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On a correspondence between p-adic Siegel-Eisenstein series
and genus theta series

by

TosHIYUKI KIKUTA and SHOYU NAGAOKA (Osaka)

Introduction. In a series of papers [9], [5], and [10], the second author
attempted to generalize the notion of Serre’s p-adic Eisenstein series and
obtained several interesting formulas. For example, in the Siegel modular
case [9], a correspondence between p-adic Siegel-Eisenstein series and theta
series was reported. More precisely, certain p-adic Siegel-Eisenstein series
were shown to coincide with the genus theta series of level p. This indicates
a remarkable relationship between p-adic Siegel modular forms and Siegel
modular forms on the congruence subgroup Iy(p) of the so-called Nebenty-
pus (in the sense of Hecke).

In this paper, we show that a similar phenomenon occurs for Haupttypus.
Namely, we construct a p-adic Siegel-Eisenstein series which coincides with
the genus theta series of discriminant p? and level p. As an application, we
show that the constructed weight 2 form is congruent to a Siegel modular
form of weight p + 1 on the full Siegel modular group.

1. Definitions and notation

1.1. Siegel modular forms. Let H, be the Siegel upper-half space of
degree n; then I'™ := Sp, (R) N My, (Z) acts discontinuously on H,. For
a congruence subgroup I” of I'™) we denote by M;(I") the corresponding
space of Siegel modular forms of weight k. Later we mainly deal with the

case I" = I'™) or Fo(n)(N) where

n A B .
I )(N)::{<C D> er®

In both cases, F' € My (I"") has a Fourier expansion of the form

C =0, (mod N)}.
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F(Z)= > ap(T)exp[2nV/~1tr(T2)],

0<TeA,
where
A, = Sym:(Z) = {T = (tij) S Symn((@) ‘ tii, Qtij S Z}
(the lattice in Sym,,(R) of half-integral, symmetric matrices).
Taking ¢;; := exp(2mv/—1 2;5) with Z = (2;;) € H,,, we write

q' = exp[2nvV—1tx(TZ)) H ql]” qu ,

1<i<j<n

where ¢; = @ii, t; = t;; (i = 1,...,n). Using this notation, we obtain the
generalized g-expansion:

n
F= 3 ar)q" =3 (Xarm[La) [1d
0<TeA, ti tij 1<j =1

€ C[ngla qz]][[le ey Qn]]
1.2. Siegel-Eisenstein series. Define
C= On}.

.= {(é g) erm

For an even integer k > n + 1, define a series by
EM(Z)= Y det(CZ+D)*, ZeH,
(& p)er\re

This series is an element of M,(I'™) called the Siegel-Eisenstein series of
weight k for I'"). We write the Fourier expansion as

B = Y o (1)
0<TeA,

It is known that all a](gn) (T') are rational. The explicit formula for a,(gn) (T)
has been studied by several people, for example, in [6], [7], [1] for n = 2,
and in [4] in general. For later purposes, we introduce the explicit formula

(2)

for a,””(T") according to [1]. For simplicity, we write the Fourier expansion
of E,E?) as
2
E,i ) = Z ar(T)q .
0<TEeA,

To describe the Fourier coefficient ax(7") explicitly, we introduce some no-
tation.
For 0 < T € As, we write

—det(2T) = D(T) f(T)*
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where f(7T) € N and D(T) is the discriminant of the imaginary quadratic
field Q(y/—det(2T)). Moreover, we define the character x p() by

o = (20

Set
e(T) :=max{l € N | I7'T € Ay}.
It is easy to see that (1) | f(T).

PropoSITION 1 (Eichler—Zagier [1]). Let T be a positive-semidefinite
element in As.

(1) (1) If rank(T) = 2, then

—4k By,
ay(T) = —5 5 "0 Fi(T),
_ K1 K2 £(T)
Fo(M)= > d*" > ulh)xpm () ow—s )
0<d|€(T) 0<f|$

where p is the Mobius function, om(n) = 3 o qp, d™, and By, (resp.
Bin.y) is the mth Bernoulli (resp. generalized Bernoulli) number.

(2) If rank(T') = 1, then

(3) arp(0O2) = 1.
1.3. Genus theta series. Fix 0 < S € A,, and define
0")(S; Z) = Z exp2mv—1tr(S[X]Z)], Z € H,,
XeMm n(Z)

where S[X] :=1XSX.

Let {S1,...,Sr} be a set of representatives of unimodular equivalence
classes of the genus containing S. The genus theta series associated with S
is defined by

o1 - (5452) (S 5)

where E(S;) is the order of the unit group of S;.
We write the Fourier expansion of the genus theta series as

genus o Z b

0<TeA,
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The Siegel main formula for quadratic forms asserts that the Fourier coefhi-
cient b (T) can be expressed as an infinite product of the local densities:

pN(T) = [ eu(S.T).
g<oo

Here the local density og(S,T') (¢: finite prime) is defined as

ay(8,T) = lim ¢ +D/2=mn) 4 (S T),

Aga(S,T) =t{X € My, n(Z/q°Z) | S X] =T (mod ¢*Ay)}.
The definition of the infinite part aeo(S,T") can be found in [13] and the
explicit form is given as follows:
oo (8, T) = det(S) ™2 det(T)m—""D/2,
,n.mn/2
Ymn = 2n(n71)/2[‘n(m/2)7
To(s) = 7" DAL()0(s = (1/2)) -+ T(s = ((n = 1)/2)).

It should be noted that 7y, above differs from Siegel’s original formula ([13,

§10, Beispiele]) by a factor of 2, because we use the lattice Sym’ (Z) instead
of Sym,,(Z).

(1.1)

1.4. p-adic Siegel-Eisenstein series. Let {kp,}7°_; be an increasing se-
quence of even positive integers which is p-adically convergent. If the corre-
sponding sequence of Siegel-Eisenstein series

{E,(CZ)} C Q[qigl, aijllar, - - - an]
converges p-adically to an element of Qp[q;jl,qij][[ql, ..., qn], then we call

the limit limy,— E,SZ a p-adic Siegel-FEisenstein series.

2. Main result. Let p be an odd prime number. Then there exists a
positive definite, integral, quaternary quadratic form S(®) of discriminant p2
and level p:

0< 8P ey,  det(25®) =p%  p(2SP)~! € 2Symi(Z).

THEOREM 1. Let p be an odd prime and S) be as above. If we define
the sequence {kn,} by

km =km(p) =2+ (p— 1)p" ",

then the corresponding sequence of Siegel-Eisenstein series {E]gj} defines a
p-adic Siegel-Fisenstein series. Moreover,

(2.1) lim E]fn) = genus O (5P)),
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In particular, the p-adic Siegel-Fisenstein series limg, oo E,giz becomes a

“true” Siegel modular form of weight 2 on F(§2) (p) of Haupttypus.

3. Proof of the main theorem. We shall prove identity (2.1) of The-
orem 1 by showing that corresponding Fourier coefficients on each side are

equal. Let
2
EIE,Z = > a,(D)q"
0<TeAs

be the Fourier expansion of the Siegel-Eisenstein series E( ) (cf. §1.2). We
shall show that the sequence {ag,, (T)}>°_; C Q has a hm1t in Q:

%i_{noo ag, (T) =:a(T) € Q.

As before (cf. §1.3), we write the Fourier expansion of the genus theta series
genus O(S®)) as

genus @(S(p)) = genus O Z b(T
0<T ey
The proof of our theorem is reduced to showing that the identity
(3.1) a(T) =b(T)
holds for every T € As.
3.1. An explicit formula for a(T)
PROPOSITION 2. Let T be a positive-semidefinite element in As.
(1) If rank(T) = 2, then
—288
(1-p)?
> 4 % whweanai(L2).

0<de(T) oo LT
A=t

a(T) =

(1 = Xp(r) () Bxper F(T),

where (T) and f(T) are positive integers defined in §1.2 and

> d

0<d|lm
(d,p)=1
(2) If rank(T) =1, then
~ 24, 24
a(T) = — oi(e(T)) = o1 > d
0<d|e(T)
(d,p)=1
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Proof. We need to show (1) and (2). First we assume that rank(7") = 2.
By Proposition 1(1), it follows that

—4k;, By, 1,
F T = dkm—l km—2 f(T)
(M) = > > wlHxoy () 2om, 3 )
0<dle(T) 0<f|$

By Kummer’s congruence for the Bernoulli numbers, we obtain

1. By, B "
(1—p7h) Z2m = (1= p) = (mod p™),
By, B
_2kym—3y DP2%m—2 _ . D2 m
(I-p )2km—2_(1 p) - (mod p™).

We consider the limit of the generalized Bernoulli number. By Corollary 5
of [2], we obtain

(1- XD(T) (p)pkm_2)Bkm—LXD(T) - BQXD(T)W
km —1
=(1- XD(T) (p))BLXD(T) - BOvXD(T)w (mod p™),

where w is the Teichmiiller character. Since
BOX:{O %fx#xO,
’ p(n)/n if X = Xo
for a character xy modulo n in general, we have

Bkm—LXD(T)

m—ao
km — 1 )

i

km—2>

(1 —=xpr)y(P)p = (1 = xp@)(P))Bi,xp(r (mod p

where
3 ifp=3, Xpr) = X-3, and m =1,
6 =0(m,p,xpr)) =42 ifp=3, xpr) = x-3, and m > 2,
0 otherwise.

In any case, we have
lim By _ =(1- B .
mgnoo km—1,XxDp(T) ( XD(T) (p)) Lxp(m)
Combining these congruences, we get

— 4k By,
lim
m—oo By Bop 9

—Lxpr -8
{1 = p)?By)? (1 = Xp()(P)) B1,xp(r

—288
(1 _p)z (1 — XD(T) (p))Bl,XD(T)'
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Using Euler’s congruence, we obtain

lim Fy, (T)
m—o0

—gim Y det Y M(f)XD(T)(f)fk’”202km_3<fT)>

m—00

0<dle(T) 0< 1)

- Y d Y f)a;<fjﬁ?>.

O<d‘€ ) 0<f|f(T)

dp)=1  (fp)=
This completes the proof of (1).
(2) If rank(T) = 1, then T is unimodular equivalent to the matrix
(E(OT ) 0) Therefore
—2k
14 (T) = 22 g4 (<(T))
km

It follows that

A(T) = lim ap, (T) = lim <_B2km) lim oy, _1(<(T))

m—0o0 m—0o0 km

= T THET) = ST (D),

This completes the proof of Proposition 2. =

3.2. An explicit formula for b(T). As stated in §1.3, the coefficient b(T')
can be expressed as the product of local densities. In our case,

= Hozq(S( , H aq (S T) - ase(SP,T).

g<oo g prime

We calculate o, (S®), T) by using formulas of Kaufhold [6] and Yang [14]. In
particular, Yang’s formula [14, Theorem 7.1] plays an essential role in our
calculation.

PROPOSITION 3. Let T be a positive-semidefinite element in As.
(1) If rank(T) = 2, then

1_q 2 9 eq  fq—l 1qulfl
E—— 1Z<ZQM_XDT) )4 Zoqm>
a (8P, T) = if q#p,

1—xpm(p) (p+1)?
L—xpm(p)p~t plet2
[ 2°m®p 2| D(T)[V2£(T) if q=o0
where g4 := ordy(e(T')) and fq := ordy(f(T)).

if ¢q=mp,
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(2) If rank(T) =1, then

€q
1-¢> ¢ ifa#p,
WSV =314p T
W if ¢ =p,
22 p~le(T) 72 if g =00
Proof. (1) Assume that rank(7") = 2. If ¢ # p, then we can calculate

aq(S®), T) by using Kaufhold’s formula for the Siegel series b, (T') = by(s, T)
(cf. [6, Hilfssatz 10] for the case |T'| # 0):

ag(SP) T) = by(s,T)|s=2-

Hence we have

1 B q 2 9 €q fq—1 fq—1-1
(¥, T) = g 2 (a3
1- XD(T m=0
It is essential in the proof to treat the case ¢ = p. We can calculate

a, (S T) by using Yang’s formula ([14, Theorem 7.1]). We should remark
that there are minor misprints and typographical errors in his original pub-
lished formula, which he subsequently revised. We make use of the revised
version.

Yang’s result asserts that ozp(S(p),T) is essentially expressed by twelve
values: I1; (1 <14 <4) and IQZ' (1 <i<8),and

8
ap(SP), T) = 1+Zflz 1=p ™)) Li+p I
i=1
([14, Theorem 7.1]). We assume that 7" is unimodular equivalent to
ap® 0 N
( 0 Ozzpb> (a <b, a1, a2 € Zy).
The proof for the case ¢ = p is reduced to the following:
LEMMA 3.1.
(a) If a # b (mod 2), then

—a 1+p)?
ap(59,7) = (14 pprertsz - LEPE,

(b) If a = b (mod 2), then
C 1+
ap(SP,T) = (1 - Xp(r)(P))(1+ p)p (a0+2)/2 = (1 - Xp(r)(P)) pleZ:

Proof. According to Yang’s result, we can calculate (S ®), T ) by sep-
arately considering the following three cases:
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() a=b,
(ii) a < band a # b (mod 2),
(iii) @ < b and a = b (mod 2).

In fact, the calculations are similar for each case, so we shall prove the
formula only for case (iii). In this case, the values I; ; are as follows:

hLi=—(1-p %ap, Lis=p ",

b
_ . —a102\ (4
La=—(1-p) 3 ga(k)pe 22 11,4=—<1 2)p< /2,
k=a-+2

121— 1— Zk‘pQ a—l—k 1272:_229—.’4:’

k=1
_[23 — 1_ Z Z ga kl a k1— 2k2+4)/
ko=1ki1=a+2
a

D = (—oqaz) Zp(a—b—2k+2)/2’

p k=1

b

_ -0 _
1275 _ Z ga(k‘)p (a-i-k:)/27 12,6 _ _<12)p (a+b+2)/27
k=a+2 p
a

I7 =0, Is = szfky

where gq(k) is 1 if k — a is even, and 0 if £ — a is odd. We can simplify the
above formulas:

Ly=—ap+ap ', Liao=p !,
_ —1(9 _
Lg=-1+p* ™2  L,= —<p>P(a 072,
(1—p Nhp=-1+ap—p+p" “—ap ' +p°

(L=p Dhp=—p+p 7%
(1-— p—l)[273 =1 p(a—b)/Q —p@ +p_(a+b)/27

o -
(1= pYps = ( ; 2>p(a—b)/2 _ <12>p—(a+b)/2’

p

(1 _p—1)1275 _ _p—l—a +p—(a+b+2)/2’

(1—p DNhe+p he=1Ils=— <_apm>p(a+b+2)/27

(1-p Nhy=0, (1-p Hhs=p—p'



120 T. Kikuta and S. Nagaoka

From these formulas, we have

ap(S(p),T) =1+ le’i +(1- pil) ZIQJ‘ +p71[276

— p(@tb)/2 | = (atb+2)/2 _ <—04N42>p—(a+b)/2

P
_ <W>p—<a+b+2>/z
p

_ (1 _ <_a;a2>>(p(a+b)/2 +p—(a+b+2)/2)
_ (4 - 1+p
- o P plt(a+h)/2

B 1+p

- (1 — XD(T) (p)) p1+fp )
since (%) = xp(r)(p) and f, = (a+b)/2. This proves the lemma for
case (iii). m

We continue the proof of Proposition 3(1). We calculate o (S ®), T).B
the general formula for ax(S,T") (cf. (1.1) of §1.3), we have

Qoo (SP), T) = det (S®)) =1 det(T) /2 = 237°p~2|D(T) V2 £(T).

2I'(2)
Here we made use of the identities
det(S®P)) =274p? det(T) = 272|D(T)|£(T)%.

This completes the proof of Proposition 3(1).
(2) Next we assume that rank(7") = 1. We recall that 7" is unimodular
equivalent to (E(g) 8). If ¢ # p, then we have

ag(SW,T) = ag(SP,e(T)) = (1 - ¢ Zq

(e.g. cf. [13, Hilfssatz 16]). It is also essential here to deal with the case
q = p. We use Yang’s formula again. In his notation, ap(S(p),T) is given by
ap(S),T) = 0y (SP), (1))

Ep

=14+ 1 —p ) wep™ + fi(e(T))ve, 41p M
k=1

(cf. [14, p. 317]). Since
vp=—1, dk)=—-k+1 (fork>1), fi(e(T))=-p!
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in our case, we obtain

1+p
p1+€p )

Ep
Oép(S(p),T) —-1— 1 _ Zp k+1 _}_pflpfsp _ pfsp _l_pflfz-:p _
k=1

Finally, we calculate as,(S®, T). Again by (1.1) of §1.3,
2

oo (SP), T) = s (SW), 6(T)) = (27p*)/%<(T) ;Ez) = 2% e(T)m.
This completes the proof of Proposition 3. =
COROLLARY 3.1.
(1) If rank(T') = 2, then
—288
b(T) = 33 U= X ®) Bixoer (1) T Gl
iy
L fq—1-1
=> ( S —xpmy(@a Y q_m), Fo(T) == F(T)/p'.
=0 m=0 m=0
(2) If rank(T') = 1, then
24,
bT) =~ o} (=(T)
(3) b(Os) = 1.
Proof. (1) We substitute the formulas for «, obtained in Proposition 3
into
= H ag(SP), T).
g<oo
Consequently,
= J[ @S, 7)o (SP), T)ase(SP),T)
q prime
q#p

. L(L; xp(r)) 1= Xp(1) (p)p~!
- C(Q)Q (1 _ p—2)2 H Gq
1—-xpmr(p) (p+1)2
L—xprp)p~t plet?
= __2818)2 (1= Xp) () Bixper, @ £(T)) [] Go(T).

(p q#p
Here we made use of the formulas

L(1; xp(r)) = _W‘D(T)’1/2B1:XD(T)’ ¢(2) = 7r2/6.

q#p
233p~2| D(T)| 2 £(T)
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(2) From Proposition 3(2), we obtain

H g (8P, T, (8P, T (SP), T)

g prime

q#p

+D .2
21— —QH(Z ) T+ep 2’ple(T)n”
g#p 1=0
24, _ L 24
= @) ] (Xa7') = == oi(e(m)).

b g#p =0 p

(3) The identity b(O2) = 1 is an easy consequence of the definition of
the genus theta series. =

3.3. Coincidence between a(T) and b(T). Comparing Proposition 2 and
Corollary 3.1, we see that a(7") = b(T) for rank(7") < 1. It remains to prove
this in the case where rank(7") = 2. The proof for this case is reduced to
showing the following lemma.

LEMMA 3.2. Recall that

> 4 % whweanai(L2).

0<d|€(T) 0< f(T)
= G

eq  fo—l fq—1-1
Z(Zq " —xpmy(@a Y q‘m)
=0 m=0 m=0
(cf. Proposition 2(1) and Corollary 3.1(1)). With these definitions,
(3-2) F(T) = f(T) [ [ Go(T)
a7p

Proof. We remark that F (T') has a finite product expression of the form
fa
q
"I X a ¥ whonn(t),
q#p0<d|q®  0<f|gfa—da
where d = [] ¢%¢. Therefore the proof of (3.2) is reduced to showing that

fq
S a Y u(f)xDm(f)al(jcd)

0<dlg®?  0<flgfa—9a
€q fq—1 fq—1-1

Z(Zq " —xpm(@a " Y q_m)

=0 m=0
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for each prime g # p. To see this, we show the equality of terms correspond-
ing to d = g% (on the left hand side) and [ = d, (on the right hand side)
for each 0 < dy < g4t

fa—dq
(33) ¢ 3 u(f)xDm(f)al(q )

0<flgfa~% d
fq dq fq_dq_]-
—qf"( Z "= xpm (@t Y q*m)-
m=0
Since (%) = u(¢?) = --- = 0, the left hand side of (3.3) is equal to
q" (VD) xpr) (Vo (¢/*%) + ¢ (@) xper) (@)1 ¢/ 7% )
fo—dg+1 _ 1 Jo—dq _ 1
= dq qi p— q qi
q 1 Xp(r)(2)q” i1
_ qfq+1 — qdq _ ( ) qfq — qdq
7q—1 XD(T)qiq_l .
On the other hand, the right hand side of (3.3) becomes
1 — q_(fq_dq“’l) _1 1 — q_(fq_dq)
g’ 1—q 1 - XD(T)(Q)qfq 1o
gfrt — g™ g1 —q%
= T — XD(T) (q) q—il

This proves (3.3) and thus Lemma 3.2 is now proved. =

We have now completed the proof of Theorem 1. m

4. Remarks

4.1. Modular forms of weight 2. In general, we denote by My (I"")g the
subset of M (I"”) consisting of modular forms whose Fourier coefficients
belong to a subring R C C.

In [12], Serre proved the following result:

THEOREM 2 (Serre). Let p > 3 be a prime number. For any f €
Mg(Fél)(p))Z<p), there exists a modular form g € Mp+1(F(1))Z(p) satisfying
f =g (mod p).

It is believed that this is true for any degree.

CONJECTURE. Assume that p is a sufficiently large prime relative to
the degree. For any F' € Mg(Fén) (p))z,, there exists a modular form G €
MPH(F(”))Z@) satisfying

F =G (mod p).
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Our p-adic Siegel-Fisenstein series has the following property.

PROPOSITION 4. Let p > 3 be a prime number. The constructed p-adic
Siegel-Eisenstein series Fa(p) := limy, oo Elii) € Mg(FéQ) (p)) satisfies the
congruence

2
Fy(p) = B,y (mod p)

where E( )1 E Mp+1(F(2)) is the ordinary Siegel-Eisenstein series of weight
p+1 for re

Proof. For p = 3, the congruence may be checked by direct calculation.
In fact, we can show that
n}gnoo E( ) 1 (mod 3) and E(Jr)1 = Ei ) =1 (mod 3).
Therefore, we may assume that p is prime and strictly greater than 3. By
an argument similar to that in the proof of Proposition 2, we can show that
lim E(Z) = E(Q) (mod pl).
m—o0

As a special case, we obtain

Fy(p) = lim_ B =B = B

pi1 (mod p). m

4.2. Comparison with the case of Nebentypus. In the case of Nebenty-
pus [9], we considered the p-adic Siegel-Eisenstein series

Fi(p) := hmOo g™

1+P 1, pm— 1°
One of the main results of [9] is as follows. Let p be a prime with p = 3
(mod 4), p > 3. Then Fj(p) coincides with the genus theta series of level p.

In particular, F;(p) becomes a modular form of M (I} O(n) (p), xp) (the space
of modular forms of weight 1 and Nebentypus x,). As a consequence, the

square (F1(p))? € Mg(Fén) (p)) satisfies

(Fi(p)* = (E{)1)5)* (mod p).

4.3. Generalization. In this note, we proved
: (2) _ 2
nlgnoo B, = genus 0@ (5P,
We conjecture that this will also be true for any degree, i.e.

lim E( ) = genus 9(")(S(p)).
m—0o0
We have numerical examples for which the above identity holds.
Our result concerns the weight 2 Siegel modular forms. For the case
of general weights, there is an interesting result due to Y. Mizuno [8]. He
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considers the p-adic Siegel-Eisenstein series

F(p) = Hm Eyyoppm (k even > 2)

and shows modularity, i.e., that F,g2) (p) € Mk(Féz)(p)).
Let A = Zy[I'] be the Iwasawa algebra associated to I' = Z;. Then
there is a A-adic Eisenstein series E of level 1 with the following properties:

(1) The coefficients of the g-expansion belong to the total fraction ring
of A with the constant term described by the Kubota—Leopoldt p-
adic zeta function.

(2) The specialization at sufficiently large k € Z\ pZ is the (p-stabilized)
classical Eisenstein series of level 1 and weight k.

(See, for instance, Panchishkin [11], Hida [3].)

Our main theorem shows that the specialization of F at k = 2 is classical.
The case of k = 2 is excluded in (2), thus the theorem provides an example
beyond the general theory. The classicality at £ = 1,2 of A-adic Siegel
modular forms of degree 2 would be false in general.

Acknowledgements. We thank the referee for enlightening remarks
concerning the A-adic modular forms.
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