(l)
s et
t ≥ q

ηlk
(l)
s

l . Note that

we also have bl ≤ q
ηlk

(l)
hl

l .
Now let D denote the set of l ∈ {1, . . . , d} such that there exists j with

m
(l)
j 6≡ 0 mod ql. Since all degrees rl are different there exists a unique l0

with rl0 = max{rl | l ∈ D}. We now want to apply Lemma 1 with k = rl0
and b = bl0 . If k(l)

j are in the range (3.1) then for every τ > 0 there exists
x0(τ) such that for x ≥ x0(τ),

(log x)τ < bl0 < xrl0 (log x)−τ .

Consequently, we can apply Lemma 1 to obtain
1
x

#{n < x | a
ql,k

(l)
j

(P (n)) = b
(l)
j , 0 ≤ j ≤ hl, 1 ≤ l ≤ d}

=
1

qh1
1 . . . qhdd

+O
(

(logx)−λ
∑

m6=0

|Tm1,...,md
|
)

+O(∆+ (log x)−λ),

where m = (m1, . . . ,md). Since
∑

m6=0

|Tm1,...,md
| ≤ (2 + 2 log(1/∆))h1+...+hd

it is possible to choose ∆ = (log x)−λ1 for a sufficiently large constant λ1

such that (3.2) holds.
The proof of (3.3) runs along the same lines.

Corollary 3. Let Nl = [logql x], 1 ≤ l ≤ d, and λ, η > 0. Then for

integers k(l)
j satisfying

Nη
l ≤ k

(l)
j < rlNl −Nη

l (1 ≤ j ≤ hl, 1 ≤ l ≤ d)
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and b(l)j ∈ Eql , we uniformly have, as x→∞,

1
x

#{n < x | a
ql,k

(l)
j

(Pl(n)) = b
(l)
j , 0 ≤ j ≤ hl, 1 ≤ l ≤ d}

=
d∏

l=1

(
1
x

#{n < x | a
ql,k

(l)
j

(Pl(n)) = b
(l)
j , 0 ≤ j ≤ hl}

)
+O((logx)−λ)

and
1

π(x)
#{p < x | a

ql,k
(l)
j

(Pl(p)) = b
(l)
j , 0 ≤ j ≤ hl, 1 ≤ l ≤ d}

=
d∏

l=1

(
1

π(x)
#{p < x | a

ql,k
(l)
j

(Pl(p)) = b
(l)
j , 0 ≤ j ≤ hl}

)
+O((logx)−λ).

Proof. If there exist l and j1, j2 with k(l)
j1

= k
(l)
j2

but b(l)j1 6= b
(l)
j2

then both
sides are zero.

So it remains to consider the case where for every l the integers k(l)
j ,

1 ≤ j ≤ hl, are different, and without loss of generality we can assume that
they are increasing. Hence we can directly apply Proposition 1.

Corollary 4. For any choice of integers kl, 1 ≤ l ≤ d, we have, as
x→∞,

1
x

∑

n<x

d∏

l=1

(
fl,1(Pl(n))−Mql,1(xrl)

Dql,1(xrl)

)kl

−
d∏

l=1

(
1
x

∑

n<x

(
fl,1(Pl(n))−Mql,1(xrl)

Dql,1(xrl)

)kl)
→ 0

and

1
π(x)

∑

p<x

d∏

l=1

(
fl,1(Pl(p))−Mql,1(xrl)

Dql,1(xrl)

)kl

−
d∏

l=1

(
1

π(x)

∑

p<x

(
fl,1(Pl(p))−Mql,1(xrl)

Dql,1(xrl)

)kl)
→ 0.

Proof. In order to demonstrate how this property can be derived, we
consider the case d = 2 and k1 = k2 = 2. Set Al = [(logql x)η] and Bl =
[logql x− (logql x)η] and observe that

fl,1(Pl(n))−Mql,1(xrl) =
Bl∑

j=Al

∑

b∈Eql

(
fl(bq

j
l )δ(aql,j(Pl(n)), b)− mj,ql

ql

)
,
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where δ(x, y) denotes the Kronecker delta. Hence we have

1
x

∑

n<x

(
f1,1(P1(n))−Mq1,1(xr1)

Dq1,1(xr1)

)2(
f2,1(P2(n))−Mq2,1(xr2)

Dq2,1(xr2)

)2

=
B1∑

j1=A1

B1∑

j2=A1

B2∑

j3=A2

B2∑

j4=A2

∑

b1∈Eq1

∑

b2∈Eq1

∑

b3∈Eq2

∑

b4∈Eq2

1
D2
q1,1(xr1)D2

q2,1(xr2)

× 1
x

∑

n<x

(
f1(b1q

j1
1 )δ(aq1,j1(P1(n)), b1)− mj1,q1

q1

)

×
(
f1(b2q

j2
1 )δ(aq1,j2(P1(n)), b2)− mj2,q1

q1

)

×
(
f2(b3q

j3
2 )δ(aq2,j3(P2(n)), b3)− mj3,q2

q2

)

×
(
f2(b4q

j4
2 )δ(aq2,j4(P2(n)), b4)− mj4,q2

q2

)
.

By Corollary 3 it follows that

1
x

∑

n<x

(
f1(b1q

j1
1 )δ(aq1,j1(P1(n)), b1)− mj1,q1

q1

)

×
(
f1(b2q

j2
1 )δ(aq1,j2(P1(n)), b2)− mj2,q1

q1

)

×
(
f2(b3q

j3
2 )δ(aq2,j3(P2(n)), b3)− mj3,q2

q2

)

×
(
f2(b4q

j4
2 )δ(aq2,j4(P2(n)), b4)− mj4,q2

q2

)

= f1(b1q
j1
1 )f1(b2q

j2
1 )f2(b3q

j3
2 )f2(b4q

j4
2 )

× 1
x

#{n < x | aq1,j1(P1(n)) = b1, aq1,j2(P1(n)) = b2,

aq2,j3(P2(n)) = b3, aq2,j4(P2(n)) = b4}

− f1(b1q
j1
1 )f1(b2q

j2
1 )f2(b3q

j3
2 )

× 1
x

#{n<x | aq1,j1(P1(n)) = b1, aq1,j2(P1(n)) = b2, aq2,j3(P2(n)) = b3}

× mj4,q2

q2
∓ . . .+ mj1,q1

q1
· mj2,q1

q1
· mj3,q2

q2
· mj4,q2

q2
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=
(
f1(b1q

j1
1 )f1(b2q

j2
1 )

1
x

#{n < x | aq1,j1(P1(n)) = b1, aq1,j2(P1(n)) = b2}
)

×
(
f2(b3q

j3
2 )f2(b4q

j4
2 )

× 1
x

#{n < x | aq2,j3(P2(n)) = b3, aq2,j4(P2(n)) = b4}
)

−
(
f1(b1q

j1
1 )f1(b2q

j2
1 )

× 1
x

#{n < x | aq1,j1(P1(n)) = b1, aq1,j2(P1(n)) = b2}
)

×
(
f2(b3q

j3
2 )

1
x

#{n < x | aq2,j3(P2(n)) = b3}
)
mj4,q2

q2

∓ . . .+
(
mj1,q1

q1
· mj2,q1

q1

)(
mj3,q2

q2
· mj4,q2

q2

)
+O((log x)−λ)

=
(

1
x

∑

n<x

(
f1(b1q

j1
1 )δ(aq1,j1(P1(n)), b1)− mj1,q1

q1

)

×
(
f1(b2q

j2
1 )δ(aq1,j2(P1(n)), b2)− mj2,q1

q1

))

×
(

1
x

∑

n<x

(
f2(b3q

j3
2 )δ(aq2,j3(P2(n)), b3)− mj3,q2

q2

)

×
(
f2(b4q

j4
2 )δ(aq2,j4(P2(n)), b4)− mj4,q2

q2

))

+O((logx)−λ).

So we directly obtain the claimed result with an error term of the form
O((logx)−λ+4−4η).

By combining Lemma 4, Corollary 4, and the Fréchet–Shohat theorem
it follows that, as x→∞,

1
x

#
{
n < x

∣∣∣∣
fl,1(Pl(n))−Mql,1(xrl)

Dql,1(xrl)
< yl, 1 ≤ l ≤ d

}
→ Φ(y1) . . . Φ(yd),

1
π(x)

#
{
p < x

∣∣∣∣
fl,1(Pl(p))−Mql,1(xrl)

Dql,1(xrl)
< yl, 1 ≤ l ≤ d

}
→ Φ(y1) . . . Φ(yd).

Since

Mql(x
rl)−Mql,1(xrl) = O((log x)η),

Dql(x
rl)−Dql,1(xrl) = O((log x)η),
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it also follows that

max
n<x

∣∣∣∣
fl(Pl(n))−Mql(x

rl)
Dql(xrl)

− fl,1(Pl(n))−Mql,1(xrl)
Dql,1(xrl)

∣∣∣∣→ 0

as x → ∞. Consequently we finally obtain the limiting relations stated in
Theorem 2.

4. Proof of Theorem 3. The proof of Theorem 3 is similar to that of
Theorem 2, i.e., we will prove an analogue to Proposition 1. However, the
proof requires an additional ingredient, namely a proper version of Baker’s
theorem on linear forms. More precisely, we will use the following version
due to Waldschmidt [29].

Lemma 5. Let α1, . . . , αn be non-zero algebraic numbers and b1, . . . , bn
integers such that

αb11 . . . αbnn 6= 1

and let A1, . . . , An ≥ e be real numbers with logAj ≥ h(αj), where h(·)
denotes the absolute logarithmic height. Set d = [Q(α1, . . . , αn) : Q]. Then

|αb11 . . . αbnn − 1| ≥ exp(−U),

where

U = 26n+32n3n+6dn+2(1 + log d)(logB + log d) logA1 . . . logAn,

B = max{2, |b1|, . . . , |bn|}.
Corollary 5. Let q1, q2 > 1 be coprime integers and m1, m2 integers

such that m1 6≡ 0 mod q1 and m2 6≡ 0 mod q2. Then there exists a constant
C > 0 such that for all integers k1, k2 > 1,
∣∣∣∣
m1

qk1
1

+
m2

qk2
2

∣∣∣∣

≥ max
( |m1|
qk1
1

,
|m2|
qk2
2

)
· e−C log q1 log q2 log(max(k1,k2))·log(max(|m1|,|m2|)).

Proof. Since q1, q2 > 1 are coprime integers and m1 6≡ 0 mod q1, m2 6≡
0 mod q2 we surely have m1q

−k1
1 + m2q

−k2
2 6= 0. So we can apply Lemma 5

for n = 3, α1 = q1, α2 = q2, α3 = −m2/m1, b1 = k1, b2 = −k2, b3 = 1 and
directly obtain

∣∣∣∣
m1

qk1
1

+
m2

qk2
2

∣∣∣∣ = |m1| · qk1
1 ·

∣∣∣∣− q
k1
1 q−k2

2
m2

m1
− 1
∣∣∣∣

≥ |m1|qk1
1 e−C log q1 log q2 log(max(k1,k2))·log max(|m1|,|m2|).

Since the problem is symmetric it is no loss of generality to assume that
|m1|q−k1

1 ≥ |m2|q−k2
2 .
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Finally we will use the following (trivial) lemma on exponential sums.

Lemma 6. Let α be a real number with 0 < |α| ≤ 1/2. Then, as x→∞,
∑

n<x

e(αn)� 1
|α| .

Proposition 2. Let Pl(x) = Alx + Bl, l = 1, 2, be linear polynomials
with integer coefficients and non-negative leading terms Al which are co-
prime to ql. Set Nl = [logql x], l = 1, 2, let λ, η > 0 be arbitrary constants
and let h1, h2 be positive integers. Then for integers

(4.1) Nη
l ≤ k

(l)
1 < k

(l)
2 < . . . < k

(l)
hl
≤ Nl −Nη

l (l = 1, 2)

we have, as x→∞,

(4.2)
1
x

#{n < x | a
ql,k

(l)
j

(Aln+Bl) = b
(l)
j , 0 ≤ j ≤ hl, l = 1, 2}

=
1

qh1
1 qh2

2

+O((log x)−λ)

uniformly for b
(l)
j ∈ Eql and k

(l)
j in the given range, where the implicit

constant of the error term may depend on ql, hl and λ.

Proof. The proof runs along the same lines as the proof of Proposition 1.
The only problem is to estimate the sum

∑

(m1,m2)6=0

|Tm1,m2 | ·
∣∣∣∣
1
x

∑

n<x

e((A1m1 · v1 + A2m2 · v2)n)
∣∣∣∣,

where ml = (m(l)
1 , . . . ,m

(l)
hl

) and vl = (q−k
(l)
1 −1

l , . . . , q
−k(l)

hl
−1

l ), l = 1, 2, such

that the integers k(l)
j are in the given range (4.1).

First we fix∆ = (log x)−λ0 with an arbitrary (but fixed) constant λ0 > 0.
Furthermore, since

∑

∃l ∃j:|m(l)
j |>(log x)2λ0

|Tm1,m2 | � (log x)−λ0

we can restrict to those m 6= 0 for which |m(l)
j | ≤ (log x)2λ0 for all l, j and

m
(l)
j 6≡ 0 mod ql if m(l)

j 6= 0.
We also note that it is also sufficient to consider just the case where

m
(l)
j 6= 0 for all j and l = 1, 2. (Otherwise we just reduce h1 resp. h2 to a

smaller value and use the same arguments.)
Set δ = η/(h1 + h2 − 1). Then there exists an integer k with 0 ≤ k ≤

h1 + h2 − 2 such that for all j and l = 1, 2

k
(l)
j+1 − k

(l)
j 6∈ [(logx)kδ, (log x)(k+1)δ).
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So fix k with this property. Before discussing the general case, let us consider
two extremal ones.

First suppose that
k

(l)
j+1 − k

(l)
j < (log x)kδ

for all j and l = 1, 2. Set

ml = Al

hl∑

j=1

m
(l)
j q

k
(l)
hl
−k(l)

j

l (l = 1, 2).

Then we have ml 6≡ 0 mod ql and log |ml| � (log x)kδ. Hence, we can apply
Corollary 5 to

A1m1 · v1 +A2m2 · v2 =
m1

q
k

(1)
h1

+1
1

+
m2

q
k

(1)
h2

+1
2

and obtain

|A1m1 · v1 +A2m2 · v2| ≥ max(q
−k(1)

h1
−1

1 , q
−k(1)

h2
−1

2 )e−C log log x (log x)kδ

for some constant C > 0. Since |A1m1 ·v1+A2m2 ·v2| ≤ 1/2, from Lemma 6
we get
∣∣∣∣
1
x

∑

n<x

e((A1m1 · v1 +A2m2 · v2)n)
∣∣∣∣

� 1
x
qlogq x−(log x)(h1+h2−1)δ

eC log log x (log x)kδ

= e−(log x)(h1+h2−1)δ/log q+C log log x (log x)kδ � (logx)−λ

for any given λ > 0.
Next suppose that

k
(l)
j+1 − k

(l)
j ≥ (logx)(k+1)δ

for all j and l = 1, 2. Here we set ml = Alm
(l)
1 (l = 1, 2) and obtain

|A1m1 · v1 + A2m2 · v2|

≥
∣∣∣∣
m1

q
k

(1)
1 +1

1

+
m2

q
k

(2)
1 +1

2

∣∣∣∣−
∣∣∣∣
h1∑

j1=2

m
(1)
j1

q
k

(1)
j1

+1
1

∣∣∣∣−
∣∣∣∣
h2∑

j2=2

m
(2)
j2

q
k

(2)
j2

+1
2

∣∣∣∣

≥ max(q
−k(1)

h1
−1

1 , q
−k(1)

h2
−1

2 )e−C(log log x)2

−O((logx)2λ0 max(q
−k(1)

h1
−1

1 , q
−k(1)

h2
−1

2 )e−(log x)(k+1)δ
)

� max(q
−k(1)

h1
−1

1 , q
−k(1)

h2
−1

2 )e−C(log log x)2
.
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Thus, we again have

(4.3)
∣∣∣∣
1
x

∑

n<x

e((A1m1 · v1 + A2m2 · v2)n)
∣∣∣∣� (logx)−λ

for any given λ > 0.
In general, we assume that for some sl (l = 1, 2),

k
(l)
j+1 − k

(l)
j < (log x)kδ (j < sl)

and
k

(l)
sl+1 − k(l)

sl
≥ (log x)(k+1)δ.

Here we set

ml = Al

sl∑

j=1

m
(l)
j q

k(l)
sl
−k(l)

j

l (l = 1, 2).

Then we have (as in the first case) ml 6≡ 0 mod ql and log |ml| � (logx)kδ.
Furthermore, we can estimate the sums

hl∑

j=sl+1

m
(l)
j

q
k

(l)
j +1
l

= O((logx)2λ0q
−(log x)(k+1)δ

l ).

Thus we get

|A1m1 · v1 + A2m2 · v2|

≥
∣∣∣∣
m1

q
k

(1)
s1 +1

1

+
m2

q
k

(2)
s2 +1

2

∣∣∣∣−
∣∣∣∣

h1∑

j1=s1+1

m
(1)
j1

q
k

(1)
j1

+1
1

∣∣∣∣−
∣∣∣∣

h2∑

j2=s2+1

m
(2)
j2

q
k

(2)
j2

+1
2

∣∣∣∣

≥ max(q
−k(1)

s1
−1

1 , q
−k(1)

s2
−1

2 )e−C log log x (log x)kδ

−O((logx)2λ0 max(q
−k(1)

s1
−1

1 , q
−k(1)

s2
−1

2 )e−(log x)(k+1)δ
)

� max(q
−k(1)

s1
−1

1 , q
−k(1)

s2
−1

2 )e−C log log x(log x)kδ ,

which again implies (4.3).
Hence, we finally get
∑

(m1,m2)6=0

|Tm1,m2 | ·
∣∣∣∣
1
x

∑

n<x

e((A1m1 · v1 + A2m2 · v2)n)
∣∣∣∣

= O((logx)−λ0) +O((logx)4λ0−λ),

which completes the proof of Proposition 2.

5. Proof of Theorem 4. The proof of Theorem 4 relies on a direct
application of proper saddle point approximations.
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Set
ak1k2 = #{n < x | sq1(n) = k1, sq2(n) = k2}.

Then the empirical characteristic function is given by

ϕx(t1, t2) =
1
x

∑

n<x

eit1sq1 (n)+it2sq2 (n) =
1
x

∑

k1,k2≥0

ak1k2e
it1k1+it2k2 ,

which implies that the numbers ak1k2 can be determined by

ak1k2 =
1

(2π)2

π�

−π

π�

−π
ϕx(t1, t2)e−it1k1−it2k2 dt1 dt2.

We first use Theorem 2 to extract the asymptotic leading term of ak1k2 . In
fact, we need a little bit more general property.

Lemma 7. Set

Ml(x) :=
ql − 1

2
logql x and Dl(x) :=

q2
l − 1
12

logql x

and let P (x) denote the linear polynomial P (x) = lcm(q1 − 1, q2 − 1)x+B
for some integer B with 0 ≤ B < lcm(q1 − 1, q2 − 1). Then, for every ε > 0
there exists x0 = x0(ε) such that
∣∣∣∣
1
x

∑

n<x

eit1sq1 (P (n))+it2sq2 (P (n))

− ei(t1Mq1 (x)+t2Mq2 (x))− 1
2 (t21D

2
q1

(x)+t22D
2
q2

(x))
∣∣∣∣ < ε

for all x ≥ x0 and for all t1, t2 real.

Proof. First we notice that Theorem 2 cannot be directly applied. It may
occur that the leading term A = lcm(q1 − 1, q2 − 1) of P (x) is not coprime
to q1 resp. to q2. However, if A = qKll Al (for some Kl > 0 and Al coprime
to ql) and if Bl has ql-ary expansion Bl = B0 +B1ql + . . .+BLlq

Ll
l then

sql(An+B) = sql(q
Kl
l Aln+B0 +B1ql + . . .+BLlq

Ll
l )

= sql(q
Kl−1
l Aln+B1 +B2ql + . . .+BLlq

Ll−1
l ) +B0

= sql(q
Kl−2
l Aln+B2 +B3ql + . . .+BLlq

Ll−2
l ) +B0 +B1

...

= sql(Aln+Bl) + Cl

for some integers Bl, Cl. Therefore, the joint (normalized) limiting distri-
bution of (sq1(An+B), sq2(An+B)) is the same as that of (sq1(A1n+B1),
sq2(A2n+B2)), and Al is coprime to ql, l = 1, 2. Hence, we can always apply
Theorem 2 for properly chosen linear polynomials Pl(x), l = 1, 2.
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By Levi’s theorem it now follows from Theorem 2 (and the above remark)
that for every fixed t1, t2 we have, as x→∞,

(5.1)
1
x

∑

n<x

ei(t1sq1 (P (n))+t2sq2 (P (n)))/
√

log x

− ei(t1M1(x)+t2Mq2 (x))/
√

log x− 1
2 (t21D

2
1(x)+t22D

2
2(x))/(log x) → 0.

Moreover, we can show that this convergence is uniform for all t1, t2. Since
Φ(y1)Φ(y2) is continuous we know that the normalized empirical distribution
function

F̃x(y1, y2) :=
1
x

#{n < x | sql(n) ≤Ml(n) + ylDl(x), l = 1, 2}

converges uniformly to Φ(y1)Φ(y2). Furthermore, the variances

1
x

∑

n<x

(sql(n)−Ml(n))2

D2
l (x)

are bounded (compare with (1.1)). Hence we get
�

max{|y1|,|y2|}≥A
dF̃x(y1, y2)� 1

A
.

Thus it follows by elementary means (and by using the definition of the
characteristic function) that the convergence in (5.1) is uniform.

The proof of Theorem 2 will also make use of the following estimate on
exponential sums.

Proposition 3. Let q1, . . . , qd > 1 be pairwise coprime integers. Then
there exists a constant c > 0 such that for all real numbers t1, . . . , td,
∣∣∣∣
1
x

∑

n<x

e(t1sq1(n) + t2sq2(n) + . . .+ tdsqd(n))
∣∣∣∣� e−c log x

∑d
l=1 ‖(ql−1)tl‖2 ,

where ‖t‖ = mink∈Z |t− k| denotes the distance to the integers.

A proof of Proposition 3 can be found in [7]. It is, more or less, a slight
generalization of a corresponding estimate of exponential sums presented by
Kim [18].

Now we can start with the proof of Theorem 4.

Proof. For any K > 0 and integers s1, s2 set

CK(s1, s2) :=
{

(t1, t2) ∈ [−π, π]2 :
∣∣∣∣tl −

2πsl
ql − 1

mod 2π
∣∣∣∣ ≤

K√
log x

, l = 1, 2
}
.
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Furthermore set

AK := [−π, π]2 \
q1−2⋃

s1=0

q2−2⋃

s2=0

CK(s1, s2).

By Proposition 3 for every ε > 0 there exists K = K(ε) such that

1
(2π)2

�

AK

|ϕx(t1, t2)| dt1 dt2 ≤
ε

log x
.

Furthermore, we can choose K ≤ c′(− log ε)1/2 (for some constant c′ > 0).
So it remains to consider the integrals

IK(s1, s2) :=
1

(2π)2

�

CK(s1,s2)

(
1
x

∑

n<x

eit1(sq1 (n)−k1)+it2(sq2 (n)−k2)
)
dt1 dt2

= e
−2πi(k1

s1
q1−1 +k2

s2
q2−1 ) 1

(2π)2

×
�

CK(0,0)

(
1
x

∑

n<x

eit
′
1(sq1 (n)−k1)+it′2(sq2 (n)−k2)

)
e

2πi( s1
q1−1 + s2

q2−1 )n
dt′1 dt

′
2.

By Lemma 7 it is easy to evaluate IK(0, 0) asymptotically. For sufficiently
large x ≥ x0(ε) we have

|ϕx(t1, t2)− ei(t1M1(x)+t2M2(x))− 1
2 (t21D

2
1(x)+t22D

2
2(x))| < ε

for all real t1, t2, and consequently

(5.2) IK(0, 0)

=
1

(2π)2

�

CK(0,0)

eit1(M1(x)−k1)+it2(M2(x)−k2)− 1
2 (t21D

2
1(x)+t22D

2
2(x)) dt1 dt2

+O

(
εK2

log x

)

=
1

(2π)2

∞�

−∞

∞�

−∞
eit1(M1(x)−k1)+it2(M2(x)−k2)− 1

2 (t21D
2
1(x)+t22D

2
2(x)) dt1 dt2

+O

(
ε(− log ε)

log x

)

=
2∏

l=1

(
1√

2πDql(x)
exp
(
− (kl −Mql(x))2

2D2
ql

(x)

))
+O

(
ε(− log ε)

log x

)
.

In order to treat the remaining integrals IK(s1, s2) we recall that d and
A denote d = gcd(q1 − 1, q2 − 1) and A = lcm(q1 − 1, q2 − 1). We represent
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s1, s2 by

sl = ml
ql − 1
d

+ rl (0 ≤ ml < d, 0 ≤ rl < (ql − 1)/d, l = 1, 2)

and observe that
s1

q1 − 1
+

s2

q2 − 1
=
m1 +m2

d
+

r1

q1 − 1
+

r2

q2 − 1

=
m1 +m2

d
+
r1
q2−1
d + r2

q1−1
d

A
.

Thus, ζ := e
2πi( s1

q1−1 + s2
q2−1 ) is always an Ath root of unity and ζ = 1 if and

only if

(5.3) m1 +m2 = d, r1 = 0 and r2 = 0.

Thus, if (5.3) is satisfied, i.e., s1 = m1
q1−1
d and s2 = (d−m1) q2−1

d , we have
(recall that k1 ≡ k2 mod d)

IK(s1, s2) = e−2πim1
d (k1−k2)IK(0, 0) = IK(0, 0).

Hence
d−1∑

m1=0

IK

(
m1

q1 − 1
d

, (d−m1)
q2 − 1
d

)
= dIK(0, 0)

which fits (by (5.2)) the asymptotic leading term of ak1k2 .
Finally we have to consider the case where

ζ = e
2πi( s1

q1−1 + s2
q2−1 ) 6= 1.

Here we have

IK(s1, s2) = e−2πi(k1
s1
q1−1 +k2

s2
q2−1 )

×
A−1∑

B=0

ζB
�

CK(0,0)

(
1
x

∑

n′<(x−B)/A

eit
′
1(sq1 (An′+B)−k1)+it′2(sq2 (An′+B)−k2)

)
dt′1 dt

′
2.

As above, it follows by Lemma 7 that for sufficiently large x ≥ x1(ε) (and
of course uniformly for all B = 0, 1, . . . , A− 1)

�

CK(0,0)

(
1
x

∑

n′<(x−B)/A

eit
′
1(sq1 (An′+B)−k1)+it′2(sq2 (An′+B)−k2)

)
dt′1 dt

′
2

=
1
A

2∏

l=1

(
1√

2πDql(x)
exp
(
− (kl −Mql(x))2

2D2
ql

(x)

))
+O

(
ε log(−ε)

log x

)
.

Thus
IK(s1, s2) = O

(
ε(− log ε)

log x

)
.

This completes the proof of Theorem 4.
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[16] I. Kátai, Distribution of q-additive function, in: Probability Theory and Applica-

tions, Essays to the Memory of J. Mogyorodi, Math. Appl. 80, Kluwer, Dordrecht,
1992, 309–318.

[17] R. E. Kennedy and C. N. Cooper, An extension of a theorem by Cheo and Yien
concerning digital sums, Fibonacci Quart. 29 (1991), 145–149.

[18] D.-H. Kim, On the joint distribution of q-additive functions in residue classes, J.
Number Theory 74 (1999), 307–336.

[19] P. Kirschenhofer, On the variance of the sum of digits function, in: Lecture Notes
in Math. 1452, Springer, 1990, 112–116.



Joint distribution of q-additive functions 39
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