On a correspondence between *p*-adic Siegel–Eisenstein series and genus theta series

by

TOSHIYUKI KIKUTA and SHOYU NAGAOKA (Osaka)

Introduction. In a series of papers [9], [5], and [10], the second author attempted to generalize the notion of Serre's *p*-adic Eisenstein series and obtained several interesting formulas. For example, in the Siegel modular case [9], a correspondence between *p*-adic Siegel–Eisenstein series and theta series was reported. More precisely, certain *p*-adic Siegel–Eisenstein series were shown to coincide with the genus theta series of level *p*. This indicates a remarkable relationship between *p*-adic Siegel modular forms and Siegel modular forms on the congruence subgroup $\Gamma_0(p)$ of the so-called Nebentypus (in the sense of Hecke).

In this paper, we show that a similar phenomenon occurs for *Haupttypus*. Namely, we construct a *p*-adic Siegel–Eisenstein series which coincides with the genus theta series of discriminant p^2 and level *p*. As an application, we show that the constructed weight 2 form is congruent to a Siegel modular form of weight p + 1 on the full Siegel modular group.

1. Definitions and notation

1.1. Siegel modular forms. Let \mathbb{H}_n be the Siegel upper-half space of degree n; then $\Gamma^{(n)} := \operatorname{Sp}_n(\mathbb{R}) \cap M_{2n}(\mathbb{Z})$ acts discontinuously on \mathbb{H}_n . For a congruence subgroup Γ' of $\Gamma^{(n)}$, we denote by $M_k(\Gamma')$ the corresponding space of Siegel modular forms of weight k. Later we mainly deal with the case $\Gamma' = \Gamma^{(n)}$ or $\Gamma_0^{(n)}(N)$ where

$$\Gamma_0^{(n)}(N) := \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma^{(n)} \middle| C \equiv O_n \pmod{N} \right\}.$$

In both cases, $F \in M_k(\Gamma')$ has a Fourier expansion of the form

²⁰⁰⁰ Mathematics Subject Classification: Primary 11F33; Secondary 11F55.

Key words and phrases: p-adic modular forms, Eisenstein series.

T. Kikuta and S. Nagaoka

$$F(Z) = \sum_{0 \le T \in \Lambda_n} a_F(T) \exp[2\pi \sqrt{-1} \operatorname{tr}(TZ)],$$

where

$$\Lambda_n = \operatorname{Sym}_n^*(\mathbb{Z}) := \{ T = (t_{ij}) \in \operatorname{Sym}_n(\mathbb{Q}) \mid t_{ii}, 2t_{ij} \in \mathbb{Z} \}$$

(the lattice in $\operatorname{Sym}_n(\mathbb{R})$ of half-integral, symmetric matrices).

Taking $q_{ij} := \exp(2\pi\sqrt{-1}z_{ij})$ with $Z = (z_{ij}) \in \mathbb{H}_n$, we write

$$q^{T} := \exp[2\pi\sqrt{-1}\operatorname{tr}(TZ)] = \prod_{1 \le i < j \le n} q_{ij}^{2t_{ij}} \prod_{i=1}^{n} q_{i}^{t_{i}},$$

where $q_i = q_{ii}$, $t_i = t_{ii}$ (i = 1, ..., n). Using this notation, we obtain the generalized q-expansion:

$$F = \sum_{0 \le T \in \Lambda_n} a_F(T) q^T = \sum_{t_i} \left(\sum_{t_{ij}} a_F(T) \prod_{i < j} q_{ij}^{2t_{ij}} \right) \prod_{i=1}^n q_i^{t_i}$$

 $\in \mathbb{C}[q_{ij}^{-1}, q_{ij}][\![q_1, \dots, q_n]\!].$

1.2. Siegel–Eisenstein series. Define

$$\Gamma_{\infty}^{(n)} := \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma^{(n)} \, \middle| \, C = O_n \right\}.$$

For an even integer k > n + 1, define a series by

$$E_k^{(n)}(Z) := \sum_{\substack{\binom{*}{2}}{CD} \in \Gamma_{\infty}^{(n)} \setminus \Gamma^{(n)}} \det(CZ + D)^{-k}, \quad Z \in \mathbb{H}_n.$$

This series is an element of $M_k(\Gamma^{(n)})$ called the *Siegel-Eisenstein series* of weight k for $\Gamma^{(n)}$. We write the Fourier expansion as

$$E_k^{(n)} = \sum_{0 \le T \in \Lambda_n} a_k^{(n)}(T) q^T.$$

It is known that all $a_k^{(n)}(T)$ are rational. The explicit formula for $a_k^{(n)}(T)$ has been studied by several people, for example, in [6], [7], [1] for n = 2, and in [4] in general. For later purposes, we introduce the explicit formula for $a_k^{(2)}(T)$ according to [1]. For simplicity, we write the Fourier expansion of $E_k^{(2)}$ as

$$E_k^{(2)} = \sum_{0 \le T \in \Lambda_2} a_k(T) q^T.$$

To describe the Fourier coefficient $a_k(T)$ explicitly, we introduce some notation.

For $0 < T \in \Lambda_2$, we write

$$-\det(2T) = D(T)f(T)^2$$

where $f(T) \in \mathbb{N}$ and D(T) is the discriminant of the imaginary quadratic field $\mathbb{Q}(\sqrt{-\det(2T)})$. Moreover, we define the character $\chi_{D(T)}$ by

$$\chi_{D(T)} := \left(\frac{D(T)}{*}\right).$$

 Set

$$\varepsilon(T) := \max\{l \in \mathbb{N} \mid l^{-1}T \in \Lambda_2\}.$$

It is easy to see that $\varepsilon(T) \mid f(T)$.

PROPOSITION 1 (Eichler–Zagier [1]). Let T be a positive-semidefinite element in Λ_2 .

(1) (1)
$$If \operatorname{rank}(T) = 2$$
, then
 $a_k(T) = \frac{-4kB_{k-1,\chi_{D(T)}}}{B_k B_{2k-2}} F_k(T),$
 $F_k(T) = \sum_{0 < d | \varepsilon(T)} d^{k-1} \sum_{0 < f | \frac{f(T)}{d}} \mu(f) \chi_{D(T)}(f) f^{k-2} \sigma_{2k-3} \left(\frac{f(T)}{fd}\right),$

where μ is the Möbius function, $\sigma_m(n) = \sum_{0 < d|n} d^m$, and B_m (resp. $B_{m,\chi}$) is the mth Bernoulli (resp. generalized Bernoulli) number. (2) If rank(T) = 1, then

$$a_k(T) = \frac{-2k}{B_k} \sigma_{k-1}(\varepsilon(T)).$$

(3) $a_k(O_2) = 1.$

1.3. Genus theta series. Fix $0 < S \in A_m$ and define

$$\theta^{(n)}(S;Z) = \sum_{X \in M_{m,n}(\mathbb{Z})} \exp[2\pi\sqrt{-1}\operatorname{tr}(S[X]Z)], \quad Z \in \mathbb{H}_n,$$

where $S[X] := {}^{t}XSX$.

Let $\{S_1, \ldots, S_h\}$ be a set of representatives of unimodular equivalence classes of the genus containing S. The genus theta series associated with S is defined by

genus
$$\Theta^{(n)}(S)(Z) := \left(\sum_{i=1}^{h} \frac{\theta^{(n)}(S_i;Z)}{E(S_i)}\right) / \left(\sum_{i=1}^{h} \frac{1}{E(S_i)}\right),$$

where $E(S_i)$ is the order of the unit group of S_i .

We write the Fourier expansion of the genus theta series as

genus
$$\Theta^{(n)}(S) = \sum_{0 \le T \in \Lambda_n} b^{(n)}(T) q^T$$
.

The Siegel main formula for quadratic forms asserts that the Fourier coefficient $b^{(n)}(T)$ can be expressed as an infinite product of the local densities:

$$b^{(n)}(T) = \prod_{q \le \infty} \alpha_q(S, T).$$

Here the local density $\alpha_q(S,T)$ (q: finite prime) is defined as

$$\alpha_q(S,T) = \lim_{a \to \infty} q^{a(n(n+1)/2 - mn)} A_{q^a}(S,T),$$

$$A_{q^a}(S,T) = \sharp \{ X \in M_{m,n}(\mathbb{Z}/q^a\mathbb{Z}) \mid S[X] \equiv T \pmod{q^a \Lambda_n} \}.$$

The definition of the infinite part $\alpha_{\infty}(S,T)$ can be found in [13] and the explicit form is given as follows:

(1.1)
$$\alpha_{\infty}(S,T) = \det(S)^{-n/2} \det(T)^{(m-n-1)/2} \gamma_{mn},$$
$$\gamma_{mn} = \frac{\pi^{mn/2}}{2^{n(n-1)/2} \Gamma_n(m/2)},$$
$$\Gamma_n(s) = \pi^{n(n-1)/4} \Gamma(s) \Gamma(s - (1/2)) \cdots \Gamma(s - ((n-1)/2)).$$

It should be noted that γ_{mn} above differs from Siegel's original formula ([13, §10, Beispiele]) by a factor of 2, because we use the lattice $\operatorname{Sym}_n^*(\mathbb{Z})$ instead of $\operatorname{Sym}_n(\mathbb{Z})$.

1.4. *p*-adic Siegel-Eisenstein series. Let $\{k_m\}_{m=1}^{\infty}$ be an increasing sequence of even positive integers which is *p*-adically convergent. If the corresponding sequence of Siegel-Eisenstein series

$$\{E_{k_m}^{(n)}\} \subset \mathbb{Q}[q_{ij}^{-1}, q_{ij}][\![q_1, \dots, q_n]\!]$$

converges *p*-adically to an element of $\mathbb{Q}_p[q_{ij}^{-1}, q_{ij}][\![q_1, \ldots, q_n]\!]$, then we call the limit $\lim_{m\to\infty} E_{k_m}^{(n)}$ a *p*-adic Siegel-Eisenstein series.

2. Main result. Let p be an odd prime number. Then there exists a positive definite, integral, quaternary quadratic form $S^{(p)}$ of discriminant p^2 and level p:

$$0 < S^{(p)} \in \Lambda_4, \quad \det(2S^{(p)}) = p^2, \quad p(2S^{(p)})^{-1} \in 2\operatorname{Sym}_4^*(\mathbb{Z}).$$

THEOREM 1. Let p be an odd prime and $S^{(p)}$ be as above. If we define the sequence $\{k_m\}$ by

$$k_m = k_m(p) := 2 + (p-1)p^{m-1},$$

then the corresponding sequence of Siegel-Eisenstein series $\{E_{k_m}^{(2)}\}$ defines a p-adic Siegel-Eisenstein series. Moreover,

(2.1)
$$\lim_{m \to \infty} E_{k_m}^{(2)} = \operatorname{genus} \Theta^{(2)}(S^{(p)}).$$

In particular, the p-adic Siegel-Eisenstein series $\lim_{m\to\infty} E_{k_m}^{(2)}$ becomes a "true" Siegel modular form of weight 2 on $\Gamma_0^{(2)}(p)$ of Haupttypus.

3. Proof of the main theorem. We shall prove identity (2.1) of Theorem 1 by showing that corresponding Fourier coefficients on each side are equal. Let

$$E_{k_m}^{(2)} = \sum_{0 \le T \in \Lambda_2} a_{k_m}(T) q^T$$

be the Fourier expansion of the Siegel–Eisenstein series $E_{k_m}^{(2)}$ (cf. §1.2). We shall show that the sequence $\{a_{k_m}(T)\}_{m=1}^{\infty} \subset \mathbb{Q}$ has a limit in \mathbb{Q} :

$$\lim_{m \to \infty} a_{k_m}(T) =: \widetilde{a}(T) \in \mathbb{Q}.$$

As before (cf. §1.3), we write the Fourier expansion of the genus theta series genus $\Theta(S^{(p)})$ as

genus
$$\Theta(S^{(p)}) = \operatorname{genus} \Theta^{(2)}(S^{(p)}) = \sum_{0 \le T \in \Lambda_2} b(T)q^T.$$

The proof of our theorem is reduced to showing that the identity (3.1) $\widetilde{a}(T) = b(T)$

holds for every $T \in \Lambda_2$.

3.1. An explicit formula for $\widetilde{a}(T)$

PROPOSITION 2. Let T be a positive-semidefinite element in Λ_2 .

(1) If $\operatorname{rank}(T) = 2$, then

$$\widetilde{a}(T) = \frac{-288}{(1-p)^2} (1-\chi_{D(T)}(p)) B_{1,\chi_{D(T)}} \widetilde{F}(T),$$

$$\widetilde{F}(T) = \sum_{\substack{0 < d | \varepsilon(T) \\ (d,p)=1}} d \sum_{\substack{0 < f | \frac{f(T)}{d} \\ (f,p)=1}} \mu(f) \chi_{D(T)}(f) \sigma_1^* \left(\frac{f(T)}{fd}\right),$$

where $\varepsilon(T)$ and f(T) are positive integers defined in §1.2 and

$$\sigma_1^*(m) = \sum_{\substack{0 < d \mid m \\ (d,p) = 1}} d.$$

(2) If $\operatorname{rank}(T) = 1$, then

$$\tilde{a}(T) = \frac{24}{p-1} \,\sigma_1^*(\varepsilon(T)) = \frac{24}{p-1} \sum_{\substack{0 < d | \varepsilon(T) \\ (d,p) = 1}} d.$$

(3) $\tilde{a}(O_2) = 1.$

Proof. We need to show (1) and (2). First we assume that rank(T) = 2. By Proposition 1(1), it follows that

$$a_{k_m}(T) = \frac{-4k_m B_{k_m-1,\chi_{D(T)}}}{B_{k_m} B_{2k_m-2}} F_{k_m}(T),$$

$$F_{k_m}(T) = \sum_{0 < d|\varepsilon(T)} d^{k_m-1} \sum_{0 < f|\frac{f(T)}{d}} \mu(f)\chi_{D(T)}(f) f^{k_m-2} \sigma_{2k_m-3}\left(\frac{f(T)}{fd}\right).$$

By Kummer's congruence for the Bernoulli numbers, we obtain

$$(1 - p^{k_m - 1}) \frac{B_{k_m}}{k_m} \equiv (1 - p) \frac{B_2}{2} \pmod{p^m},$$
$$(1 - p^{2k_m - 3}) \frac{B_{2k_m - 2}}{2k_m - 2} \equiv (1 - p) \frac{B_2}{2} \pmod{p^m}.$$

We consider the limit of the generalized Bernoulli number. By Corollary 5 of [2], we obtain

$$\frac{(1-\chi_{D(T)}(p)p^{k_m-2})B_{k_m-1,\chi_{D(T)}}-B_{0,\chi_{D(T)}\omega}}{k_m-1} \equiv (1-\chi_{D(T)}(p))B_{1,\chi_{D(T)}}-B_{0,\chi_{D(T)}\omega} \pmod{p^m},$$

where ω is the Teichmüller character. Since

$$B_{0,\chi} = \begin{cases} 0 & \text{if } \chi \neq \chi_0, \\ \varphi(n)/n & \text{if } \chi = \chi_0 \end{cases}$$

for a character χ modulo n in general, we have

$$(1 - \chi_{D(T)}(p)p^{k_m - 2}) \frac{B_{k_m - 1, \chi_{D(T)}}}{k_m - 1} \equiv (1 - \chi_{D(T)}(p))B_{1, \chi_{D(T)}} \pmod{p^{m - \delta}},$$

where

$$\delta = \delta(m, p, \chi_{D(T)}) := \begin{cases} 3 & \text{if } p = 3, \, \chi_{D(T)} = \chi_{-3}, \, \text{and } m = 1, \\ 2 & \text{if } p = 3, \, \chi_{D(T)} = \chi_{-3}, \, \text{and } m \ge 2, \\ 0 & \text{otherwise.} \end{cases}$$

In any case, we have

$$\lim_{m \to \infty} B_{k_m - 1, \chi_{D(T)}} = (1 - \chi_{D(T)}(p)) B_{1, \chi_{D(T)}}.$$

Combining these congruences, we get

$$\lim_{m \to \infty} \frac{-4k_m B_{k_m - 1, \chi_{D(T)}}}{B_{k_m} B_{2k_m - 2}} = \frac{-8}{\{(1 - p)^2 B_2\}^2} \left(1 - \chi_{D(T)}(p)\right) B_{1, \chi_{D(T)}}$$
$$= \frac{-288}{(1 - p)^2} \left(1 - \chi_{D(T)}(p)\right) B_{1, \chi_{D(T)}}.$$

Using Euler's congruence, we obtain

$$\lim_{m \to \infty} F_{k_m}(T) = \lim_{m \to \infty} \sum_{0 < d | \varepsilon(T)} d^{k_m - 1} \sum_{0 < f | \frac{f(T)}{d}} \mu(f) \chi_{D(T)}(f) f^{k_m - 2} \sigma_{2k_m - 3} \left(\frac{f(T)}{fd}\right)$$
$$= \sum_{\substack{0 < d | \varepsilon(T) \\ (d, p) = 1}} d \sum_{\substack{0 < f | \frac{f(T)}{d} \\ (f, p) = 1}} \mu(f) \chi_{D(T)}(f) \sigma_1^* \left(\frac{f(T)}{fd}\right).$$

This completes the proof of (1).

(2) If rank(T) = 1, then T is unimodular equivalent to the matrix $\binom{\varepsilon(T) \ 0}{0 \ 0}$. Therefore

$$a_{k_m}(T) = \frac{-2k_m}{B_{k_m}} \,\sigma_{k_m-1}(\varepsilon(T)).$$

It follows that

$$\widetilde{a}(T) = \lim_{m \to \infty} a_{k_m}(T) = \lim_{m \to \infty} \left(\frac{-2k_m}{B_{k_m}}\right) \lim_{m \to \infty} \sigma_{k_m - 1}(\varepsilon(T))$$
$$= \frac{-4}{(1 - p)B_2} \sigma_1^*(\varepsilon(T)) = \frac{24}{p - 1} \sigma_1^*(\varepsilon(T)).$$

This completes the proof of Proposition 2. \blacksquare

3.2. An explicit formula for b(T). As stated in §1.3, the coefficient b(T) can be expressed as the product of local densities. In our case,

$$b(T) = \prod_{q \le \infty} \alpha_q(S^{(p)}, T) = \prod_{q \text{ prime}} \alpha_q(S^{(p)}, T) \cdot \alpha_\infty(S^{(p)}, T).$$

We calculate $\alpha_q(S^{(p)}, T)$ by using formulas of Kaufhold [6] and Yang [14]. In particular, Yang's formula [14, Theorem 7.1] plays an essential role in our calculation.

PROPOSITION 3. Let T be a positive-semidefinite element in Λ_2 .

$$(1) If \operatorname{rank}(T) = 2, then \\ \alpha_q(S^{(p)}, T) = \begin{cases} \frac{(1-q^{-2})^2}{1-\chi_{D(T)}(q)q^{-1}} \sum_{l=0}^{\varepsilon_q} \left(\sum_{m=0}^{f_q-l} q^{-m} - \chi_{D(T)}(q)q^{-1} \sum_{m=0}^{f_q-l-1} q^{-m}\right) \\ \frac{1-\chi_{D(T)}(p)}{1-\chi_{D(T)}(p)p^{-1}} \frac{(p+1)^2}{p^{f_p+2}} & \text{if } q \neq p, \\ 2^3\pi^3p^{-2}|D(T)|^{1/2}f(T) & \text{if } q = \infty, \end{cases}$$
where $\varepsilon_q := \operatorname{ord}_q(\varepsilon(T)) and f_q := \operatorname{ord}_q(f(T)).$

(2) If $\operatorname{rank}(T) = 1$, then

$$\alpha_q(S^{(p)}, T) = \begin{cases} (1 - q^{-2}) \sum_{l=0}^{\varepsilon_q} q^{-l} & \text{if } q \neq p, \\ \\ \frac{1 + p}{p^{1 + \varepsilon_p}} & \text{if } q = p, \\ 2^2 p^{-1} \varepsilon(T) \pi^2 & \text{if } q = \infty. \end{cases}$$

Proof. (1) Assume that rank(T) = 2. If $q \neq p$, then we can calculate $\alpha_q(S^{(p)}, T)$ by using Kaufhold's formula for the Siegel series $b_q(T) = b_q(s, T)$ (cf. [6, Hilfssatz 10] for the case $|T| \neq 0$):

$$\alpha_q(S^{(p)}, T) = b_q(s, T)|_{s=2}.$$

Hence we have

$$\alpha_q(S^{(p)},T) = \frac{(1-q^{-2})^2}{1-\chi_{D(T)}(q)q^{-1}} \sum_{l=0}^{\varepsilon_q} \Big(\sum_{m=0}^{f_q-l} q^{-m} - \chi_{D(T)}(q)q^{-1} \sum_{m=0}^{f_q-l-1} q^{-m}\Big).$$

It is essential in the proof to treat the case q = p. We can calculate $\alpha_p(S^{(p)}, T)$ by using Yang's formula ([14, Theorem 7.1]). We should remark that there are minor misprints and typographical errors in his original published formula, which he subsequently revised. We make use of the revised version.

Yang's result asserts that $\alpha_p(S^{(p)}, T)$ is essentially expressed by twelve values: $I_{1,i}$ $(1 \le i \le 4)$ and $I_{2,i}$ $(1 \le i \le 8)$, and

$$\alpha_p(S^{(p)}, T) = 1 + \sum_{i=1}^4 I_{1,i} + (1 - p^{-1}) \sum_{i=1}^8 I_{2,i} + p^{-1} I_{2,6}$$

([14, Theorem 7.1]). We assume that T is unimodular equivalent to

$$\begin{pmatrix} \alpha_1 p^a & 0\\ 0 & \alpha_2 p^b \end{pmatrix} \quad (a \le b, \, \alpha_1, \alpha_2 \in \mathbb{Z}_p^*).$$

The proof for the case q = p is reduced to the following:

LEMMA 3.1.
(a) If
$$a \not\equiv b \pmod{2}$$
, then

$$\alpha_p(S^{(p)},T) = (1+p)^2 p^{-(a+b+3)/2} = \frac{(1+p)^2}{p^{2+f_p}}.$$

(b) If $a \equiv b \pmod{2}$, then

$$\alpha_p(S^{(p)},T) = (1 - \chi_{D(T)}(p))(1+p)p^{-(a+b+2)/2} = (1 - \chi_{D(T)}(p))\frac{1+p}{p^{1+f_p}}$$

Proof. According to Yang's result, we can calculate $\alpha_p(S^{(p)}, T)$ by separately considering the following three cases:

(i)
$$a = b$$
,
(ii) $a < b$ and $a \not\equiv b \pmod{2}$,
(iii) $a < b$ and $a \equiv b \pmod{2}$.

In fact, the calculations are similar for each case, so we shall prove the formula only for case (iii). In this case, the values $I_{i,j}$ are as follows:

$$\begin{split} I_{1,1} &= -(1-p^{-2})ap, & I_{1,2} = p^{-1}, \\ I_{1,3} &= -(1-p^{-1})\sum_{k=a+2}^{b}g_a(k)p^{(a-k+2)/2}, & I_{1,4} = -\left(\frac{-\alpha_1\alpha_2}{p}\right)p^{(a-b)/2}, \\ I_{2,1} &= (1-p^{-2})\sum_{k=1}^{a-1}k\,p^{2-a+k}, & I_{2,2} = -\sum_{k=1}^{a}p^{-k}, \\ I_{2,3} &= (1-p^{-1})\sum_{k_2=1}^{a}\sum_{k_1=a+2}^{b}g_a(k_1)p^{(a-k_1-2k_2+4)/2}, \\ I_{2,4} &= \left(\frac{-\alpha_1\alpha_2}{p}\right)\sum_{k=1}^{a}p^{(a-b-2k+2)/2}, \\ I_{2,5} &= -\sum_{k=a+2}^{b}g_a(k)p^{-(a+k)/2}, & I_{2,6} = -\left(\frac{-\alpha_1\alpha_2}{p}\right)p^{-(a+b+2)/2}, \\ I_{2,7} &= 0, & I_{2,8} = \sum_{k=1}^{a}p^{2-k}, \end{split}$$

where $g_a(k)$ is 1 if k - a is even, and 0 if k - a is odd. We can simplify the above formulas:

$$\begin{split} I_{1,1} &= -ap + ap^{-1}, \qquad I_{1,2} = p^{-1}, \\ I_{1,3} &= -1 + p^{(a-b)/2}, \qquad I_{1,4} = -\left(\frac{-\alpha_1\alpha_2}{p}\right) p^{(a-b)/2}, \\ (1-p^{-1})I_{2,1} &= -1 + ap - p + p^{1-a} - ap^{-1} + p^{-a}, \\ (1-p^{-1})I_{2,2} &= -p^{-1} + p^{-1-a}, \\ (1-p^{-1})I_{2,3} &= 1 - p^{(a-b)/2} - p^{-a} + p^{-(a+b)/2}, \\ (1-p^{-1})I_{2,4} &= \left(\frac{-\alpha_1\alpha_2}{p}\right) p^{(a-b)/2} - \left(\frac{-\alpha_1\alpha_2}{p}\right) p^{-(a+b)/2}, \\ (1-p^{-1})I_{2,5} &= -p^{-1-a} + p^{-(a+b+2)/2}, \\ (1-p^{-1})I_{2,6} &= p^{-1-a} + p^{-(a+b+2)/2}, \\ (1-p^{-1})I_{2,7} &= 0, \qquad (1-p^{-1})I_{2,8} = p - p^{1-a}. \end{split}$$

From these formulas, we have

$$\begin{aligned} \alpha_p(S^{(p)}, T) &= 1 + \sum_{i=1}^4 I_{1,i} + (1 - p^{-1}) \sum_{i=1}^8 I_{2,i} + p^{-1} I_{2,6} \\ &= p^{-(a+b)/2} + p^{-(a+b+2)/2} - \left(\frac{-\alpha_1 \alpha_2}{p}\right) p^{-(a+b)/2} \\ &- \left(\frac{-\alpha_1 \alpha_2}{p}\right) p^{-(a+b+2)/2} \\ &= \left(1 - \left(\frac{-\alpha_1 \alpha_2}{p}\right)\right) (p^{-(a+b)/2} + p^{-(a+b+2)/2}) \\ &= \left(1 - \left(\frac{-\alpha_1 \alpha_2}{p}\right)\right) \frac{1+p}{p^{1+(a+b)/2}} \\ &= (1 - \chi_{D(T)}(p)) \frac{1+p}{p^{1+f_p}}, \end{aligned}$$

since $\left(\frac{-\alpha_1\alpha_2}{p}\right) = \chi_{D(T)}(p)$ and $f_p = (a+b)/2$. This proves the lemma for case (iii).

We continue the proof of Proposition 3(1). We calculate $\alpha_{\infty}(S^{(p)}, T)$. By the general formula for $\alpha_{\infty}(S, T)$ (cf. (1.1) of §1.3), we have

$$\alpha_{\infty}(S^{(p)},T) = \det(S^{(p)})^{-1} \det(T)^{1/2} \frac{\pi^4}{2\Gamma(2)} = 2^3 \pi^3 p^{-2} |D(T)|^{1/2} f(T).$$

Here we made use of the identities

$$\det(S^{(p)}) = 2^{-4}p^2, \quad \det(T) = 2^{-2}|D(T)|f(T)^2.$$

This completes the proof of Proposition 3(1).

(2) Next we assume that $\operatorname{rank}(T) = 1$. We recall that T is unimodular equivalent to $\binom{\varepsilon(T) \ 0}{0 \ 0}$. If $q \neq p$, then we have

$$\alpha_q(S^{(p)}, T) = \alpha_q(S^{(p)}, \varepsilon(T)) = (1 - q^{-2}) \sum_{l=0}^{\varepsilon_q} q^{-l}$$

(e.g. cf. [13, Hilfssatz 16]). It is also essential here to deal with the case q = p. We use Yang's formula again. In his notation, $\alpha_p(S^{(p)}, T)$ is given by

$$\alpha_p(S^{(p)}, T) = \alpha_p(S^{(p)}, \varepsilon(T))$$

= 1 + (1 - p^{-1}) $\sum_{k=1}^{\varepsilon_p} v_k p^{d(k)} + f_1(\varepsilon(T)) v_{\varepsilon_p+1} p^{d(\varepsilon_p+1)}$

(cf. [14, p. 317]). Since

$$v_k = -1, \quad d(k) = -k+1 \quad (\text{for } k \ge 1), \quad f_1(\varepsilon(T)) = -p^{-1}$$

in our case, we obtain

$$\alpha_p(S^{(p)},T) = 1 - (1-p^{-1})\sum_{k=1}^{\varepsilon_p} p^{-k+1} + p^{-1}p^{-\varepsilon_p} = p^{-\varepsilon_p} + p^{-1-\varepsilon_p} = \frac{1+p}{p^{1+\varepsilon_p}}.$$

Finally, we calculate $\alpha_{\infty}(S^{(p)}, T)$. Again by (1.1) of §1.3,

$$\alpha_{\infty}(S^{(p)},T) = \alpha_{\infty}(S^{(p)},\varepsilon(T)) = (2^{-4}p^2)^{-1/2}\varepsilon(T)\frac{\pi^2}{\Gamma(2)} = 2^2p^{-1}\varepsilon(T)\pi^2.$$

This completes the proof of Proposition 3. \blacksquare

Corollary 3.1.

(1) If rank(T) = 2, then

$$b(T) = \frac{-288}{(p-1)^2} (1 - \chi_{D(T)}(p)) B_{1,\chi_{D(T)}} f_*(T) \prod_{\substack{q \text{ prime} \\ q \neq p}} G_q(T),$$

$$G_q(T) = \sum_{l=0}^{\varepsilon_q} \Big(\sum_{m=0}^{f_q-l} q^{-m} - \chi_{D(T)}(q) q^{-1} \sum_{m=0}^{f_q-l-1} q^{-m} \Big), \quad f_*(T) := f(T)/p^{f_p}$$
(2) If rank(T) = 1, then

$$b(T) = \frac{24}{p-1} \sigma_1^*(\varepsilon(T)).$$

(3) $b(O_2) = 1$.

Proof. (1) We substitute the formulas for α_q obtained in Proposition 3 into

$$b(T) = \prod_{q \le \infty} \alpha_q(S^{(p)}, T).$$

Consequently,

$$b(T) = \prod_{\substack{q \text{ prime} \\ q \neq p}} \alpha_q(S^{(p)}, T) \alpha_p(S^{(p)}, T) \alpha_{\infty}(S^{(p)}, T)$$

$$= \frac{L(1; \chi_{D(T)})}{\zeta(2)^2} \frac{1 - \chi_{D(T)}(p)p^{-1}}{(1 - p^{-2})^2} \prod_{q \neq p} G_q(T)$$

$$\times \frac{1 - \chi_{D(T)}(p)}{1 - \chi_{D(T)}(p)p^{-1}} \frac{(p+1)^2}{p^{f_p+2}} 2^3 \pi^3 p^{-2} |D(T)|^{1/2} f(T)$$

$$= \frac{-288}{(p-1)^2} (1 - \chi_{D(T)}(p)) B_{1,\chi_{D(T)}}(p^{-f_p} f(T)) \prod_{q \neq p} G_q(T).$$

Here we made use of the formulas

$$L(1;\chi_{D(T)}) = -\pi |D(T)|^{1/2} B_{1,\chi_{D(T)}}, \quad \zeta(2) = \pi^2/6.$$

(2) From Proposition 3(2), we obtain

$$\begin{split} b(T) &= \prod_{\substack{q \text{ prime} \\ q \neq p}} \alpha_q(S^{(p)}, T) \alpha_p(S^{(p)}, T) \alpha_{\infty}(S^{(p)}, T) \\ &= \frac{1}{\zeta(2)} \frac{1}{1 - p^{-2}} \prod_{q \neq p} \Big(\sum_{l=0}^{\varepsilon_q} q^{-l} \Big) \frac{1 + p}{p^{1 + \varepsilon_p}} 2^2 p^{-1} \varepsilon(T) \pi^2 \\ &= \frac{24}{p - 1} (p^{-\varepsilon_p} \varepsilon(T)) \prod_{q \neq p} \Big(\sum_{l=0}^{\varepsilon_q} q^{-l} \Big) = \frac{24}{p - 1} \sigma_1^*(\varepsilon(T)). \end{split}$$

(3) The identity $b(O_2) = 1$ is an easy consequence of the definition of the genus theta series.

3.3. Coincidence between $\tilde{a}(T)$ and b(T). Comparing Proposition 2 and Corollary 3.1, we see that $\tilde{a}(T) = b(T)$ for rank $(T) \leq 1$. It remains to prove this in the case where rank(T) = 2. The proof for this case is reduced to showing the following lemma.

LEMMA 3.2. Recall that

$$\widetilde{F}(T) = \sum_{\substack{0 < d | \varepsilon(T) \\ (d,p)=1}} d \sum_{\substack{0 < f | \frac{f(T)}{d} \\ (f,p)=1}} \mu(f) \chi_{D(T)}(f) \sigma_1^* \left(\frac{f(T)}{fd}\right),$$
$$G_q(T) = \sum_{l=0}^{\varepsilon_q} \left(\sum_{m=0}^{f_q-l} q^{-m} - \chi_{D(T)}(q) q^{-1} \sum_{m=0}^{f_q-l-1} q^{-m}\right)$$

(cf. Proposition 2(1) and Corollary 3.1(1)). With these definitions,

(3.2)
$$\widetilde{F}(T) = f_*(T) \prod_{q \neq p} G_q(T)$$

Proof. We remark that $\widetilde{F}(T)$ has a finite product expression of the form

•

$$\widetilde{F}(T) = \prod_{q \neq p} \sum_{0 < d \mid q^{\varepsilon_q}} d \sum_{0 < f \mid q^{f_q - d_q}} \mu(f) \chi_{D(T)}(f) \sigma_1\left(\frac{q^{f_q}}{fd}\right),$$

where $d = \prod q^{d_q}$. Therefore the proof of (3.2) is reduced to showing that

$$\sum_{0 < d \mid q^{\varepsilon_q}} d \sum_{0 < f \mid q^{f_q - d_q}} \mu(f) \chi_{D(T)}(f) \sigma_1\left(\frac{q^{f_q}}{fd}\right)$$
$$= q^{f_q} \sum_{l=0}^{\varepsilon_q} \left(\sum_{m=0}^{f_q - l} q^{-m} - \chi_{D(T)}(q) q^{-1} \sum_{m=0}^{f_q - l - 1} q^{-m}\right)$$

for each prime $q \neq p$. To see this, we show the equality of terms corresponding to $d = q^{d_q}$ (on the left hand side) and $l = d_q$ (on the right hand side) for each $0 \leq d_q \leq \varepsilon_q$:

(3.3)
$$q^{d_q} \sum_{0 < f \mid q^{f_q - d_q}} \mu(f) \chi_{D(T)}(f) \sigma_1\left(\frac{q^{f_q - d_q}}{f}\right)$$
$$= q^{f_q} \left(\sum_{m=0}^{f_q - d_q} q^{-m} - \chi_{D(T)}(q) q^{-1} \sum_{m=0}^{f_q - d_q - 1} q^{-m}\right).$$

Since $\mu(q^2) = \mu(q^3) = \dots = 0$, the left hand side of (3.3) is equal to $q^{d_q}\mu(1)\chi_{D(T)}(1)\sigma_1(q^{f_q-d_q}) + q^{d_q}\mu(q)\chi_{D(T)}(q)\sigma_1(q^{f_q-d_q-1})$ $= q^{d_q} \frac{q^{f_q-d_q+1}-1}{q-1} - \chi_{D(T)}(q)q^{d_q} \frac{q^{f_q-d_q}-1}{q-1}$ $= \frac{q^{f_q+1}-q^{d_q}}{q-1} - \chi_{D(T)}(q) \frac{q^{f_q}-q^{d_q}}{q-1}.$

On the other hand, the right hand side of (3.3) becomes

$$q^{f_q} \frac{1 - q^{-(f_q - d_q + 1)}}{1 - q^{-1}} - \chi_{D(T)}(q)q^{f_q - 1} \frac{1 - q^{-(f_q - d_q)}}{1 - q^{-1}} \\ = \frac{q^{f_q + 1} - q^{d_q}}{q - 1} - \chi_{D(T)}(q) \frac{q^{f_q} - q^{d_q}}{q - 1}.$$

This proves (3.3) and thus Lemma 3.2 is now proved.

We have now completed the proof of Theorem 1. \blacksquare

4. Remarks

4.1. Modular forms of weight 2. In general, we denote by $M_k(\Gamma')_R$ the subset of $M_k(\Gamma')$ consisting of modular forms whose Fourier coefficients belong to a subring $R \subset \mathbb{C}$.

In [12], Serre proved the following result:

THEOREM 2 (Serre). Let $p \geq 3$ be a prime number. For any $f \in M_2(\Gamma_0^{(1)}(p))_{\mathbb{Z}_{(p)}}$, there exists a modular form $g \in M_{p+1}(\Gamma^{(1)})_{\mathbb{Z}_{(p)}}$ satisfying $f \equiv q \pmod{p}$.

It is believed that this is true for any degree.

CONJECTURE. Assume that p is a sufficiently large prime relative to the degree. For any $F \in M_2(\Gamma_0^{(n)}(p))_{\mathbb{Z}_{(p)}}$, there exists a modular form $G \in M_{p+1}(\Gamma^{(n)})_{\mathbb{Z}_{(p)}}$ satisfying

$$F \equiv G \pmod{p}.$$

Our *p*-adic Siegel–Eisenstein series has the following property.

PROPOSITION 4. Let $p \geq 3$ be a prime number. The constructed p-adic Siegel-Eisenstein series $F_2(p) := \lim_{m \to \infty} E_{k_m}^{(2)} \in M_2(\Gamma_0^{(2)}(p))$ satisfies the congruence

$$F_2(p) \equiv E_{p+1}^{(2)} \pmod{p}$$

where $E_{p+1}^{(2)} \in M_{p+1}(\Gamma^{(2)})$ is the ordinary Siegel-Eisenstein series of weight p+1 for $\Gamma^{(2)}$.

Proof. For p = 3, the congruence may be checked by direct calculation. In fact, we can show that

$$\lim_{m \to \infty} E_{k_m}^{(2)} \equiv 1 \pmod{3} \text{ and } E_{p+1}^{(2)} = E_4^{(2)} \equiv 1 \pmod{3}.$$

Therefore, we may assume that p is prime and strictly greater than 3. By an argument similar to that in the proof of Proposition 2, we can show that

$$\lim_{m \to \infty} E_{k_m}^{(2)} \equiv E_{k_l}^{(2)} \pmod{p^l}.$$

As a special case, we obtain

$$F_2(p) = \lim_{m \to \infty} E_{k_m}^{(2)} \equiv E_{k_1}^{(2)} = E_{p+1}^{(2)} \pmod{p}.$$

4.2. Comparison with the case of Nebentypus. In the case of Nebentypus [9], we considered the *p*-adic Siegel–Eisenstein series

$$F_1(p) := \lim_{m \to \infty} E_{1 + \frac{p-1}{2} \cdot p^{m-1}}^{(n)}$$

One of the main results of [9] is as follows. Let p be a prime with $p \equiv 3 \pmod{4}$, p > 3. Then $F_1(p)$ coincides with the genus theta series of level p. In particular, $F_1(p)$ becomes a modular form of $M_1(\Gamma_0^{(n)}(p), \chi_p)$ (the space of modular forms of weight 1 and Nebentypus χ_p). As a consequence, the square $(F_1(p))^2 \in M_2(\Gamma_0^{(n)}(p))$ satisfies

$$(F_1(p))^2 \equiv (E_{(p+1)/2}^{(n)})^2 \pmod{p}.$$

4.3. Generalization. In this note, we proved

$$\lim_{m \to \infty} E_{k_m}^{(2)} = \operatorname{genus} \Theta^{(2)}(S^{(p)}).$$

We conjecture that this will also be true for any degree, i.e.

$$\lim_{m \to \infty} E_{k_m}^{(n)} = \operatorname{genus} \Theta^{(n)}(S^{(p)}).$$

We have numerical examples for which the above identity holds.

Our result concerns the weight 2 Siegel modular forms. For the case of general weights, there is an interesting result due to Y. Mizuno [8]. He considers the *p*-adic Siegel–Eisenstein series

$$F_k^{(2)}(p) := \lim_{m \to \infty} E_{k+(p-1)p^{m-1}} \quad (k \text{ even } \ge 2)$$

and shows modularity, i.e., that $F_k^{(2)}(p) \in M_k(\Gamma_0^{(2)}(p))$. Let $\Lambda = \mathbb{Z}_p[\![\Gamma]\!]$ be the Iwasawa algebra associated to $\Gamma = \mathbb{Z}_p^{\times}$. Then

Let $\Lambda = \mathbb{Z}_p[\![T]\!]$ be the Iwasawa algebra associated to $T = \mathbb{Z}_p^{\times}$. Then there is a Λ -adic Eisenstein series E of level 1 with the following properties:

- (1) The coefficients of the q-expansion belong to the total fraction ring of Λ with the constant term described by the Kubota–Leopoldt p-adic zeta function.
- (2) The specialization at sufficiently large $k \in \mathbb{Z} \setminus p\mathbb{Z}$ is the (*p*-stabilized) classical Eisenstein series of level 1 and weight k.

(See, for instance, Panchishkin [11], Hida [3].)

Our main theorem shows that the specialization of E at k = 2 is classical. The case of k = 2 is excluded in (2), thus the theorem provides an example beyond the general theory. The classicality at k = 1, 2 of Λ -adic Siegel modular forms of degree 2 would be false in general.

Acknowledgements. We thank the referee for enlightening remarks concerning the Λ -adic modular forms.

References

- M. Eichler and D. Zagier, *The Theory of Jacobi Forms*, Progr. Math. 55, Birkhäuser, 1985.
- J. Fresnel, Nombres de Bernoulli et fonctions L p-adiques, Ann. Inst. Fourier (Grenoble) 17 (1967), 281–333.
- H. Hida, Control theorems of p-nearly ordinary cohomology groups for SL(n), Bull. Soc. Math. France 123 (1995), 425–475.
- H. Katsurada, An explicit formula for Siegel series, Amer. J. Math. 121 (1999), 415–452.
- H. Katsurada and S. Nagaoka, On some p-adic properties of Siegel-Eisenstein series, J. Number Theory 104 (2004), 100–117.
- [6] G. Kaufhold, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktionen 2. Grades, Math. Ann. 137 (1959), 454–476.
- H. Maass, Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades, Mat.-Fys. Medd. Danske Vid. Selsk. 38 (1972), no. 14.
- [8] Y. Mizuno, p-Adic Siegel-Eisenstein series (Haupttypus case), preprint, 2007.
- [9] S. Nagaoka, On Serre's example of p-adic Eisenstein series, Math. Z. 235 (2000), 227–250.
- [10] —, On p-adic Hermitian Eisenstein series, Proc. Amer. Math. Soc. 134 (2006), 2533–2540.
- [11] A. A. Panchishkin, On the Siegel-Eisenstein measure and its applications, Israel J. Math. 120 (2000), 467–509.
- [12] J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, in: Modular Functions of One Variable III, Lecture Notes in Math. 350, Springer, 1973, 191–268.

T. Kikuta and S. Nagaoka

- [13] C. L. Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math. 36 (1935), 527–606.
- [14] T. Yang, An explicit formula for local densities of quadratic forms, J. Number Theory 72 (1998), 309–359.

Department of Mathematics Kinki University Higashi-Osaka 577-8502 Osaka, Japan E-mail: kikuta@math.kindai.ac.jp nagaoka@math.kindai.ac.jp

> Received on 15.10.2007 and in revised form on 8.5.2008 (5551)