Normal integral bases for infinite abelian extensions

by

PATRIK LUNDSTRÖM (Göteborg)

1. Introduction. Let $K \supseteq \mathbb{Q}$ be a Galois field extension with Galois group G and ring of algebraic integers R. We consider G as a topological group with the Krull topology (see e.g. [L93, p. 329]).

Suppose that $K \supseteq \mathbb{Q}$ is a finite extension. The normal basis theorem asserts that there is $x \in K$ such that $B := \{\sigma(x)\}_{\sigma \in G}$ form a basis for K as a vector space over \mathbb{Q} . In fact, such a basis exists for general finite Galois field extensions (see e.g. [J80, p. 283]). B is called a *normal basis* and x is called a *normal basis generator*. If B is a \mathbb{Z} -basis for R, then B is called a *normal integral basis* and x is called a *normal integral basis generator*. Normal integral bases do not always exist. In fact, for abelian extensions, Leopoldt [Leo59] proved the following result:

1.1. THEOREM. Suppose that $K \supseteq \mathbb{Q}$ is a finite Galois field extension with abelian Galois group. Then K has a normal integral basis if and only if K is contained in the nth cyclotomic number field, K_n , for some positive square-free integer n.

For infinite extensions Theorem 1.1 makes no sense. However, if we let (G,\mathbb{Z}) denote the set of functions $f: G \to \mathbb{Z}$ and we let G operate on (G,\mathbb{Z}) by $(\sigma f)(\tau) = f(\sigma^{-1}\tau)$ for $\sigma, \tau \in G$, then Theorem 1.1 can be formulated by saying that there is a left \mathbb{Z} -module isomorphism $F: (G,\mathbb{Z}) \to R$ that respects the action of G.

Namely, if B is a \mathbb{Z} -basis for R, then we can define F by

$$F(f) = \sum_{\sigma \in G} f(\sigma)\sigma(x).$$

Conversely, if $F : (G, \mathbb{Z}) \to R$ is an isomorphism as above, and $h : G \to \mathbb{Z}$ is defined by h(1) = 1 and $h(\sigma) = 0, \sigma \neq 1$, then x := F(h) is a normal integral basis generator for K. In this paper we prove, using an idea introduced by Lenstra in [Le85] for the case of normal bases for infinite Galois field

²⁰⁰⁰ Mathematics Subject Classification: 11R04, 11R18, 11R33.

extensions, that this version of Theorem 1.1 is valid for infinite extensions, provided we only consider continuous functions $G \to \mathbb{Z}$:

1.2. THEOREM. Suppose that $K \supseteq \mathbb{Q}$ is a Galois field extension with abelian Galois group G and ring of algebraic integers R. Denote by $C(G,\mathbb{Z})$ the Z-module of all continuous functions $f : G \to \mathbb{Z}$, where Z is equipped with the discrete topology. Let G operate on $C(G,\mathbb{Z})$ by $(\sigma f)(\tau) = f(\sigma^{-1}\tau)$ for $\sigma, \tau \in G$. Then there is an isomorphism of Z-modules $C(G,\mathbb{Z}) \to R$ that respects the action of G if and only if for every finite extension $K' \supseteq \mathbb{Q}$ such that $K \supseteq K'$ there is a positive square-free integer n such that $K_n \supseteq K'$.

For some related results concerning normal bases for infinite Galois extensions see [Lu98] and [Lu99].

2. Cofinal countable inverse limits. We recall the following definitions. A set I is *preordered* if it is equipped with a binary relation \prec that is transitive and reflexive. A set I is *directed* if it is preordered and has the additional property that for any two $\alpha, \beta \in I$ there is $\gamma \in I$ such that $\alpha \prec \gamma$ and $\beta \prec \gamma$. An *inverse system* of sets $(E_{\alpha}, f_{\alpha\beta})$ relative to a set I consists of a preordered set I, a set E_{α} for each $\alpha \in I$, and a map $f_{\alpha\beta} : E_{\beta} \to E_{\alpha}$ for each pair $\alpha, \beta \in I$ with $\alpha \prec \beta$, such that $f_{\alpha\alpha} = \operatorname{id}_{E_{\alpha}}$ for each $\alpha \in I$, and $f_{\alpha\beta}f_{\beta\gamma} = f_{\alpha\gamma}$ for all $\alpha, \beta, \gamma \in I$ with $\alpha \prec \beta \prec \gamma$. The *inverse limit* of such a system, denoted by $\varprojlim_{\alpha \in I} E_{\alpha}$, is defined to be the set of all $(x_{\alpha})_{\alpha \in I}$ in $\prod_{\alpha \in I} E_{\alpha}$ such that if $\alpha, \beta \in I$ and $\alpha \prec \beta$, then $f_{\alpha\beta}(x_{\beta}) = x_{\alpha}$. Recall that a subset J of I is called *cofinal* if for every $\alpha \in I$ there is $\beta \in J$ such that $\alpha \prec \beta$. We use the following result in Section 3:

2.1. PROPOSITION. Let $(E_{\alpha}, f_{\alpha\beta})$ be an inverse system of sets relative to a directed set I, which has a countable cofinal subset J. Suppose furthermore that all $f_{\alpha\beta}, \alpha, \beta \in J$, are surjective. If all E_{α} are non-empty, then the inverse limit $\lim_{\alpha \in I} E_{\alpha}$, taken with respect to the maps $f_{\alpha\beta}, \alpha, \beta \in I$, is non-empty.

Proof. Use the ideas in [B68, III.7.4, Prop. 5]. ■

3. Number fields. In this section, we prove Theorem 1.2. We need three well known results (see Lemmas 3.1–3.3). The multiplicative group of units of a ring S is denoted by S^* .

3.1. LEMMA. Let $L' \supseteq L$ be finite Galois field extensions of \mathbb{Q} . Let Tr denote the trace map from L' to L. Suppose that $L \supseteq \mathbb{Q}$ has Galois group H.

(a) If L has a normal integral basis, then $\mathbb{Z}[H]^*$ acts transitively on the set of normal integral basis generators for L.

(b) If x is a normal integral basis generator for L', then Tr(x) is a normal integral basis generator for L.

Proof. (a) follows directly from the definition of a normal integral basis generator and (b) is [N90, Theorem 4.10]. \blacksquare

Let $\{p_1, p_2, \ldots\}$ denote the set of all odd primes. For each p_i , let ε_{p_i} denote a primitive p_i th root of unity. For all positive integers m, n such that $m \ge n$, let

$$r_n^m : \operatorname{Gal}(K_{p_1\dots p_m}/\mathbb{Q}) \to \operatorname{Gal}(K_{p_1\dots p_n}/\mathbb{Q})$$

be the restriction map and let

$$p_n^m : \mathbb{Z}_{p_1-1} \times \ldots \times \mathbb{Z}_{p_m-1} \to \mathbb{Z}_{p_1-1} \times \ldots \times \mathbb{Z}_{p_n-1}$$

be the natural projection. For each positive integer n, let

$$\theta_n : \mathbb{Z}_{p_1-1} \times \ldots \times \mathbb{Z}_{p_n-1} \to \operatorname{Gal}(K_{p_1\dots p_n}/\mathbb{Q})$$

be the group isomorphism given by $\theta_n(a_1, \ldots, a_n) = \sigma_{a_1, \ldots, a_n}$, where

$$\sigma_{a_1,\ldots,a_n}(\varepsilon_i) = \varepsilon_i^{a_i}, \quad i = 1,\ldots,n.$$

With the above notations, we immediately get:

3.2. LEMMA. If m and n are positive integers such that $m \ge n$, then the following diagram is commutative:

$$\mathbb{Z}_{p_1-1} \times \ldots \times \mathbb{Z}_{p_m-1} \xrightarrow{p_n^m} \mathbb{Z}_{p_1-1} \times \ldots \times \mathbb{Z}_{p_n-1} \\
\begin{array}{c} \theta_m \\ \theta_n \\ Gal(K_{p_1\dots p_m}/\mathbb{Q}) \xrightarrow{r_n^m} Gal(K_{p_1\dots p_n}/\mathbb{Q}). \end{array}$$

We also need the following:

3.3. LEMMA. If G_1 and G_2 are groups, then the map

 $p: \mathbb{Z}[G_1 \times G_2]^* \to \mathbb{Z}[G_2]^*,$

induced by the projection $G_1 \times G_2 \rightarrow G_2$, is surjective.

Proof. The inclusion $p(\mathbb{Z}[G_1 \times G_2]^*) \subseteq \mathbb{Z}[G_2]^*$ is trivial. For the reverse inclusion, let $i : \mathbb{Z}[G_2]^* \to \mathbb{Z}[G_1 \times G_2]^*$ be the map induced by the canonical injection $G_2 \to G_1 \times G_2$. Then $\mathbb{Z}[G_2]^* = p(i(\mathbb{Z}[G_2]^*)) \subseteq p(\mathbb{Z}[G_1 \times G_2]^*)$.

Proof of Theorem 1.2. Let U denote the set of open subgroups of G. If $N \in U$ let

$$K^{N} = \{k \in K \mid \sigma(k) = k \text{ for all } \sigma \in N\}.$$

We write $N' \prec N$ when $N, N' \in U$ and $N \subseteq N'$.

Assume that there is an isomorphism of \mathbb{Z} -modules $F : C(G, \mathbb{Z}) \to R$ that respects the action of G. Pick a finite field extension $K^N \supseteq \mathbb{Q}$, where $N \in U$. By Theorem 1.1, it is enough to show that K^N has a normal integral basis. Let $C_N(G, \mathbb{Z}) = \{f \in C(G, \mathbb{Z}) \mid \sigma f = f \text{ for all } \sigma \in N\}$. Then $F(C_N(G,\mathbb{Z})) = \mathbb{R}^N$. If we define $h \in C_N(G,\mathbb{Z})$ by $h(\sigma) = 1$ if $\sigma \in N$ and $h(\sigma) = 0$ if $\sigma \notin N$, then F(h) is a normal integral basis generator for K^N .

Now suppose that if $K' \supseteq \mathbb{Q}$ is a finite extension such that $K \supseteq K'$, then there is a positive integer n such that $K_n \supseteq K'$. We can assume that $K \supseteq K_n$ for all positive square-free integers n. By Theorem 1.1, for every $N \in U$ there is a normal integral basis generator y_N for K^N . If $N' \prec N$, then let $\operatorname{Tr}_{N'/N} : K^N \to K^{N'}$ denote the trace function and define $\beta_{N'/N} \in$ $\mathbb{Z}[G/N']^*$ by the relation $\operatorname{Tr}_{N'/N}(y_N) = \beta_{N'/N}(y_{N'})$. This is possible because of Lemma 3.1(a), (b). If $N' \prec N$, then let $\varrho_{N'/N} : \mathbb{Z}[G/N] \to \mathbb{Z}[G/N']$ denote the natural map and define the function $\gamma_{N'/N} : \mathbb{Z}[G/N]^* \to \mathbb{Z}[G/N']^*$ by $\gamma_{N'/N}(\alpha_N) = \varrho_{N'/N}(\alpha_N)\beta_{N'/N}$ for all $\alpha_N \in \mathbb{Z}[G/N]^*$. It is easy to check that $(\mathbb{Z}[G/N]^*, \gamma_{N'/N})$ form an inverse system of sets relative to U. Let

$$V = \{ N \in U \mid K^N = K_{p_1 \dots p_n} \text{ for some } n \ge 1 \}.$$

By Lemmas 3.2 and 3.3, the functions $\gamma_{N'/N}$, $N, N' \in V$, are surjective. Since V is a countable cofinal subset of U, we see, by Proposition 2.1, that the inverse limit $\Gamma := \lim_{N \in U} \mathbb{Z}[G/N]^*$ taken with respect to the functions $\gamma_{N'/N}$, is non-empty. Now choose $(\alpha_N)_{N \in U} \in \Gamma$. For every $N \in U$, let $x_N = \alpha_N(y_N)$. Then, by Lemma 3.1(a) and the above construction, we get:

- (i) if $N \in U$, then x_N is a normal integral basis generator for K^N ,
- (ii) if $N' \prec N$, then $\operatorname{Tr}_{N'/N}(x_N) = x_{N'}$.

Let $f \in C(G, \mathbb{Z})$. Since G is compact and \mathbb{Z} is equipped with the discrete topology, there is $N \in U$ such that f is constant on τN for every choice of $\tau \in G$. We can therefore define a map $f_N : G/N \to \mathbb{Z}$ induced by f. We now define $F : C(G, \mathbb{Z}) \to R$ by

$$F(f) = \sum_{\sigma \in G/N} f_N(\sigma)\sigma(x_N).$$

By (ii), F is well defined. It is clear that F is \mathbb{Z} -linear. By (i), F is bijective. It is easy to check that F also respects the action of G.

References

- [B68] N. Bourbaki, Set Theory, Hermann, 1968.
- [J80] N. Jacobson, *Basic Algebra I*, Freeman, 1980.
- [L93] S. Lang, Algebra, Addison-Wesley, 1993.
- [Le85] H. W. Lenstra, Jr., A normal basis theorem for infinite Galois extensions, Indag. Math. 47 (1985), 221–228.
- [Leo59] H.-W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119–149.
- [Lu98] P. Lundström, Self-dual normal bases for infinite Galois field extensions, Comm. Algebra 26 (1998), 4331–4341.

- [Lu99] P. Lundström, Normal bases for infinite Galois ring extensions, Colloq. Math. 79 (1999), 235–240.
- [N90] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer, 1990.

Department of Mathematics Chalmers University of Technology and the University of Göteborg S-412 96 Göteborg, Sweden E-mail: lund@math.chalmers.se

Received on 3.7.2000

(3846)