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A remark on trigonometric sums

by

Huixue Lao (Jinan)

1. Introduction and main results. Let P be the set of all primes,
and P2 the set of integers of the form p1p2 where p1, p2 ∈ P, p1 6= p2. We
shall write e(α) instead of e2πiα. Let π(x) be the number of primes up to x.
In [3] Kátai considered the following trigonometric sums:

S(x, α|Xp) =
∑

p1p2<x
p1<p2

Xp1Xp2e(αp1p2),(1.1)

where Xp are complex numbers satisfying |Xp| ≤ 1 and p1, p2 run over the
prime numbers. Let

π2(x) =
∑

p1p2<x
p1<p2

1.(1.2)

Kátai showed that

max
|Xp|≤1
p∈P

S(x, α|Xp)
π2(x)

→ 0 (x→∞)(1.3)

provided that α is an irrational number satisfying the following condition:

Condition δ. There exists x0 > 0 such that for all x ≥ x0 there exists
a rational number a/q with (a, q) = 1 satisfying x2/3+δ < q < x1−δ and
|α− a/q| ≤ 1/q2. Here δ is an arbitrary small positive number.

The aim of this note is to give a stronger version of Kátai’s result. To this
end, we recall the definition of the irrationality measure for a real number α.

Definition 1.1. Let α be a real number, and let R(α) be the set of
positive real numbers µ for which

0 < |α− p/q| < 1/qµ(1.4)
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has (at most) finitely many solutions p/q for q and p integers. Then the
irrationality measure of α is defined as

µ(α) = inf
µ∈R(α)

µ.

If the set R(α) is empty, then we set µ(α) =∞.

By Dirichlet’s well-known rational approximation lemma, for every irra-
tional number α, we have µ(α) ≥ 2. For every irrational algebraic number α,
Roth [4] proved in 1955 that µ(α) = 2. And it is well-known that for almost
all real numbers the irrationality measure is 2.

In this note we shall prove the following theorem.

Theorem 1.1. For any irrational number α with µ(α) <∞, we have

max
|Xp|≤1
p∈P

S(x, α|Xp)
π2(x)

→ 0 (x→∞).(1.5)

2. Preliminaries. We need the following two lemmas.

Lemma 2.1. Let Λ(n) be the von Mangoldt function

Λ(n) =
{

log p if n = pα,
0 otherwise.

If

|α− a/q| < 1/q2, (a, q) = 1,

then

S(α) =
∑
n≤x

Λ(n)e(αn)� (xq−1/2 + x4/5 + x1/2q1/2)(log x)4.

Proof. See Davenport [1, Chapter 25].

Lemma 2.2. Let α be any irrational number with µ(α) < ∞. Fix
η ∈ R(α) and 0 < ε < 1/12(η − 1). Then for sufficiently large x we have

max
1≤H≤x2ε

∣∣∣∑
p≤x

e(Hαp)
∣∣∣� x1−4ε.

Proof. First we show that for any 1 ≤ H ≤ x2ε there exist integers a
and q such that∣∣∣∣Hα− a

q

∣∣∣∣ < 1
qx1−9ε

with (a, q) = 1, x9ε ≤ q ≤ x1−9ε.(2.1)

Any irrational Hα has just one infinite simple continued fraction. Let a/q
and a′/q′ be the two consecutive convergents to that continued fraction such
that

q ≤ x1−9ε < q′.(2.2)
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Recall the well-known property of continued fractions:∣∣∣∣Hα− a

q

∣∣∣∣ < 1
qq′

with (a, q) = 1.(2.3)

If 1 ≤ q ≤ x9ε, then qH ≤ x11ε ≤ (x1−9ε)12ε for sufficiently large x. Thus
by (2.2) and (2.3),

‖qαH‖ ≤ (q′)−1 < (x1−9ε)−1 ≤ (qH)−1/12ε,

where ‖ · ‖ denotes the distance to the nearest integer. But for η ∈ R(α),
the inequality

‖qHα‖ < (qH)1−η

has (at most) finitely many integer solutions qH. When x is sufficiently
large, this contradicts the choice of η and ε. Thus we have x9ε ≤ q ≤ x1−9ε.

On noting (2.1), by Lemma 2.1 we have

max
1≤H≤x2ε

∣∣∣∑
p≤x

e(Hαp)
∣∣∣�{x(x9ε)−1/2+x4/5+x1/2(x1−9ε)1/2}(log x)3� x1−4ε.

3. Proof of Theorem 1.1. Following the arguments of Kátai, to prove
Theorem 1.1 it suffices to show that

S1(x, α) :=
∑

p1p2<x
p1<Y, p2>

√
x

Xp1Xp2e(p1p2α) = o(π2(x)),(3.1)

where Y = e(log x)1−δx , δx is a function of x for which δx → 0, and

π2(x) =
∑

p1p2<x
p1<p2

1 ∼ x

log x
log log x.

We have

S1(x, α) =
∑
p2

Xp2

∑
p1≤min(x/p2,Y )

Xp1e(p1p2α).

Then by the Cauchy–Schwarz inequality,

(3.2) |S1(x, α)|2≤
∑
p2

|Xp2 |2
∑
p2

∣∣∣ ∑
p1≤min(x/p2,Y )

Xp1e(p1p2α)
∣∣∣2≤ π(x)

∑
1
,

where ∑
1

=
∑

p1,p′1∈P
p1,p′1≤Y

Xp1Xp′1

∑
√
x≤p2≤x/max(p1,p′1)

e((p1 − p′1)p2α).(3.3)

From (3.3), we have ∑
1
≤
∑

2
+
∑

3
,(3.4)
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where

(3.5)
∑

2
=

∑
p1=p′1≤Y

∑
√
x≤p2≤x/max(p1,p′1)

1� x

log x

∑
p≤Y

1
p
� x

log x
log log x,

and ∑
3

= 2
∑

p′1<p1≤Y

∣∣∣ ∑
√
x≤p2≤x/max(p1,p′1)

e((p1 − p′1)p2α)
∣∣∣.(3.6)

For the inner sum in (3.6), by Lemma 2.2 we have∑
√
x≤p2≤x/max(p1,p′1)

e((p1 − p′1)p2α)� x1−4ε(3.7)

for every p1 6= p′1 and p1, p
′
1 < Y . Thus∑
3
� Y 2x1−4ε = o(π2(x)).(3.8)

From (3.2), (3.5) and (3.8), we complete the proof of Theorem 1.1.

4. Another similar result. Recently Indlekofer and Kátai [2] proved
another result about trigonometric sums

S(x|α;Ym, Xp) =
∑

mjp≤x
YmjXpe(αmjp),(4.1)

where the mj are integers depending on x with m1 < · · · < mt ≤ xδx , δx → 0
as x→∞, p runs over the primes p ≥

√
x, and |Ymj | ≤ 1, |Xp| ≤ 1.

Assume further that as x→∞,
t∑

j=1

1
mj
→∞.

Then they proved that provided that the irrational number α satisfies the
Condition δ (see Section 1), we have

max
Ym,Xp

|S(x|α;Ym, Xp)| = ox(1)
t∑

j=1

π(x/mj).(4.2)

We remark that our previous arguments also give the following stronger
result:

Proposition 4.1. For any irrational number α with µ(α) <∞, if
t∑

j=1

1
mj
→∞ as x→∞,
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then

max
Ym,Xp

|S(x|α;Ym, Xp)| = ox(1)
t∑

j=1

π

(
x

mj

)
.
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