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and genus theta series
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Introduction. In a series of papers [9], [5], and [10], the second author
attempted to generalize the notion of Serre’s p-adic Eisenstein series and
obtained several interesting formulas. For example, in the Siegel modular
case [9], a correspondence between p-adic Siegel–Eisenstein series and theta
series was reported. More precisely, certain p-adic Siegel–Eisenstein series
were shown to coincide with the genus theta series of level p. This indicates
a remarkable relationship between p-adic Siegel modular forms and Siegel
modular forms on the congruence subgroup Γ0(p) of the so-called Nebenty-
pus (in the sense of Hecke).

In this paper, we show that a similar phenomenon occurs for Haupttypus.
Namely, we construct a p-adic Siegel–Eisenstein series which coincides with
the genus theta series of discriminant p2 and level p. As an application, we
show that the constructed weight 2 form is congruent to a Siegel modular
form of weight p+ 1 on the full Siegel modular group.

1. Definitions and notation

1.1. Siegel modular forms. Let Hn be the Siegel upper-half space of
degree n; then Γ (n) := Spn(R) ∩M2n(Z) acts discontinuously on Hn. For
a congruence subgroup Γ ′ of Γ (n), we denote by Mk(Γ ′) the corresponding
space of Siegel modular forms of weight k. Later we mainly deal with the
case Γ ′ = Γ (n) or Γ (n)

0 (N) where

Γ
(n)
0 (N) :=

{(
A B

C D

)
∈ Γ (n)

∣∣∣∣C ≡ On (mod N)
}
.

In both cases, F ∈Mk(Γ ′) has a Fourier expansion of the form
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F (Z) =
∑

0≤T∈Λn

aF (T ) exp[2π
√
−1 tr(TZ)],

where

Λn = Sym∗n(Z) := {T = (tij) ∈ Symn(Q) | tii, 2tij ∈ Z}
(the lattice in Symn(R) of half-integral, symmetric matrices).

Taking qij := exp(2π
√
−1 zij) with Z = (zij) ∈ Hn, we write

qT := exp[2π
√
−1 tr(TZ)] =

∏
1≤i<j≤n

q
2tij
ij

n∏
i=1

qtii ,

where qi = qii, ti = tii (i = 1, . . . , n). Using this notation, we obtain the
generalized q-expansion:

F =
∑

0≤T∈Λn

aF (T ) qT =
∑
ti

(∑
tij

aF (T )
∏
i<j

q
2tij
ij

) n∏
i=1

qtii

∈ C[q−1
ij , qij ][[q1, . . . , qn]].

1.2. Siegel–Eisenstein series. Define

Γ (n)
∞ :=

{(
A B

C D

)
∈ Γ (n)

∣∣∣∣C = On

}
.

For an even integer k > n+ 1, define a series by

E
(n)
k (Z) :=

∑
(∗ ∗C D)∈Γ (n)

∞ \Γ (n)

det(CZ +D)−k, Z ∈ Hn.

This series is an element of Mk(Γ (n)) called the Siegel–Eisenstein series of
weight k for Γ (n). We write the Fourier expansion as

E
(n)
k =

∑
0≤T∈Λn

a
(n)
k (T )qT .

It is known that all a(n)
k (T ) are rational. The explicit formula for a(n)

k (T )
has been studied by several people, for example, in [6], [7], [1] for n = 2,
and in [4] in general. For later purposes, we introduce the explicit formula
for a(2)

k (T ) according to [1]. For simplicity, we write the Fourier expansion
of E(2)

k as

E
(2)
k =

∑
0≤T∈Λ2

ak(T )qT .

To describe the Fourier coefficient ak(T ) explicitly, we introduce some no-
tation.

For 0 < T ∈ Λ2, we write

−det(2T ) = D(T )f(T )2



Siegel–Eisenstein series and genus theta series 113

where f(T ) ∈ N and D(T ) is the discriminant of the imaginary quadratic
field Q(

√
−det(2T )). Moreover, we define the character χD(T ) by

χD(T ) :=
(
D(T )
∗

)
.

Set
ε(T ) := max{l ∈ N | l−1T ∈ Λ2}.

It is easy to see that ε(T ) | f(T ).

Proposition 1 (Eichler–Zagier [1]). Let T be a positive-semidefinite
element in Λ2.

(1) (1) If rank(T ) = 2, then

ak(T ) =
−4kBk−1,χD(T )

BkB2k−2
Fk(T ),

Fk(T ) =
∑

0<d|ε(T )

dk−1
∑

0<f | f(T )
d

µ(f)χD(T )(f)fk−2σ2k−3

(
f(T )
fd

)
,

where µ is the Möbius function, σm(n) =
∑

0<d|n d
m, and Bm (resp.

Bm,χ) is the mth Bernoulli (resp. generalized Bernoulli) number.
(2) If rank(T ) = 1, then

ak(T ) =
−2k
Bk

σk−1(ε(T )).

(3) ak(O2) = 1.

1.3. Genus theta series. Fix 0 < S ∈ Λm and define

θ(n)(S;Z) =
∑

X∈Mm,n(Z)

exp[2π
√
−1 tr(S[X]Z)], Z ∈ Hn,

where S[X] := tXSX.
Let {S1, . . . , Sh} be a set of representatives of unimodular equivalence

classes of the genus containing S. The genus theta series associated with S
is defined by

genusΘ(n)(S)(Z) :=
( h∑
i=1

θ(n)(Si;Z)
E(Si)

)/( h∑
i=1

1
E(Si)

)
,

where E(Si) is the order of the unit group of Si.
We write the Fourier expansion of the genus theta series as

genusΘ(n)(S) =
∑

0≤T∈Λn

b(n)(T )qT .
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The Siegel main formula for quadratic forms asserts that the Fourier coeffi-
cient b(n)(T ) can be expressed as an infinite product of the local densities:

b(n)(T ) =
∏
q≤∞

αq(S, T ).

Here the local density αq(S, T ) (q: finite prime) is defined as

αq(S, T ) = lim
a→∞

qa(n(n+1)/2−mn)Aqa(S, T ),

Aqa(S, T ) = ]{X ∈Mm,n(Z/qaZ) | S[X] ≡ T (mod qaΛn)}.

The definition of the infinite part α∞(S, T ) can be found in [13] and the
explicit form is given as follows:

α∞(S, T ) = det(S)−n/2 det(T )(m−n−1)/2γmn,

γmn =
πmn/2

2n(n−1)/2Γn(m/2)
,(1.1)

Γn(s) = πn(n−1)/4Γ (s)Γ (s− (1/2)) · · ·Γ (s− ((n− 1)/2)).

It should be noted that γmn above differs from Siegel’s original formula ([13,
§10, Beispiele]) by a factor of 2, because we use the lattice Sym∗n(Z) instead
of Symn(Z).

1.4. p-adic Siegel–Eisenstein series. Let {km}∞m=1 be an increasing se-
quence of even positive integers which is p-adically convergent. If the corre-
sponding sequence of Siegel–Eisenstein series

{E(n)
km
} ⊂ Q[q−1

ij , qij ][[q1, . . . , qn]]

converges p-adically to an element of Qp[q−1
ij , qij ][[q1, . . . , qn]], then we call

the limit limm→∞E
(n)
km

a p-adic Siegel–Eisenstein series.

2. Main result. Let p be an odd prime number. Then there exists a
positive definite, integral, quaternary quadratic form S(p) of discriminant p2

and level p:

0 < S(p) ∈ Λ4, det(2S(p)) = p2, p(2S(p))−1 ∈ 2 Sym∗4(Z).

Theorem 1. Let p be an odd prime and S(p) be as above. If we define
the sequence {km} by

km = km(p) := 2 + (p− 1)pm−1,

then the corresponding sequence of Siegel–Eisenstein series {E(2)
km
} defines a

p-adic Siegel–Eisenstein series. Moreover ,

(2.1) lim
m→∞

E
(2)
km

= genusΘ(2)(S(p)).



Siegel–Eisenstein series and genus theta series 115

In particular , the p-adic Siegel–Eisenstein series limm→∞E
(2)
km

becomes a

“true” Siegel modular form of weight 2 on Γ
(2)
0 (p) of Haupttypus.

3. Proof of the main theorem. We shall prove identity (2.1) of The-
orem 1 by showing that corresponding Fourier coefficients on each side are
equal. Let

E
(2)
km

=
∑

0≤T∈Λ2

akm(T )qT

be the Fourier expansion of the Siegel–Eisenstein series E(2)
km

(cf. §1.2). We
shall show that the sequence {akm(T )}∞m=1 ⊂ Q has a limit in Q:

lim
m→∞

akm(T ) =: ã(T ) ∈ Q.

As before (cf. §1.3), we write the Fourier expansion of the genus theta series
genusΘ(S(p)) as

genusΘ(S(p)) = genusΘ(2)(S(p)) =
∑

0≤T∈Λ2

b(T )qT .

The proof of our theorem is reduced to showing that the identity

(3.1) ã(T ) = b(T )

holds for every T ∈ Λ2.

3.1. An explicit formula for ã(T )

Proposition 2. Let T be a positive-semidefinite element in Λ2.

(1) If rank(T ) = 2, then

ã(T ) =
−288

(1− p)2
(1− χD(T )(p))B1,χD(T )

F̃ (T ),

F̃ (T ) =
∑

0<d|ε(T )
(d,p)=1

d
∑

0<f | f(T )
d

(f,p)=1

µ(f)χD(T )(f)σ∗1

(
f(T )
fd

)
,

where ε(T ) and f(T ) are positive integers defined in §1.2 and

σ∗1(m) =
∑

0<d|m
(d,p)=1

d.

(2) If rank(T ) = 1, then

ã(T ) =
24
p− 1

σ∗1(ε(T )) =
24
p− 1

∑
0<d|ε(T )
(d,p)=1

d.

(3) ã(O2) = 1.
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Proof. We need to show (1) and (2). First we assume that rank(T ) = 2.
By Proposition 1(1), it follows that

akm(T ) =
−4kmBkm−1,χD(T )

BkmB2km−2
Fkm(T ),

Fkm(T ) =
∑

0<d|ε(T )

dkm−1
∑

0<f | f(T )
d

µ(f)χD(T )(f)fkm−2σ2km−3

(
f(T )
fd

)
.

By Kummer’s congruence for the Bernoulli numbers, we obtain

(1− pkm−1)
Bkm

km
≡ (1− p) B2

2
(mod pm),

(1− p2km−3)
B2km−2

2km − 2
≡ (1− p) B2

2
(mod pm).

We consider the limit of the generalized Bernoulli number. By Corollary 5
of [2], we obtain

(1− χD(T )(p)pkm−2)Bkm−1,χD(T )
−B0,χD(T )ω

km − 1
≡ (1− χD(T )(p))B1,χD(T )

−B0,χD(T )ω (mod pm),

where ω is the Teichmüller character. Since

B0,χ =
{

0 if χ 6= χ0,

ϕ(n)/n if χ = χ0

for a character χ modulo n in general, we have

(1− χD(T )(p)p
km−2)

Bkm−1,χD(T )

km − 1
≡ (1− χD(T )(p))B1,χD(T )

(mod pm−δ),

where

δ = δ(m, p, χD(T )) :=


3 if p = 3, χD(T ) = χ−3, and m = 1,
2 if p = 3, χD(T ) = χ−3, and m ≥ 2,
0 otherwise.

In any case, we have

lim
m→∞

Bkm−1,χD(T )
= (1− χD(T )(p))B1,χD(T )

.

Combining these congruences, we get

lim
m→∞

−4kmBkm−1,χD(T )

BkmB2km−2
=

−8
{(1− p)2B2}2

(1− χD(T )(p))B1,χD(T )

=
−288

(1− p)2
(1− χD(T )(p))B1,χD(T )

.
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Using Euler’s congruence, we obtain

lim
m→∞

Fkm(T )

= lim
m→∞

∑
0<d|ε(T )

dkm−1
∑

0<f | f(T )
d

µ(f)χD(T )(f)fkm−2σ2km−3

(
f(T )
fd

)

=
∑

0<d|ε(T )
(d,p)=1

d
∑

0<f | f(T )
d

(f,p)=1

µ(f)χD(T )(f)σ∗1

(
f(T )
fd

)
.

This completes the proof of (1).
(2) If rank(T ) = 1, then T is unimodular equivalent to the matrix(

ε(T ) 0
0 0

)
. Therefore

akm(T ) =
−2km
Bkm

σkm−1(ε(T )).

It follows that

ã(T ) = lim
m→∞

akm(T ) = lim
m→∞

(
−2km
Bkm

)
lim
m→∞

σkm−1(ε(T ))

=
−4

(1− p)B2
σ∗1(ε(T )) =

24
p− 1

σ∗1(ε(T )).

This completes the proof of Proposition 2.

3.2. An explicit formula for b(T ). As stated in §1.3, the coefficient b(T )
can be expressed as the product of local densities. In our case,

b(T ) =
∏
q≤∞

αq(S(p), T ) =
∏

q prime

αq(S(p), T ) · α∞(S(p), T ).

We calculate αq(S(p), T ) by using formulas of Kaufhold [6] and Yang [14]. In
particular, Yang’s formula [14, Theorem 7.1] plays an essential role in our
calculation.

Proposition 3. Let T be a positive-semidefinite element in Λ2.

(1) If rank(T ) = 2, then

αq(S(p), T ) =



(1− q−2)2

1− χD(T )(q)q−1

εq∑
l=0

( fq−l∑
m=0

q−m − χD(T )(q)q
−1

fq−l−1∑
m=0

q−m
)

if q 6= p,
1− χD(T )(p)

1− χD(T )(p)p−1

(p+ 1)2

pfp+2
if q = p,

23π3p−2|D(T )|1/2f(T ) if q =∞,

where εq := ordq(ε(T )) and fq := ordq(f(T )).
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(2) If rank(T ) = 1, then

αq(S(p), T ) =


(1− q−2)

εq∑
l=0

q−l if q 6= p,

1 + p

p1+εp
if q = p,

22 p−1ε(T )π2 if q =∞.

Proof. (1) Assume that rank(T ) = 2. If q 6= p, then we can calculate
αq(S(p), T ) by using Kaufhold’s formula for the Siegel series bq(T ) = bq(s, T )
(cf. [6, Hilfssatz 10] for the case |T | 6= 0):

αq(S(p), T ) = bq(s, T )|s=2.

Hence we have

αq(S(p), T ) =
(1− q−2)2

1− χD(T )(q)q−1

εq∑
l=0

( fq−l∑
m=0

q−m − χD(T )(q)q
−1

fq−l−1∑
m=0

q−m
)
.

It is essential in the proof to treat the case q = p. We can calculate
αp(S(p), T ) by using Yang’s formula ([14, Theorem 7.1]). We should remark
that there are minor misprints and typographical errors in his original pub-
lished formula, which he subsequently revised. We make use of the revised
version.

Yang’s result asserts that αp(S(p), T ) is essentially expressed by twelve
values: I1,i (1 ≤ i ≤ 4) and I2,i (1 ≤ i ≤ 8), and

αp(S(p), T ) = 1 +
4∑
i=1

I1,i + (1− p−1)
8∑
i=1

I2,i + p−1I2,6

([14, Theorem 7.1]). We assume that T is unimodular equivalent to(
α1p

a 0
0 α2p

b

)
(a ≤ b, α1, α2 ∈ Z∗p).

The proof for the case q = p is reduced to the following:

Lemma 3.1.
(a) If a 6≡ b (mod 2), then

αp(S(p), T ) = (1 + p)2p−(a+b+3)/2 =
(1 + p)2

p2+fp
.

(b) If a ≡ b (mod 2), then

αp(S(p), T ) = (1− χD(T )(p))(1 + p)p−(a+b+2)/2 = (1− χD(T )(p))
1 + p

p1+fp
.

Proof. According to Yang’s result, we can calculate αp(S(p), T ) by sep-
arately considering the following three cases:
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(i) a = b,
(ii) a < b and a 6≡ b (mod 2),
(iii) a < b and a ≡ b (mod 2).

In fact, the calculations are similar for each case, so we shall prove the
formula only for case (iii). In this case, the values Ii,j are as follows:

I1,1 = −(1− p−2)ap, I1,2 = p−1,

I1,3 = −(1− p−1)
b∑

k=a+2

ga(k)p(a−k+2)/2, I1,4 = −
(
−α1α2

p

)
p(a−b)/2,

I2,1 = (1− p−2)
a−1∑
k=1

k p2−a+k, I2,2 = −
a∑
k=1

p−k,

I2,3 = (1− p−1)
a∑

k2=1

b∑
k1=a+2

ga(k1)p(a−k1−2k2+4)/2,

I2,4 =
(
−α1α2

p

) a∑
k=1

p(a−b−2k+2)/2,

I2,5 = −
b∑

k=a+2

ga(k)p−(a+k)/2, I2,6 = −
(
−α1α2

p

)
p−(a+b+2)/2,

I2,7 = 0, I2,8 =
a∑
k=1

p2−k,

where ga(k) is 1 if k − a is even, and 0 if k − a is odd. We can simplify the
above formulas:

I1,1 = −ap+ ap−1, I1,2 = p−1,

I1,3 = −1 + p(a−b)/2, I1,4 = −
(
−α1α2

p

)
p(a−b)/2,

(1− p−1)I2,1 = −1 + ap− p+ p1−a − ap−1 + p−a,

(1− p−1)I2,2 = −p−1 + p−1−a,

(1− p−1)I2,3 = 1− p(a−b)/2 − p−a + p−(a+b)/2,

(1− p−1)I2,4 =
(
−α1α2

p

)
p(a−b)/2 −

(
−α1α2

p

)
p−(a+b)/2,

(1− p−1)I2,5 = −p−1−a + p−(a+b+2)/2,

(1− p−1)I2,6 + p−1I2,6 = I2,6 = −
(
−α1α2

p

)
p−(a+b+2)/2,

(1− p−1)I2,7 = 0, (1− p−1)I2,8 = p− p1−a.
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From these formulas, we have

αp(S(p), T ) = 1 +
4∑
i=1

I1,i + (1− p−1)
8∑
i=1

I2,i + p−1I2,6

= p−(a+b)/2 + p−(a+b+2)/2 −
(
−α1α2

p

)
p−(a+b)/2

−
(
−α1α2

p

)
p−(a+b+2)/2

=
(

1−
(
−α1α2

p

))
(p−(a+b)/2 + p−(a+b+2)/2)

=
(

1−
(
−α1α2

p

))
1 + p

p1+(a+b)/2

= (1− χD(T )(p))
1 + p

p1+fp
,

since
(−α1α2

p

)
= χD(T )(p) and fp = (a+ b)/2. This proves the lemma for

case (iii).

We continue the proof of Proposition 3(1). We calculate α∞(S(p), T ). By
the general formula for α∞(S, T ) (cf. (1.1) of §1.3), we have

α∞(S(p), T ) = det(S(p))−1 det(T )1/2
π4

2Γ (2)
= 23π3p−2|D(T )|1/2f(T ).

Here we made use of the identities

det(S(p)) = 2−4p2, det(T ) = 2−2|D(T )|f(T )2.

This completes the proof of Proposition 3(1).
(2) Next we assume that rank(T ) = 1. We recall that T is unimodular

equivalent to
(
ε(T ) 0

0 0

)
. If q 6= p, then we have

αq(S(p), T ) = αq(S(p), ε(T )) = (1− q−2)
εq∑
l=0

q−l

(e.g. cf. [13, Hilfssatz 16]). It is also essential here to deal with the case
q = p. We use Yang’s formula again. In his notation, αp(S(p), T ) is given by

αp(S(p), T ) = αp(S(p), ε(T ))

= 1 + (1− p−1)
εp∑
k=1

vkp
d(k) + f1(ε(T ))vεp+1p

d(εp+1)

(cf. [14, p. 317]). Since

vk = −1, d(k) = −k + 1 (for k ≥ 1), f1(ε(T )) = −p−1
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in our case, we obtain

αp(S(p), T ) = 1− (1− p−1)
εp∑
k=1

p−k+1 + p−1p−εp = p−εp + p−1−εp =
1 + p

p1+εp
.

Finally, we calculate α∞(S(p), T ). Again by (1.1) of §1.3,

α∞(S(p), T ) = α∞(S(p), ε(T )) = (2−4p2)−1/2ε(T )
π2

Γ (2)
= 22p−1ε(T )π2.

This completes the proof of Proposition 3.

Corollary 3.1.

(1) If rank(T ) = 2, then

b(T ) =
−288

(p− 1)2
(1− χD(T )(p))B1,χD(T )

f∗(T )
∏

q prime
q 6=p

Gq(T ),

Gq(T ) =
εq∑
l=0

( fq−l∑
m=0

q−m − χD(T )(q)q
−1

fq−l−1∑
m=0

q−m
)
, f∗(T ) := f(T )/pfp .

(2) If rank(T ) = 1, then

b(T ) =
24
p− 1

σ∗1(ε(T )).

(3) b(O2) = 1.

Proof. (1) We substitute the formulas for αq obtained in Proposition 3
into

b(T ) =
∏
q≤∞

αq(S(p), T ).

Consequently,

b(T ) =
∏

q prime
q 6=p

αq(S(p), T )αp(S(p), T )α∞(S(p), T )

=
L(1;χD(T ))

ζ(2)2
1− χD(T )(p)p−1

(1− p−2)2
∏
q 6=p

Gq(T )

×
1− χD(T )(p)

1− χD(T )(p)p−1

(p+ 1)2

pfp+2
23π3p−2|D(T )|1/2f(T )

=
−288

(p− 1)2
(1− χD(T )(p))B1,χD(T )

(p−fpf(T ))
∏
q 6=p

Gq(T ).

Here we made use of the formulas

L(1;χD(T )) = −π|D(T )|1/2B1,χD(T )
, ζ(2) = π2/6.
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(2) From Proposition 3(2), we obtain

b(T ) =
∏

q prime
q 6=p

αq(S(p), T )αp(S(p), T )α∞(S(p), T )

=
1
ζ(2)

1
1− p−2

∏
q 6=p

( εq∑
l=0

q−l
)1 + p

p1+εp
22p−1ε(T )π2

=
24
p− 1

(p−εpε(T ))
∏
q 6=p

( εq∑
l=0

q−l
)

=
24
p− 1

σ∗1(ε(T )).

(3) The identity b(O2) = 1 is an easy consequence of the definition of
the genus theta series.

3.3. Coincidence between ã(T ) and b(T ). Comparing Proposition 2 and
Corollary 3.1, we see that ã(T ) = b(T ) for rank(T ) ≤ 1. It remains to prove
this in the case where rank(T ) = 2. The proof for this case is reduced to
showing the following lemma.

Lemma 3.2. Recall that

F̃ (T ) =
∑

0<d|ε(T )
(d,p)=1

d
∑

0<f | f(T )
d

(f,p)=1

µ(f)χD(T )(f)σ∗1

(
f(T )
fd

)
,

Gq(T ) =
εq∑
l=0

( fq−l∑
m=0

q−m − χD(T )(q)q
−1

fq−l−1∑
m=0

q−m
)

(cf. Proposition 2(1) and Corollary 3.1(1)). With these definitions,

(3.2) F̃ (T ) = f∗(T )
∏
q 6=p

Gq(T ).

Proof. We remark that F̃ (T ) has a finite product expression of the form

F̃ (T ) =
∏
q 6=p

∑
0<d|qεq

d
∑

0<f |qfq−dq

µ(f)χD(T )(f)σ1

(
qfq

fd

)
,

where d =
∏
qdq . Therefore the proof of (3.2) is reduced to showing that∑

0<d|qεq

d
∑

0<f |qfq−dq

µ(f)χD(T )(f)σ1

(
qfq

fd

)

= qfq

εq∑
l=0

( fq−l∑
m=0

q−m − χD(T )(q)q
−1

fq−l−1∑
m=0

q−m
)
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for each prime q 6= p. To see this, we show the equality of terms correspond-
ing to d = qdq (on the left hand side) and l = dq (on the right hand side)
for each 0 ≤ dq ≤ εq:

(3.3) qdq
∑

0<f |qfq−dq

µ(f)χD(T )(f)σ1

(
qfq−dq

f

)

= qfq

( fq−dq∑
m=0

q−m − χD(T )(q)q
−1

fq−dq−1∑
m=0

q−m
)
.

Since µ(q2) = µ(q3) = · · · = 0, the left hand side of (3.3) is equal to

qdqµ(1)χD(T )(1)σ1(qfq−dq) + qdqµ(q)χD(T )(q)σ1(qfq−dq−1)

= qdq
qfq−dq+1 − 1

q − 1
− χD(T )(q)q

dq
qfq−dq − 1
q − 1

=
qfq+1 − qdq

q − 1
− χD(T )(q)

qfq − qdq

q − 1
.

On the other hand, the right hand side of (3.3) becomes

qfq
1− q−(fq−dq+1)

1− q−1
− χD(T )(q)q

fq−1 1− q−(fq−dq)

1− q−1

=
qfq+1 − qdq

q − 1
− χD(T )(q)

qfq − qdq

q − 1
.

This proves (3.3) and thus Lemma 3.2 is now proved.

We have now completed the proof of Theorem 1.

4. Remarks

4.1. Modular forms of weight 2. In general, we denote by Mk(Γ ′)R the
subset of Mk(Γ ′) consisting of modular forms whose Fourier coefficients
belong to a subring R ⊂ C.

In [12], Serre proved the following result:

Theorem 2 (Serre). Let p ≥ 3 be a prime number. For any f ∈
M2(Γ (1)

0 (p))Z(p)
, there exists a modular form g ∈Mp+1(Γ (1))Z(p)

satisfying

f ≡ g (mod p).

It is believed that this is true for any degree.

Conjecture. Assume that p is a sufficiently large prime relative to
the degree. For any F ∈ M2(Γ (n)

0 (p))Z(p)
, there exists a modular form G ∈

Mp+1(Γ (n))Z(p)
satisfying

F ≡ G (mod p).
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Our p-adic Siegel–Eisenstein series has the following property.

Proposition 4. Let p ≥ 3 be a prime number. The constructed p-adic
Siegel–Eisenstein series F2(p) := limm→∞E

(2)
km
∈ M2(Γ (2)

0 (p)) satisfies the
congruence

F2(p) ≡ E(2)
p+1 (mod p)

where E(2)
p+1 ∈Mp+1(Γ (2)) is the ordinary Siegel–Eisenstein series of weight

p+ 1 for Γ (2).

Proof. For p = 3, the congruence may be checked by direct calculation.
In fact, we can show that

lim
m→∞

E
(2)
km
≡ 1 (mod 3) and E

(2)
p+1 = E

(2)
4 ≡ 1 (mod 3).

Therefore, we may assume that p is prime and strictly greater than 3. By
an argument similar to that in the proof of Proposition 2, we can show that

lim
m→∞

E
(2)
km
≡ E(2)

kl
(mod pl).

As a special case, we obtain

F2(p) = lim
m→∞

E
(2)
km
≡ E(2)

k1
= E

(2)
p+1 (mod p).

4.2. Comparison with the case of Nebentypus. In the case of Nebenty-
pus [9], we considered the p-adic Siegel–Eisenstein series

F1(p) := lim
m→∞

E
(n)

1+ p−1
2
·pm−1

.

One of the main results of [9] is as follows. Let p be a prime with p ≡ 3
(mod 4), p > 3. Then F1(p) coincides with the genus theta series of level p.
In particular, F1(p) becomes a modular form of M1(Γ (n)

0 (p), χp) (the space
of modular forms of weight 1 and Nebentypus χp). As a consequence, the
square (F1(p))2 ∈M2(Γ (n)

0 (p)) satisfies

(F1(p))2 ≡ (E(n)
(p+1)/2)2 (mod p).

4.3. Generalization. In this note, we proved

lim
m→∞

E
(2)
km

= genusΘ(2)(S(p)).

We conjecture that this will also be true for any degree, i.e.

lim
m→∞

E
(n)
km

= genusΘ(n)(S(p)).

We have numerical examples for which the above identity holds.
Our result concerns the weight 2 Siegel modular forms. For the case

of general weights, there is an interesting result due to Y. Mizuno [8]. He
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considers the p-adic Siegel–Eisenstein series

F
(2)
k (p) := lim

m→∞
Ek+(p−1)pm−1 (k even ≥ 2)

and shows modularity, i.e., that F (2)
k (p) ∈Mk(Γ

(2)
0 (p)).

Let Λ = Zp[[Γ ]] be the Iwasawa algebra associated to Γ = Z×p . Then
there is a Λ-adic Eisenstein series E of level 1 with the following properties:

(1) The coefficients of the q-expansion belong to the total fraction ring
of Λ with the constant term described by the Kubota–Leopoldt p-
adic zeta function.

(2) The specialization at sufficiently large k ∈ Z\pZ is the (p-stabilized)
classical Eisenstein series of level 1 and weight k.

(See, for instance, Panchishkin [11], Hida [3].)
Our main theorem shows that the specialization of E at k = 2 is classical.

The case of k = 2 is excluded in (2), thus the theorem provides an example
beyond the general theory. The classicality at k = 1, 2 of Λ-adic Siegel
modular forms of degree 2 would be false in general.

Acknowledgements. We thank the referee for enlightening remarks
concerning the Λ-adic modular forms.
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of One Variable III, Lecture Notes in Math. 350, Springer, 1973, 191–268.



126 T. Kikuta and S. Nagaoka
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