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1. Introduction. Let Z,N,Q be the sets of integers, positive integers
and rational numbers respectively. Let (a, b, c) be a primitive Pythagorean
triple such that

(1) a2 + b2 = c2, a, b, c ∈ N, gcd(a, b, c) = 1, 2 | a.
Then we have

(2) a = 2uv, b = u2 − v2, c = u2 + v2,

where u, v are positive integers satisfying

(3) u > v, gcd(u, v) = 1, 2 |uv.
In [7], Terai conjectured that the equation

(4) x2 + by = cz, x, y, z ∈ N,
has only the solution (x, y, z) = (a, 2, 2). This conjecture was proved for
some special cases. But, in general, the problem is far from solved. In this
respect, the author [3] proved that if b > 8 · 106, b ≡ ±5 (mod 8) and c is a
prime power, then (4) has only the solution (x, y, z) = (a, 2, 2). Afterwards,
Cao and Dong [1], Yuan [8] showed that the condition b > 8 · 106 can be
eliminated from the result of [3]. In addition, Cao and Dong [1], Yuan and
Wang [9] proved that if b ≡ ±5 (mod 8) and either b or c is a prime, then
(4) has only the solution (x, y, z) = (a, 2, 2). In this paper we consider the
case of b 6≡ ±5 (mod 8). We prove the following result.

Theorem. If b ≡ 7 (mod 8) and either b is a prime or c is a prime
power , then (4) has only the solution (x, y, z) = (a, 2, 2).

2000 Mathematics Subject Classification: Primary 11D61.
Supported by the National Natural Science Foundation of China, the Guangdong

Provincial Natural Science Foundation and the Natural Science Foundation of the Edu-
cation Department of Guangdong Province.

[41]



42 M. H. Le

2. Preliminaries

Lemma 1 ([5, pp. 12–13]). Every solution (X,Y,Z) of the equation

X2 + Y 2 = Z2, X, Y, Z ∈ N, gcd(X,Y ) = 1, 2 |X,
can be expressed as

X = 2rs, Y = r2 − s2, Z = r2 + s2,

where r, s are positive integers satisfying

(5) r > s, gcd(r, s) = 1, 2 | rs.
Lemma 2 ([5, pp. 122–123]). Let n be an odd integer with n ≥ 1. Every

solution (X,Y,Z) of the equation

X2 + Y 2 = Zn, X, Y, Z ∈ Z, gcd(X,Y ) = 1,

can be expressed as

Z = r2 + s2, X + Y
√
−1 = λ1(r + λ2s

√
−1)n, λ1, λ2 ∈ {1,−1},

where r, s are positive integers satisfying (5).

Lemma 3 ([5, Theorem 4.2]). The equation

X2 + Y 4 = Z4, X, Y, Z ∈ N, gcd(X,Y ) = 1,

has no solution (X,Y,Z).

Lemma 4 ([4] and [6]). The equation

1 +X2 = 2Y n, X, Y, n ∈ N, X > 1, Y > 1, n > 2,

has only the solution (X,Y, n) = (239, 13, 4).

Lemma 5 ([2, Lemma 1]). Let D be a positive integer , and let p be an
odd prime with p -D. If the equation

(6) X2 +DY 2 = pZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0,

has a solution (X,Y,Z), then it has a unique solution (X1, Y1, Z1) such that
X1 > 0, Y1 > 0 and Z1 ≤ Z, where Z runs through all solutions (X,Y,Z) of
(6). (X1, Y1, Z1) is called the least solution of (6). Moreover , every solution
(X,Y,Z) of (6) can be expressed as

Z = Z1t, X + Y
√
−D = λ1(X1 + λ2Y1

√
−D)t, t ∈ N, λ1, λ2 ∈ {−1, 1}.

3. Proof of Theorem. Let (x, y, z) be a solution of (4) with (x, y, z) 6=
(a, 2, 2). Since b ≡ 7 (mod 8), we see from (2), (3) and (4) that c ≡ 1 (mod 8)
and 2 | y.

We first consider the case that 2 | y and 2 | z. By Lemma 1, from (4) we
then get

(7) x = 2rs, by/2 = r2 − s2, cz/2 = r2 + s2,
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where r, s are positive integers satisfying (5). Since (x, y, z) 6= (a, 2, 2), if
y = 2, then z > 2 and z/2 ≥ 2. By (4) and (7), we get

(8) r2 + s2 = cz/2 ≥ c2 > b2 = (r2 − s2)2 ≥ (r + s)2 > r2 + s2,

a contradiction. Similarly, if z = 2, then y > 2 and y/2 ≥ 2. Hence, we
deduce from (2) and (4) that

u2 + v2 = c = cz/2 =
√
x2 + by > by/2(9)

≥ b2 = (u2 − v2)2 ≥ (u+ v)2 > u2 + v2,

a contradiction. So we have y > 2 and z > 2.
If b is a prime, then from (7) we get r = s + 1, by/2 = 2s + 1 and

cz/2 = 2s2 + 2s+ 1. This implies that

(10) 1 + by = 2cz/2.

Since 2 | y, by Lemma 4, we find from (10) that either z/2 = 2 or (b, c, y, z) =
(239, 13, 2, 8). When z/2 = 2, by Lemma 3, we see from (2), (4) and (10)
that y ≥ 6 and

2u4 + 4u2v2 + 2v4 = 2(u2 + v2)2 = 2c2 = 2cz/2(11)

> by ≥ b6 = (u2 − v2)6

≥ (u+ v)6 > 4u4 + 6u2v2 + 4v4,

a contradiction. When (b, c) = (239, 13), b and c do not satisfy (1). Thus,
the Theorem holds for this case.

If c is a prime power, then

(12) c = pk,

where p is an odd prime and k is a positive integer. We see from (1), (4)
and (12) that the equation

(13) X2 + b2Y 2 = pZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0,

has two solutions (X,Y,Z) = (a, 1, 2k) and (x, b(y−2)/2, zk). Let (X1, Y1, Z1)
be the least solution of (13). By Lemma 5, if (X1, Y1, Z1) 6= (a, 1, 2k), then
we have

2k = Z1t, t ∈ N, t > 1,(14)

a+
√
−b2 = λ1(X1 + λ2Y1

√
−b2)t, λ1, λ2 ∈ {−1, 1}.(15)

By (15), we get 2 - t. So we have t ≥ 3. Since X2
1 + b2Y 2

1 = pZ1 , we infer
from (2) and (12) that

u2 + v2 = c = pZ1t/2 ≥ p3Z1/2 = (X2
1 + b2Y 2

1 )3/2 > b3 = (u2 − v2)3(16)

≥ (u+ v)3 > u3 + v3,
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a contradiction. This implies that (X1, Y1, Z1) = (a, 1, 2k). Using Lemma 5
again, we get

zk = 2kt, t ∈ N, t > 1,(17)

x+ b(y−2)/2
√
−b2 = λ1(a+ λ2

√
−b2)t, λ1, λ2 ∈ {−1, 1}.(18)

Since 2 - b, we find from (18) that 2 - t and

(19) b(y−2)/2 = λ1λ2

(t−1)/2∑

i=0

(
t

2i+ 1

)
at−2i−1(−b2)i.

Since gcd(a, b) = 1 and y > 2, we see from (19) that b | t. Further, using
the same method as in the proof of [3, Theorem], we can deduce from (19)
that b(y−2)/2 | t. So we have t ≥ b(y−2)/2. Therefore, by (7), (12) and (17),
we obtain

by = (r2 − s2)2 ≥ (r + s)2 > r2 + s2 = cz/2(20)

= pzk/2 = pkt = ct > bt ≥ bb(y−2)/2
,

whence we get

(21) y > b(y−2)/2.

However, since y ≥ 4 and b ≥ 7, (21) is impossible. Thus, under the hy-
pothesis, (4) has only the solution (z, y, z) = (a, 2, 2) satisfying 2 | y and
2 | z.

We next consider the case that 2 | y and 2 - z. If b is a prime, then from
(2) we get

(22) u = v + 1, b = 2v + 1, c = 2v2 + 2v + 1, v ≡ 3 (mod 4).

On the other hand, by Lemma 2, we see from (4) that

c = r2 + s2,(23)

x+ by/2
√
−1 = λ1(r + λ2s

√
−1)z, λ1, λ2 ∈ {−1, 1},(24)

where r, s are positive integers satisfying (5). From (24), we get

(25) by/2 = λ1λ2s

(z−1)/2∑

i=0

(
z

2i+ 1

)
rz−2i−1(−s2)i.

We see from (25) that s satisfies either s = 1 or b | s. When s = 1, we infer
from (22) and (23) that r2 = 2v(v+ 1). This implies that v is a square with
v ≡ 3 (mod 4), which is a contradiction. When b | s, we have s ≥ b. Hence,
by (22) and (23), we get

2v2 + 2v + 1 = c = r2 + s2 > s2 ≥ b2 = (2v + 1)2 = 4v2 + 4v + 1,

a contradiction.
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If c is a prime power, then c can be expressed as (12). Moreover, by
the above analysis, (13) then has two solutions (X,Y,Z) = (a, 1, 2k) and
(x, b(y−2)/2, zk), (X1, Y1, Z1) = (a, 1, 2k) is the least solution of (13) and z
satisfies (17). So we have z = 2t and z is even, a contradiction. Thus, under
the hypothesis, (4) has no solution (x, y, z) satisfying 2 | y and 2 - z. To sum
up, the Theorem is proved.
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