Tame kernels of quintic cyclic fields

by
XiA Wu (Nanjing)

1. Introduction. The structure of the tame kernels of algebraic number fields has been investigated by many authors, e.g., [1], [2], [4], [5], [7], [10], [11], [12] and [15]. In particular, J. Browkin gave some explicit results for cubic cyclic fields with only one ramified prime in [1], and H. Zhou investigated the structure of tame kernels of cubic cyclic fields with two ramified primes in [15].

In the present paper, we investigate quintic cyclic fields. Let F be a quintic cyclic number field, and G its Galois group. It is well-known that $K_{2} \mathcal{O}_{F}$ is the tame kernel of F. We know that $K_{2} \mathcal{O}_{F}$ is a G-module, and we often use this fact to study the structure of $K_{2} \mathcal{O}_{F}$.

The paper is organized as follows. In Section 2, we give some results about the structure of the class groups $\mathcal{C l}\left(\mathcal{O}_{F}\right)$ and $\mathcal{C l}\left(\mathcal{O}_{F, 2}\right)$. In Section 3, we use these results to investigate the 2-primary part of $K_{2} \mathcal{O}_{F}$. We determine the elements of order 2 in $K_{2} \mathcal{O}_{F}$ explicitly and we prove that 4 divides the 2^{i}-rank of $K_{2} \mathcal{O}_{F}$ for $i \geq 2$. In Section 4, we use the G-module structure of $K_{2} \mathcal{O}_{F}$ and apply reflection theorems to investigate the q-primary part of $K_{2} \mathcal{O}_{F}$ for odd q. In particular, we prove a theorem, similar to the main result in [15], which confirms Browkin's Conjecture 4.6 of [1]. Finally, we assume that in F there is only one ramified prime $p, p>11$. It is easy to see that $p \equiv 1(\bmod 10)$ and F is the unique quintic subfield of the cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$. We use the well-known Birch-Tate conjecture to compute the order of $K_{2} \mathcal{O}_{F}$, and deduce that $5 \mid \# K_{2} \mathcal{O}_{F}$.

Acknowledgements. I would like to thank my supervisor, Hourong Qin, for useful advice, and also Xuejun Guo and Qingzhong Ji for useful discussions on the subject.

[^0]2. Structure of the Sylow q-subgroup of the class group. Let F be a quintic cyclic field. Let A_{q} be the Sylow q-subgroup of the class group $\mathcal{C l}\left(\mathcal{O}_{F}\right)$ of F for a prime number q, and let τ be a generator of the Galois $\operatorname{group} T:=\operatorname{Gal}(F / \mathbb{Q})$. If B is a group, we denote its order by $|B|$. For any element $a \in A_{q}$, let $\langle a\rangle$ denote the cyclic group generated by a.

Lemma 2.1. Let $a \in A_{q}$ with $q \neq 5$. If $a \neq 1$, then $a, \tau a, \tau^{2} a, \tau^{3} a, \tau^{4} a$ are all distinct.

Proof. Let $\tau^{0} a=a$. If $\tau^{i} a=\tau^{j} a$ with $0 \leq i<j \leq 4$, it is easy to see that $a=\tau a=\tau^{2} a=\tau^{3} a=\tau^{4} a$. Hence

$$
a^{5}=a \cdot \tau a \cdot \tau^{2} a \cdot \tau^{3} a \cdot \tau^{4} a=\operatorname{Norm}_{F / \mathbb{Q}}(a)=1 .
$$

Since $q \nmid 5$, it follows that $a=1$, a contradiction.
Let B_{1} be a subgroup of A_{q}, and $B_{1} \simeq \mathbb{Z} / q^{i} \mathbb{Z}, i \geq 1$.
Lemma 2.2. For $q \equiv 2,3$ or $4(\bmod 5)$, we have $B_{1} \cap \tau\left(B_{1}\right)=1$.
Proof. (1) If $B_{1} \simeq \mathbb{Z} / q \mathbb{Z}$, then any $a \in B_{1}$ with $a \neq 1$ is a generator of B_{1}. If $\tau(a) \in B_{1}$, then

$$
\tau(a)=a^{t} \in B_{1}, \tau^{2}(a)=a^{t^{2}} \in B_{1}, \tau^{3}(a)=a^{t^{3}} \in B_{1}, \tau^{4}(a)=a^{t^{4}} \in B_{1} .
$$

By Lemma 2.1 the orbit of every $a \neq 1$ has five elements in B_{1}. Therefore $q=\left|B_{1}\right| \equiv 1(\bmod 5)$, a contradiction.
(2) When $B_{1} \simeq \mathbb{Z} / q^{i} \mathbb{Z}$, and $i \geq 2$, consider an element a of B_{1} with $a \neq 1$. If the order of a is $q^{j}, 1 \leq j \leq i$, set $B_{1}^{\prime}:=\left\langle a^{q^{j-1}}\right\rangle \simeq \mathbb{Z} / q \mathbb{Z}$. If $\tau(a) \in B_{1}$, then $\tau(a)=a^{s}, 0<s \leq q^{j}-1, q \nmid s$. Hence $\tau\left(a^{q^{j-1}}\right)=a^{q^{j-1}} s \in B_{1}^{\prime}$. This is a contradiction to (1), so $\tau(a) \notin B_{1}$.

Since τ^{i} is also a generator of the Galois group for $i=2,3,4$, we know that

$$
\begin{equation*}
B_{1} \cap \tau^{i}\left(B_{1}\right)=1, \quad 1 \leq i \leq 4 . \tag{2.1}
\end{equation*}
$$

Lemma 2.3. Let $q \equiv 2$ or $3(\bmod 5)$. $B y(2.1)$ we can set $B=B_{1} \times$ $\tau^{2}\left(B_{1}\right)$. Then $B \cap \tau\left(B_{1}\right)=1$ and $B \cap \tau^{3}\left(B_{1}\right)=1$.

Proof. (1) When $B_{1} \simeq \mathbb{Z} / q \mathbb{Z}$, consider an element a of B_{1} with $a \neq 1$. If $\tau(a) \in B$, then $\tau(a)=a^{s} \cdot \tau^{2}(a)^{t}$. If s or t is zero, this contradicts (2.1). It follows that $0<s, t \leq q-1$. Then

$$
\begin{aligned}
\tau^{3}(a) & =\tau^{2}(\tau(a))=\tau^{2}\left(a^{s} \cdot \tau^{2}(a)^{t}\right)=\tau^{2}(a)^{s} \cdot \tau^{4}(a)^{t} \\
& =\tau^{2}(a)^{s} \cdot\left(a \cdot \tau(a) \cdot \tau^{2}(a) \cdot \tau^{3}(a)\right)^{-t} \\
& =\tau^{2}(a)^{s} \cdot\left(a \cdot a^{s} \cdot \tau^{2}(a)^{t} \cdot \tau^{2}(a) \cdot \tau^{3}(a)\right)^{-t},
\end{aligned}
$$

so

$$
\tau^{3}(a)^{1+t}=a^{-t(1+s)} \cdot \tau^{2}(a)^{s-t(1+t)} \in B .
$$

It is easy to see that if $1+t \neq q$, then $\tau^{3}(a) \in B$.

If $1+t=q$, then $\tau^{3}(a)^{1+t}=1$. We obtain $q \mid t(1+s)$ and $q \mid s-t(1+t)$. But the two conditions cannot hold at the same time. Therefore $\tau^{3}(a) \in B$.

It follows that $\tau^{4}(a)=\left(a \cdot \tau(a) \cdot \tau^{2}(a) \cdot \tau^{3}(a)\right)^{-1} \in B$.
Let v be an element of B with $v \neq 1$. We know that $v=a^{s} \cdot \tau^{2}(a)^{t}$ with $0 \leq s, t \leq q-1$. Then

$$
\begin{aligned}
\tau(v) & =\tau(a)^{s} \cdot \tau^{3}(a)^{t} \in B, & & \tau^{2}(v)=\tau^{2}(a)^{s} \cdot \tau^{4}(a)^{t} \in B \\
\tau^{3}(v) & =\tau^{3}(a)^{s} \cdot a^{t} \in B, & & \tau^{4}(v)=\tau^{4}(a)^{s} \cdot \tau(a)^{t} \in B
\end{aligned}
$$

By Lemma 2.1 the orbit of v has five elements. Hence,

$$
q^{2}=|B| \equiv 1(\bmod 5)
$$

But the order of $q \bmod 5$ is 4 , a contradiction. Therefore $\tau(a) \notin B$.
In a similar way, we can prove that $\tau^{3}(a) \notin B$.
(2) When $B_{1} \simeq \mathbb{Z} / q^{i} \mathbb{Z}$ and $i \geq 2$, consider an element a of B_{1} with $a \neq 1$. If the order of a is $q^{j}, 1 \leq j \leq i$, set

$$
B_{1}^{\prime}:=\left\langle a^{q^{j-1}}\right\rangle \simeq \mathbb{Z} / q \mathbb{Z} \quad \text { and } \quad B^{\prime}=B_{1}^{\prime} \times \tau^{2}\left(B_{1}^{\prime}\right)
$$

If $\tau(a) \in B$, then $\tau(a)=a^{s} \cdot \tau^{2}(a)^{t}, \tau\left(a^{q^{j-1}}\right)=a^{q^{j-1} s} \cdot \tau^{2}(a)^{q^{j-1}} t \in B^{\prime}$ and $0<s, t \leq q^{j}-1, q \nmid s \cdot t$; by (1) this is a contradiction. We conclude that $\tau(a) \notin B$. In a similar way, we can prove that $\tau^{3}(a) \notin B$.

Lemma 2.4. Let $q \equiv 2$ or $3(\bmod 5)$. By Lemma 2.3 we can set $B=$ $B_{1} \times \tau\left(B_{1}\right) \times \tau^{2}\left(B_{1}\right)$. Then $B \cap \tau^{3}\left(B_{1}\right)=1$.

Proof. (1) When $B_{1} \simeq \mathbb{Z} / q \mathbb{Z}$, consider an element a of B_{1} with $a \neq 1$. If $\tau^{3}(a) \in B$, then

$$
\tau^{4}(a)=\left(a \cdot \tau(a) \cdot \tau^{2}(a) \cdot \tau^{3}(a)\right)^{-1} \in B
$$

For any element $v \in B$ with $v \neq 1$, we know that

$$
v=a^{s} \cdot \tau(a)^{t} \cdot \tau^{2}(a)^{k} \quad \text { and } \quad 0 \leq s, t, k \leq q-1
$$

It is easy to see that

$$
\tau(v) \in B, \quad \tau^{2}(v) \in B, \quad \tau^{3}(v) \in B, \quad \tau^{4}(v) \in B
$$

The orbit of v has five elements. Therefore

$$
q^{3}=|B| \equiv 1(\bmod 5)
$$

But the order of $q \bmod 5$ is 4 , a contradiction.
(2) When $B_{1} \simeq \mathbb{Z} / q^{i} \mathbb{Z}, i \geq 2$, for any $a \in B_{1}, a \neq 1$, if the order of a is $q^{j}, 1 \leq j \leq i$, set

$$
B_{1}^{\prime}:=\left\langle a^{q^{j-1}}\right\rangle \simeq \mathbb{Z} / q \mathbb{Z} \quad \text { and } \quad B^{\prime}=B_{1}^{\prime} \times \tau\left(B_{1}^{\prime}\right) \times \tau^{2}\left(B_{1}^{\prime}\right)
$$

If $\tau^{3}(a) \in B, \tau^{3}(a)=a^{s} \cdot \tau(a)^{t} \cdot \tau^{2}(a)^{k}$, then
$\tau^{3}\left(a^{q^{i-1}}\right)=a^{q^{j-1} s} \cdot \tau(a)^{q^{j-1} t} \cdot \tau^{2}(a)^{q^{j-1}} k \in B^{\prime}, 0<s, t, k \leq q^{j}-1, q \nmid s \cdot t \cdot k$.
By (1) this is a contradiction. Hence $\tau^{3}(a) \notin B$.

LEmma 2.5. A_{q} is the Sylow q-subgroup of the class group $\mathcal{C l}\left(\mathcal{O}_{F}\right)$, where F is a quintic cyclic field, and $q \neq 5$. We know that A_{q} is a finite abelian q-group, and

$$
A_{q} \simeq \bigoplus \mathbb{Z} / q^{a_{i}} \mathbb{Z}
$$

for some integers a_{i}. Let f be the order of $q \bmod 5$ and let

$$
\begin{aligned}
n_{a} & =\text { number of } i \text { with } a_{i}=a, \\
r_{a} & =\text { number of } i \text { with } a_{i} \geq a .
\end{aligned}
$$

Then

$$
n_{a} \equiv r_{a} \equiv 0(\bmod f)
$$

Proof. This follows from [13, Theorem 10.8].
From the above results, we can easily deduce the following.
THEOREM 2.6. Under the above notation, the following results hold:
(1) If $q \equiv 2$ or $3(\bmod 5)$, then $A_{q}=B_{q} \times \tau\left(B_{q}\right) \times \tau^{2}\left(B_{q}\right) \times \tau^{3}\left(B_{q}\right)$ for some subgroup B_{q} of A_{q}.
(2) If $q \equiv 4(\bmod 5)$, then $A_{q}=B_{q} \times \tau\left(B_{q}\right)$ for some subgroup B_{q} of A_{q}. The same results hold if we replace \mathcal{O}_{F} by the $\operatorname{ring} \mathcal{O}_{F, 2}=\mathcal{O}_{F}[1 / 2]$ of integers of F localized at 2.

Proof. (1) It is sufficient to show that if

$$
\begin{equation*}
A_{q} \cong \mathbb{Z} / q^{i} \mathbb{Z} \times \mathbb{Z} / q^{i} \mathbb{Z} \times \cdots \times \mathbb{Z} / q^{i} \mathbb{Z} \tag{2.2}
\end{equation*}
$$

for some $i \geq 1$, then

$$
A_{q}=B_{q} \times \tau\left(B_{q}\right) \times \tau^{2}\left(B_{q}\right) \times \tau^{3}\left(B_{q}\right)
$$

for some subgroup B_{q} of A_{q}.
When $q \equiv 2$ or $3(\bmod 5)$, the order of $q \bmod 5$ is 4 . Let n be the number of $\mathbb{Z} / q^{i} \mathbb{Z}$'s in (2.2). From Lemma 2.5 it follows that $n=4 t$ for some $t \geq 1$. Let B_{1} be a subgroup of A_{q} with $B_{1} \cong \mathbb{Z} / q^{i} \mathbb{Z}$. Then by Lemma 2.4,

$$
A_{q}=B_{1} \times \tau\left(B_{1}\right) \times \tau^{2}\left(B_{1}\right) \times \tau^{3}\left(B_{1}\right) \times A_{q 1}
$$

for some subgroup $A_{q 1}$ of A_{q}. It is easy to see that

$$
\begin{equation*}
A_{q 1} \cong \mathbb{Z} / q^{i} \mathbb{Z} \times \mathbb{Z} / q^{i} \mathbb{Z} \times \cdots \times \mathbb{Z} / q^{i} \mathbb{Z} \tag{2.3}
\end{equation*}
$$

and the number of $\mathbb{Z} / q^{i} \mathbb{Z}$'s in (2.3) is $4(t-1)$.
Let B_{2} be a subgroup of $A_{q 1}$ with $B_{2} \cong \mathbb{Z} / q^{i} \mathbb{Z}$. Then from Lemma 2.4 we know that

$$
A_{q 1}=B_{2} \times \tau\left(B_{2}\right) \times \tau^{2}\left(B_{2}\right) \times \tau^{3}\left(B_{2}\right) \times A_{q 2}
$$

for some subgroup $A_{q 2}$ of $A_{q 1}$, etc. until

$$
A_{q(t-1)}=B_{t} \times \tau\left(B_{t}\right) \times \tau^{2}\left(B_{t}\right) \times \tau^{3}\left(B_{t}\right)
$$

where B_{t} is a subgroup of $A_{q(t-1)}$ with $B_{t} \cong \mathbb{Z} / q^{i} \mathbb{Z}$.

Set $B_{q}=B_{1} \times \cdots \times B_{t}$. It is easy to see that

$$
A_{q}=B_{q} \times \tau\left(B_{q}\right) \times \tau^{2}\left(B_{q}\right) \times \tau^{3}\left(B_{q}\right)
$$

(2) When $q \equiv 4(\bmod 5)$, the order of $q \bmod 5$ is 2 , and the proof is similar to that of (1).

In a similar way, we can obtain the last statement.
3. The 2-primary part of the tame kernel. For an arbitrary number field F, we have (see [12])

$$
2-\operatorname{rank} K_{2} \mathcal{O}_{F}=r_{1}+g_{2}-1+2-\operatorname{rank} \mathcal{C l}\left(\mathcal{O}_{F, 2}\right)
$$

where r_{1} (resp. g_{2}) is the number of real (resp. dyadic) places of F.
When F is a quintic cyclic field, we have

$$
g_{2}= \begin{cases}1 & \text { if } 2 \text { is inert in } F \\ 5 & \text { if } 2 \text { splits in } F\end{cases}
$$

In this case,

$$
2-\operatorname{rank} K_{2} \mathcal{O}_{F}=2-\operatorname{rank} \mathcal{C l}\left(\mathcal{O}_{F, 2}\right)+ \begin{cases}5 & \text { if } 2 \text { is inert in } F \tag{3.1}\\ 9 & \text { if } 2 \text { splits in } F\end{cases}
$$

Hence we have the following lemma:
Lemma 3.1. The 2-rank of $K_{2} \mathcal{O}_{F}$ is odd.
Proof. From (3.1) and Theorem 2.6 we obtain 2-rank $K_{2} \mathcal{O}_{F} \equiv 1(\bmod 4)$. The desired result is immediate.

With the above results we can determine elements of order 2 in $K_{2} \mathcal{O}_{F}$ explicitly.

By [12, Theorem 6.3] the group $B=\left\{a \in F^{*}:\{-1, a\}=1\right\}$ has the property that $2-\operatorname{rank}\left(B / F^{* 2}\right)=1$. Hence $B=F^{* 2} \cup 2 F^{* 2}$.

By [3], there exists a Minkowski unit ε_{1} in F such that $\varepsilon_{1}, \varepsilon_{2}=\tau\left(\varepsilon_{1}\right)$, $\varepsilon_{3}=\tau^{2}\left(\varepsilon_{1}\right)$, and $\varepsilon_{4}=\tau^{3}\left(\varepsilon_{1}\right)$ are fundamental units of F, where τ is a generator of the Galois group $T=\operatorname{Gal}(F / \mathbb{Q})$. Changing sign if necessary, we may assume that $N \varepsilon_{1}=1$. Then

$$
\{-1,-1\},\left\{-1, \varepsilon_{1}\right\},\left\{-1, \tau\left(\varepsilon_{1}\right)\right\},\left\{-1, \tau^{2}\left(\varepsilon_{1}\right)\right\},\left\{-1, \tau^{3}\left(\varepsilon_{1}\right)\right\} \in K_{2} \mathcal{O}_{F}
$$

By the last statement of Theorem 2.6, there are independent generators of the group ${ }_{2} \mathcal{C l}\left(\mathcal{O}_{F, 2}\right)$ of the form $\mathcal{C l}\left(\mathfrak{p}_{j}\right), \mathcal{C l}\left(\tau\left(\mathfrak{p}_{j}\right)\right), \mathcal{C l}\left(\tau^{2}\left(\mathfrak{p}_{j}\right)\right), \mathcal{C l}\left(\tau^{3}\left(\mathfrak{p}_{j}\right)\right)$, $j=1, \ldots, t$, where $4 t=2-\operatorname{rank} \mathcal{C l}\left(\mathcal{O}_{F, 2}\right)$, and \mathfrak{p}_{j} are prime ideals satisfying $\mathfrak{p}_{j} \nmid 2$. It follows that $\mathfrak{p}_{j}^{2}=\left(\gamma_{j}\right)$, for $j=1, \ldots, t$. We may assume that $N \gamma_{j}>0$. Then $N \gamma_{j}=N \mathfrak{p}_{j}^{2}=\left(N \mathfrak{p}_{j}\right)^{2} \in F^{* 2} \in B$.

It follows that

$$
\left\{-1, \gamma_{j}\right\},\left\{-1, \tau\left(\gamma_{j}\right)\right\},\left\{-1, \tau^{2}\left(\gamma_{j}\right)\right\},\left\{-1, \tau^{3}\left(\gamma_{j}\right)\right\} \in K_{2} \mathcal{O}_{F} \quad \text { for } j=1, \ldots, t
$$

If 2 splits in F, then $(2)=\mathfrak{p} \cdot \tau(\mathfrak{p}) \cdot \tau^{2}(\mathfrak{p}) \cdot \tau^{3}(\mathfrak{p}) \cdot \tau^{4}(\mathfrak{p})$, and if the class $\mathcal{C l}(\mathfrak{p})$ in $\mathcal{C l}\left(\mathcal{O}_{F}\right)$ has order r, then \mathfrak{p}^{r} is principal, $\mathfrak{p}^{r}=(\gamma)$ and $N \gamma=N\left(\mathfrak{p}^{r}\right)=$ $2^{r} \in B$. It is easy to see that

$$
\{-1, \gamma\},\{-1, \tau(\gamma)\},\left\{-1, \tau^{2}(\gamma)\right\},\left\{-1, \tau^{3}(\gamma)\right\} \in K_{2} \mathcal{O}_{F}
$$

If 2 is inert in F, consider the elements

$$
\begin{align*}
& -1, \varepsilon_{1}, \tau\left(\varepsilon_{1}\right), \tau^{2}\left(\varepsilon_{1}\right), \tau^{3}\left(\varepsilon_{1}\right), \gamma_{1}, \tau\left(\gamma_{1}\right) \tag{3.2}\\
& \tau^{2}\left(\gamma_{1}\right), \tau^{3}\left(\gamma_{1}\right), \ldots, \gamma_{t}, \tau\left(\gamma_{t}\right), \tau^{2}\left(\gamma_{t}\right), \tau^{3}\left(\gamma_{t}\right)
\end{align*}
$$

If 2 splits in F, consider the elements

$$
\begin{align*}
& -1, \varepsilon_{1}, \tau\left(\varepsilon_{1}\right), \tau^{2}\left(\varepsilon_{1}\right), \tau^{3}\left(\varepsilon_{1}\right), \gamma_{1}, \tau\left(\gamma_{1}\right), \tau^{2}\left(\gamma_{1}\right), \tau^{3}\left(\gamma_{1}\right), \ldots \tag{3.3}\\
& \gamma_{t}, \tau\left(\gamma_{t}\right), \tau^{2}\left(\gamma_{t}\right), \tau^{3}\left(\gamma_{t}\right), \gamma, \tau(\gamma), \tau^{2}(\gamma), \tau^{3}(\gamma)
\end{align*}
$$

In both cases, the elements are multiplicatively independent modulo $B=$ $F^{* 2} \cup 2 F^{* 2}$, then by (3.1) we obtain the following result:

Theorem 3.2.
(1) If 2 is inert in F, then the elements
$\{-1,-1\},\left\{-1, \varepsilon_{1}\right\},\left\{-1, \tau\left(\varepsilon_{1}\right)\right\},\left\{-1, \tau^{2}\left(\varepsilon_{1}\right)\right\},\left\{-1, \tau^{3}\left(\varepsilon_{1}\right)\right\}$, $\left\{-1, \gamma_{j}\right\},\left\{-1, \tau\left(\gamma_{j}\right)\right\},\left\{-1, \tau^{2}\left(\gamma_{j}\right)\right\},\left\{-1, \tau^{3}\left(\gamma_{j}\right)\right\}$,
where $j=1, \ldots, t$, are independent generators of the group ${ }_{2} K_{2} \mathcal{O}_{F}$.
(2) If 2 splits in F, then the elements $\{-1,-1\},\left\{-1, \varepsilon_{1}\right\},\left\{-1, \tau\left(\varepsilon_{1}\right)\right\},\left\{-1, \tau^{2}\left(\varepsilon_{1}\right)\right\},\left\{-1, \tau^{3}\left(\varepsilon_{1}\right)\right\}$, $\{-1, \gamma\},\{-1, \tau(\gamma)\},\left\{-1, \tau^{2}(\gamma)\right\},\left\{-1, \tau^{3}(\gamma)\right\},\left\{-1, \gamma_{j}\right\}$, $\left\{-1, \tau\left(\gamma_{j}\right)\right\},\left\{-1, \tau^{2}\left(\gamma_{j}\right)\right\},\left\{-1, \tau^{3}\left(\gamma_{j}\right)\right\}$,
where $j=1, \ldots, t$, are independent generators of the group ${ }_{2} K_{2} \mathcal{O}_{F}$.
From the above we obtain

$$
2-\operatorname{rank} \mathcal{C l}\left(\mathcal{O}_{F}\right)=2-\operatorname{rank} \mathcal{C l}\left(\mathcal{O}_{F, 2}\right)
$$

when 2 is inert in F, and

$$
2-\operatorname{rank} \mathcal{C l}\left(\mathcal{O}_{F}\right)=2-\operatorname{rank} \mathcal{C l}\left(\mathcal{O}_{F, 2}\right)+4
$$

when 2 splits in F, since the class $\mathcal{C l}(\mathfrak{p})$ generates in $\mathcal{C l}\left(\mathcal{O}_{F}\right)$ a direct summand of an even order.

From the above discussion, we deduce the following.
TheOrem 3.3. Let $i \geq 2$, and denote by r the 2^{i}-rank of $K_{2} \mathcal{O}_{F}$. Then $4 \mid r$.

Proof. Let c be an element of order 2^{i} of $K_{2} \mathcal{O}_{F}$ with $i \geq 2$. Then $b:=$ $c^{2^{i-1}}$ is an element of order 2. Hence $b=\{-1, a\}$, where a is the product of
some elements in (3.2), respectively in (3.3),

$$
\begin{align*}
a= & (-1)^{k_{0}} \cdot \varepsilon_{1}^{s_{1}} \cdot \tau\left(\varepsilon_{1}\right)^{s_{2}} \cdot \tau^{2}\left(\varepsilon_{1}\right)^{s_{3}} \cdot \tau^{3}\left(\varepsilon_{1}\right)^{s_{4}} \cdot \gamma^{t_{1}} \cdot \tau(\gamma)^{t_{2}} \tag{3.4}\\
& \cdot \tau^{2}(\gamma)^{t_{3}} \cdot \tau^{3}(\gamma)^{t_{4}} \cdot \prod_{j=1}^{t} \gamma_{j}^{u_{1 j}} \cdot \tau\left(\gamma_{j}\right)^{u_{2 j}} \cdot \tau^{2}\left(\gamma_{j}\right)^{u_{3 j}} \cdot \tau^{3}\left(\gamma_{j}\right)^{u_{4 j}}
\end{align*}
$$

and the exponents $k_{0}, s_{1}, s_{2}, s_{3}, s_{4}, t_{1}, t_{2}, t_{3}, t_{4}, u_{1 j}, u_{2 j}, u_{3 j}, u_{4 j}$ are 0 or 1 .
It is easy to see that $\tau(c), \tau^{2}(c), \tau^{3}(c)$ also have order 2^{i}. It is sufficient to prove that $b, \tau(b), \tau^{2}(b), \tau^{3}(b)$ are all distinct, or equivalently, $a, \tau(a)$, $\tau^{2}(a), \tau^{3}(a)$ are multiplicatively independent modulo B.

We have proved above that the norms $N \varepsilon_{1}, N \gamma, N \gamma_{j}$ belong to B. Hence $\tau^{4}(\xi) \equiv\left(\xi \cdot \tau(\xi) \cdot \tau^{2}(\xi) \cdot \tau^{3}(\xi)\right)^{-1}(\bmod B)$, where $\xi=\varepsilon_{1}, \gamma, \gamma_{j}$. Hence from (3.4) we get

$$
\begin{align*}
& \tau(\gamma)^{t_{1}} \cdot \tau^{2}(\gamma)^{t_{2}} \cdot \tau^{3}(\gamma)^{t_{3}} \cdot\left(\gamma \tau(\gamma) \tau^{2}(\gamma) \tau^{3}(\gamma)\right)^{-t_{4}} \tag{3.5}\\
& \prod_{j=1}^{t}\left(\tau\left(\gamma_{j}\right)^{u_{1 j}} \cdot \tau^{2}\left(\gamma_{j}\right)^{u_{2 j}} \cdot \tau^{3}\left(\gamma_{j}\right)^{u_{3 j}} \cdot\left(\gamma_{j} \tau\left(\gamma_{j}\right) \tau^{2}\left(\gamma_{j}\right) \tau^{3}\left(\gamma_{j}\right)\right)^{-u_{4 j}}\right)(\bmod B)
\end{align*}
$$

If $\tau(a) \equiv a(\bmod B)$, then by the multiplicative independence of the elements modulo B, they must appear in (3.4) and (3.5) with exponents of the same parity. Therefore,

$$
\left\{\begin{array}{l}
s_{1} \equiv-s_{4}(\bmod 2) \\
s_{2} \equiv s_{1}-s_{4}(\bmod 2) \\
s_{3} \equiv s_{2}-s_{4}(\bmod 2) \\
s_{4} \equiv s_{3}-s_{4}(\bmod 2)
\end{array}\right.
$$

From an easy computation we get

$$
s_{1} \equiv s_{2} \equiv s_{3} \equiv s_{4} \equiv 0(\bmod 2) .
$$

In the same way we get

$$
\begin{aligned}
t_{1} & \equiv t_{2} \equiv t_{3} \equiv t_{4} \equiv 0(\bmod 2), \\
u_{1 j} & \equiv u_{2 j} \equiv u_{3 j} \equiv u_{4 j} \equiv 0(\bmod 2) .
\end{aligned}
$$

That is, $a \in B, b=1$. Since b is an element of order 2 , this is a contradiction. Hence $\tau(b) \neq b$.

In a similar way we can show that

$$
b \neq \tau^{2}(b), \quad b \neq \tau^{3}(b), \quad \tau(b) \neq \tau^{2} b, \quad \tau(b) \neq \tau^{3} b, \quad \tau^{2}(b) \neq \tau^{3} b .
$$

It is easy to see that $c, \tau(c), \tau^{2}(c), \tau^{3}(c)$ are all distinct. This proves the desired result.

Theorem 3.4. If there are k elements in the set $\left\{\varepsilon_{1}, \gamma, \gamma_{j}: 1 \leq j \leq t\right\}$ which are not totally positive, then

$$
4 \text {-rank } K_{2} \mathcal{O}_{F} \leq 2-\operatorname{rank} K_{2} \mathcal{O}_{F}-(4 k+1) .
$$

Proof. If an element $\beta \in F^{*}$ is not totally positive, then applying the five real Hilbert symbols of F to $\{-1, \beta\}$, we conclude that $\{-1, \beta\}$ is not a square in $K_{2} F$. In particular, $\{-1,-1\}$ is not a square. If β is not totally positive, then $\tau(\beta), \tau^{2}(\beta)$ and $\tau^{3}(\beta)$ are also not totally positive. The desired result follows.

4. The q-primary parts of tame kernels for an odd prime q

4.1. Notation. In this section, we use the same notation as in [1]. Let q be an odd prime number, ζ_{q} a primitive q th root of unity, and $G:=$ $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}\right)$. Then

$$
G=\left\{\sigma_{a}: 1 \leq a \leq q-1\right\},
$$

where $\sigma_{a}\left(\zeta_{q}\right)=\zeta_{q}^{a}$. The mapping $(\mathbb{Z} / q)^{*} \rightarrow G, a \mapsto \sigma_{a}$, is an isomorphism. For a fixed primitive root h modulo q, the automorphism $\sigma:=\sigma_{h}$ generates G.

Let ω be the q-adic Teichmüller character of the group $(\mathbb{Z} / q)^{*}$. Then, for $1 \leq a \leq q-1$, the value $\omega(a) \in \mathbb{Z}_{q}^{*}$ is uniquely determined by the conditions $\omega(a)^{q-1}=1$ and $\omega(a) \equiv a(\bmod q)$. It is well known that, for $0 \leq j \leq$ $q-2, \omega^{j}$ are all irreducible characters of $G=(\mathbb{Z} / q)^{*}$. The corresponding primitive idempotents of the group ring $\mathbb{Z}_{q}[G]$ are

$$
\begin{equation*}
\varepsilon_{j}=\frac{1}{q-1} \sum_{a=1}^{q-1} \omega(a)^{j} \sigma_{a}^{-1}=\frac{1}{q-1} \sum_{k=0}^{q-2} \omega(h)^{k j} \sigma^{-k}, \quad 0 \leq j \leq q-2 . \tag{4.1}
\end{equation*}
$$

In particular, $\varepsilon_{0}=\frac{1}{q-1} N$, where $N=1+\sigma+\sigma^{2}+\cdots+\sigma^{q-2}=N_{\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}}$ is the norm element in the group ring $\mathbb{Z}_{q}[G]$.

For a $\mathbb{Z}_{q}[G]$-module M we have

$$
\varepsilon_{j} M=\left\{m \in M: \sigma_{a}(m)=\omega(a)^{j} m\right\},
$$

and we obtain a decomposition of M into a direct sum of $\mathbb{Z}_{q}[G]$-submodules:

$$
M=\bigoplus_{j=0}^{q-2} \varepsilon_{j} M=N M \oplus \bigoplus_{j=1}^{q-2} \varepsilon_{j} M
$$

The group μ_{p} of q th roots of unity has the natural structure of a $\mathbb{Z}_{q}[G]$-module. We define the action of G on $\mu_{q} \otimes M$ by

$$
(\zeta \otimes m)^{\tau}=\zeta^{\tau} \otimes m^{\tau}, \quad \text { where } \zeta \in \mu_{q}, m \in M, \tau \in G \text {. }
$$

Obviously,

$$
\begin{equation*}
\left(\mu_{q} \otimes M\right)^{G}=\varepsilon_{0}\left(\mu_{q} \otimes M\right) . \tag{4.2}
\end{equation*}
$$

By [1] we have

$$
\begin{equation*}
\varepsilon_{0}\left(\mu_{q} \otimes M\right)=\mu_{q} \otimes \varepsilon_{q-2} M \tag{4.3}
\end{equation*}
$$

4.2. The q-rank of $K_{2} \mathcal{O}_{F}$. In the following we always assume that $E=$ $F\left(\zeta_{q}\right)$, and q does not ramify in F, where F is a quintic cyclic field. Denote by $\lambda: \mathcal{C l}\left(\mathcal{O}_{E}\right) \rightarrow \mathcal{C l}\left(\mathcal{O}_{E}[1 / q]\right)$ the homomorphism induced by the imbedding $\mathcal{O}_{E} \rightarrow \mathcal{O}_{E}[1 / q]$, and let $A=A_{E}$ be the Sylow q-subgroup of $\mathcal{C l}\left(\mathcal{O}_{E}\right)$. Then, by the surjectivity of $\lambda, \lambda(A)$ is the Sylow q-subgroup of $\mathcal{C l}\left(\mathcal{O}_{E}[1 / q]\right)$.

Since A is a q-group on which $G=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}\right)=\operatorname{Gal}(E / F)$ acts, we have

$$
A=\bigoplus_{j=0}^{q-2} \varepsilon_{j} A
$$

Lemma 4.1. For $j \neq 0$ the mapping $\lambda: \varepsilon_{j} A \rightarrow \varepsilon_{j} \lambda(A)$ is an isomorphism.

Proof. See the proof of [1, Lemma 4.1].
Lemma 4.2. Let S^{\prime} be the set of ideals of F which divide q and which split completely in $E=F\left(\zeta_{q}\right)$. Then S^{\prime} is empty.

Proof. Since the extension F / \mathbb{Q} is of odd degree, the result follows from [1, Lemma 4.2].

Theorem 4.3. Let $E=F\left(\zeta_{q}\right)$. Then

$$
q-\operatorname{rank} K_{2} \mathcal{O}_{F}=q-\operatorname{rank} \varepsilon_{q-2} A_{E}
$$

Proof. There is an exact sequence

$$
0 \rightarrow\left(\mu_{q} \otimes \mathcal{C l}\left(\mathcal{O}_{E}[1 / q]\right)\right)^{G} \rightarrow K_{2} \mathcal{O}_{F} / q \rightarrow \mu_{q}^{S^{\prime}} \rightarrow 0
$$

(see [7, Theorem 5.4] and [4]). By (4.2), (4.3) and Lemma 4.1 we conclude that

$$
\left(\mu_{q} \otimes \mathcal{C} l\left(\mathcal{O}_{E}[1 / q]\right)\right)^{G}=\mu_{q} \otimes \varepsilon_{q-2} A
$$

The proof is completed by applying Lemma 4.2.
TheOrem 4.4. Let F be a quintic cyclic field and let τ be a generator of the Galois group $\operatorname{Gal}(F / \mathbb{Q})$. Then the following results hold.
(1) If $q \equiv 7(\bmod 10)$ or $q \equiv 3(\bmod 5)$,

$$
4 \mid q^{i}-\operatorname{rank} K_{2} \mathcal{O}_{F}, \quad i>0
$$

(2) If $q \equiv 4(\bmod 5)$, then

$$
2 \mid q^{i}-\operatorname{rank} K_{2} \mathcal{O}_{F}, \quad i>0
$$

Proof. (1) It is easy to see that the order of $q \bmod 5$ is 4 . Let B be the Sylow q-subgroup of $K_{2} \mathcal{O}_{F}$ and set $V=B^{l^{i-1}} / B^{l^{i}}$. Define $r_{i}=q^{i}$-rank $K_{2} \mathcal{O}_{F}$.

Then $r_{i}=\operatorname{dim}_{\mathbb{Z} / q \mathbb{Z}} V$ and V has $q^{r_{i}}$ elements. Let v be any element of V with $v \neq 1$. If $\tau(v)=v$, then

$$
v^{5}=v \tau(v) \tau^{2}(v) \tau^{3}(v) \tau^{4}(v)=j(\operatorname{tr}(v)),
$$

where j is induced by the inclusion $\mathbb{Q} \subset F$ and tr is the transfer homomorphism of K_{2}. It is well known that $K_{2} \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z}$. Therefore, $v^{5}=1$. But $q \nmid 5$, hence $v=1$, a contradiction. It follows that the orbit of every $v \neq 1$ has five elements, hence $q^{r_{i}} \equiv 1(\bmod 5)$. Therefore $4 \mid r_{i}$.
(2) In this case, the order of $q \bmod 5$ is 2 , and the result follows from the proof of (1).

Theorem 4.5. Under the same assumption as in Theorem 4.4, the following results hold.
(1) If $q \equiv 7(\bmod 10)$ or $q \equiv 3(\bmod 5)$, then

$$
\operatorname{Syl}_{q}\left(K_{2} \mathcal{O}_{F}\right)=A^{\prime} \times \tau\left(A^{\prime}\right) \times \tau^{2}\left(A^{\prime}\right) \times \tau^{3}\left(A^{\prime}\right)
$$

for some subgroup A^{\prime} of the Sylow q-subgroup of $K_{2} \mathcal{O}_{F}$.
(2) If $q \equiv 4(\bmod 5)$, then

$$
\operatorname{Syl}_{q}\left(K_{2} \mathcal{O}_{F}\right)=A^{\prime} \times \tau\left(A^{\prime}\right)
$$

for some subgroup A^{\prime} of the Sylow q-subgroup of $K_{2} \mathcal{O}_{F}$.
Proof. The result follows easily from the proofs of Theorem 4.4, and of Lemmas 2.2-2.4.

Let $E^{\prime}=\mathbb{Q}\left(\zeta_{q}\right)$, and denote by A^{\prime} the Sylow q-subgroup of $\mathcal{C l}\left(\mathcal{O}_{E^{\prime}}\right)=$ $\mathcal{C l}\left(\mathbb{Z}\left[\zeta_{q}\right]\right)$. By the theorems of Herbrand and Ribet (see [6, Chapter 15, §3]), we know that $\varepsilon_{q-2} A^{\prime}=1$ for every odd prime number q.

Theorem 4.6.
(1) If $q \equiv 7(\bmod 10)$ or $q \equiv 3(\bmod 5)$, and $\varepsilon_{j} A^{\prime}=1$ for some j with $0 \leq j \leq q-2$, then

$$
4 \mid q^{i}-\operatorname{rank} \varepsilon_{j} A, \quad i>0
$$

In particular, 4 divides the q^{i}-rank of $\varepsilon_{q-2} A$.
(2) If $q \equiv 4(\bmod 5)$, and $\varepsilon_{j} A^{\prime}=1$ for some j with $0 \leq j \leq q-2$, then

$$
2 \mid q^{i}-\operatorname{rank} \varepsilon_{j} A, \quad i>0 .
$$

In particular, 2 divides the q^{i}-rank $\varepsilon_{q-2} A$.
Proof. (1) Let τ be a generator of the Galois group $T:=\operatorname{Gal}(F / \mathbb{Q})=$ $\operatorname{Gal}\left(E / \mathbb{Q}\left(\zeta_{q}\right)\right)$. Since $q \neq p$, it follows that σ and τ commute, and consequently T acts on the group $\varepsilon_{j} A$ for all j with $0 \leq j \leq q-2$. Since the order of $q \bmod 5$ is 4 , and $N_{E / \mathbb{Q}\left(\zeta_{p}\right)}\left(\varepsilon_{j} A\right) \subseteq \varepsilon_{j} A^{\prime}=1$, by the proof of [13, Theorem 10.8] the result is immediate. The last assertion follows from $\varepsilon_{q-2} A^{\prime}=1$; then by Theorem 4.3 we also conclude that 4 divides the q-rank of $K_{2} \mathcal{O}_{F}$.
(2) The proof is similar to that of (1). By the last statement and Theorem 4.3, we also find that 2 divides q-rank $K_{2} \mathcal{O}_{F}$.
4.3. Reflection theorems. In this section we apply reflection theorems to prove some estimates of q-rank $K_{2} \mathcal{O}_{F}$. We extend the above notation as follows.

Let L be the maximal unramified and elementary abelian q-extension of E with the Galois group $H:=\operatorname{Gal}(L / E)$. Then the Artin reciprocity map gives an isomorphism of G-modules $A / q \rightarrow H$.

By Kummer theory, $L=E\left(B^{1 / q}\right)$, where B is a subgroup of E^{*} contain$\operatorname{ing} E^{* q}$. Set $B_{0}:=B / E^{* q}$. Let $b \in B_{0}$ (or more accurately $b \bmod E^{* q} \in B_{0}$). Since $E\left(b^{1 / q}\right) / E$ is unramified, $(b)=\mathfrak{a}^{q}$ for some ideal \mathfrak{a} of \mathcal{O}_{E} ([13, Exercise 9.1]). Changing b by adding an element of $E^{* q}$ leaves the ideal class of \mathfrak{a} unchanged. Moreover, B_{0} is isomorphic to the dual \widehat{H} of H as a G-module. Therefore we have a homomorphism of G-modules

$$
\varphi: B_{0} \rightarrow{ }_{q} A=\left\{a \in A: a^{q}=1\right\}
$$

such that $\varphi\left(b E^{* q}\right)=\mathcal{C l}(\mathfrak{a})$.
Theorem 4.7 (see [2, Theorem 3.1]).

$$
q-\operatorname{rank} \varepsilon_{j} A=q-\operatorname{rank} \varepsilon_{q-j} B_{0}
$$

Let U_{E} be the group of units of \mathcal{O}_{E}, and denote by U_{E}^{\prime} its subgroup of units u satisfying

$$
u \equiv x^{q}\left(\bmod q\left(1-\zeta_{q}\right)\right)
$$

for some $x \in \mathcal{O}_{E}$. Such an element u is called a singular primary unit. It is easy to see that $U_{E}^{q} \subseteq U_{E}^{\prime}$, and by $[2,(3.1)]$ we know that $\operatorname{ker} \varphi=U_{E}^{\prime} / U_{E}^{q}$.

Theorem 4.8. We have

$$
q-\operatorname{rank} \varepsilon_{2}\left(U_{E}^{\prime} / U_{E}^{q}\right) \leq q-\operatorname{rank} K_{2} \mathcal{O}_{F} \leq q-\operatorname{rank} \varepsilon_{2} A_{E}+q-\operatorname{rank} \varepsilon_{2}\left(U_{E}^{\prime} / U_{E}^{q}\right)
$$

Proof. See the proof of [1, Theorem 5.3].
Theorem 4.8 gives some estimates of the q-rank of $K_{2} \mathcal{O}_{F}$ in terms of the q-rank of some subgroups of the class group and of the group of singular primary units (modulo q th powers) of the field $E=F\left(\zeta_{q}\right)$. Unfortunately, for large prime numbers q, the degree of E / \mathbb{Q}, equal to $5(q-1)$, is large, and it is difficult to determine its class group and the group of units, and the action of the Galois group $\operatorname{Gal}(E / \mathbb{Q})$ on them. We are going to show that in certain cases E can be replaced by its proper subfields.

For a fixed primitive root h modulo q set $\omega(h)=\zeta_{q-1} \in \mathbb{Z}_{q}^{*}$, and $t=$ $(q-1) / 2$. Then σ^{t} is the complex conjugation on E and $N_{E / E^{+}}=1+\sigma^{t}$, where E^{+}is the maximal real subfield of E.

Lemma 4.9 (see [1, Lemma 5.4]). Under the above notation we have

$$
\varepsilon_{2}=\varrho \cdot N_{E / E^{+}} \quad \text { for some } \varrho \in \mathbb{Z}_{q}[G] .
$$

Suppose that $q \equiv 1(\bmod 10)$, and let

$$
\eta_{j}:=\frac{1}{5} \sum_{l=0}^{4} \zeta_{5}^{l j} \tau^{-l} \quad \text { for } j=0,1,2,3,4
$$

where τ is a generator of $T=\operatorname{Gal}(F / \mathbb{Q})=\operatorname{Gal}\left(E / \mathbb{Q}\left(\zeta_{q}\right)\right)$. Then $\eta_{0}, \eta_{1}, \eta_{2}$, η_{3}, η_{4} are primitive idempotents of the group ring $\mathbb{Z}_{q}[T]$. Hence

$$
\begin{equation*}
\varepsilon_{2}=\sum_{j=0}^{4} \varepsilon_{2} \eta_{j} \tag{4.4}
\end{equation*}
$$

in the group ring $\mathbb{Z}_{q}[G \times T]$. Set $r=(q-1) / 10$. For $j=0,1,2,3,4$, let T_{j} be the subgroup of $G \times T$ generated by σ_{t} and $\sigma^{r j} \tau^{-1}$, and denote by E_{j} the subfield of E which is fixed by T_{j}. Then $\# T_{j}=10, E_{j} \subseteq E^{+}$, and $\left(E_{j}: \mathbb{Q}\right)=(q-1) / 2=t$. In particular, $E_{0}=E^{\left\langle\sigma^{t}, \tau^{-1}\right\rangle}=\mathbb{Q}\left(\zeta_{q}\right)^{+}$is the maximal real subfield of $\mathbb{Q}\left(\zeta_{q}\right)$.

Lemma 4.10. Under the above notation we have

$$
\varepsilon_{2} \eta_{j}=\varrho_{j} \cdot N_{E / E_{j}}
$$

for $j=0,1,2,3,4$ and some $\varrho_{j} \in \mathbb{Z}_{q}[G \times T]$.
Proof. From the computation used in [1, Lemma 5.5] we easily obtain

$$
\varepsilon_{2} \eta_{j}=\frac{1}{5(q-1)}\left(\sum_{m=0}^{r-1} \zeta_{5 r}^{m} \sigma^{-m}\right)\left(\sum_{j=0}^{4} \zeta_{5}^{j} \sigma^{-r j}\right) \cdot N_{E / E_{j}}
$$

For every subfield L of E we define U_{L}^{\prime} to be the group of singular primary units in L. Then

$$
U_{L}^{\prime}=U_{E}^{\prime} \cap L \quad \text { and } \quad N_{E / L} U_{E}^{\prime} \subseteq U_{L}^{\prime}
$$

By the proof of Lemma 5.6 in [1], the natural inclusion $U_{L}^{\prime} \rightarrow U_{E}^{\prime}$ induces an injection

$$
U_{L}^{\prime} / U_{L}^{q} \rightarrow U_{E}^{\prime} / U_{E}^{q} \quad \text { for } q>5
$$

From the above we get inclusions of elementary abelian q-groups

$$
N_{E / L}\left(U_{E}^{\prime} / U_{E}^{q}\right) \subseteq U_{L}^{\prime} / U_{L}^{q} \subseteq U_{E}^{\prime} / U_{E}^{q}
$$

hence, acting by ε_{2}, we obtain

$$
\begin{equation*}
q-\operatorname{rank} \varepsilon_{2} N_{E / L}\left(U_{E}^{\prime} / U_{E}^{q}\right) \leq q-\operatorname{rank} \varepsilon_{2}\left(U_{L}^{\prime} / U_{L}^{q}\right) \leq q-\operatorname{rank} \varepsilon_{2}\left(U_{E}^{\prime} / U_{E}^{q}\right) \tag{4.5}
\end{equation*}
$$

Lemma 4.11. Let $L_{1}, L_{2}, L_{3}, L_{4}$ be subfields of E, and set $L_{0}=L_{2} L_{3} L_{4}$ $\cap L_{1}$. Suppose that $L_{1}, L_{2}, L_{3}, L_{4}$ are proper subfields of $L_{1} L_{2} L_{3} L_{4}$, and that

$$
U_{L_{i_{1}} L_{i_{2}} L_{i_{3}} \cap L_{i_{4}}}^{\prime} / U_{L_{i_{1}} L_{i_{2}} L_{i_{3}} \cap L_{i_{4}}}^{q}=1 \quad \text { for }\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}=\{1,2,3,4\}
$$

Then the mapping

$$
U_{L_{1}}^{\prime} / U_{L_{1}}^{q} \times U_{L_{2}}^{\prime} / U_{L_{2}}^{q} \times U_{L_{3}}^{\prime} / U_{L_{3}}^{q} \times U_{L_{4}}^{\prime} / U_{L_{4}}^{q} \rightarrow U_{L_{1} L_{2} L_{3} L_{4}}^{\prime} / U_{L_{1} L_{2} L_{3} L_{4}}^{q}
$$ given by $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \mapsto u_{1} u_{2} u_{3} u_{4}$ is injective.

Proof. Suppose that $u_{1} \in U_{L_{1}}^{\prime}, u_{2} \in U_{L_{2}}^{\prime}, u_{3} \in U_{L_{3}}^{\prime}, u_{4} \in U_{L_{4}}^{\prime}$ satisfy

$$
\begin{equation*}
u_{1} u_{2} u_{3} u_{4}=u^{q} \quad \text { for some } u \in U_{L_{1} L_{2} L_{3} L_{4}} \tag{4.6}
\end{equation*}
$$

Let $r=\left(L_{1} L_{2} L_{3} L_{4}: L_{1}\right) \mid(E: \mathbb{Q})=5(q-1)$. We have

$$
\begin{aligned}
& N_{L_{1} L_{2} L_{3} L_{4} / L_{1}}\left(u_{1}\right)=u_{1}^{r}, \\
& N_{L_{1} L_{2} L_{3} L_{4} / L_{1}}\left(u_{2}\right)=N_{L_{2} L_{3} L_{4} / L_{0}}\left(u_{2}\right) \in U_{L_{0}}^{\prime}=U_{L_{0}}^{q} \subseteq U_{L_{1}}^{q}, \\
& N_{L_{1} L_{2} L_{3} L_{4} / L_{1}}\left(u_{3}\right)=N_{L_{2} L_{3} L_{4} / L_{0}}\left(u_{3}\right) \in U_{L_{0}}^{\prime}=U_{L_{0}}^{q} \subseteq U_{L_{1}}^{q}, \\
& N_{L_{1} L_{2} L_{3} L_{4} / L_{1}}\left(u_{4}\right)=N_{L_{2} L_{3} L_{4} / L_{0}}\left(u_{4}\right) \in U_{L_{0}}^{\prime}=U_{L_{0}}^{q} \subseteq U_{L_{1}}^{q}, \\
& N_{L_{1} L_{2} L_{3} L_{4} / L_{1}}\left(u^{q}\right)=\left(N_{L_{1} L_{2} L_{3} L_{4} / L_{1}}(u)\right)^{q} \subseteq U_{L_{1}}^{q} .
\end{aligned}
$$

Consequently, from (4.6), we know that $u_{1}^{r} \in U_{L_{1}}^{q}$, so $u_{1} \in U_{L_{1}}^{q}$, since $q \nmid r$. In a similar way we get $u_{2} \in U_{L_{2}}^{q}, u_{3} \in U_{L_{3}}^{q}, u_{4} \in U_{L_{4}}^{q}$. Hence the mapping under consideration is injective.

By Lemma 4.11 the restricted mapping

$$
\begin{aligned}
& \varepsilon_{2}\left(U_{L_{1}}^{\prime} / U_{L_{1}}^{q}\right) \times \varepsilon_{2}\left(U_{L_{2}}^{\prime} / U_{L_{2}}^{q}\right) \times \varepsilon_{2}\left(U_{L_{3}}^{\prime} / U_{L_{3}}^{q}\right) \times \varepsilon_{2}\left(U_{L_{4}}^{\prime} / U_{L_{4}}^{q}\right) \\
& \rightarrow \varepsilon_{2}\left(U_{L_{1} L_{2} L_{3} L_{4}}^{\prime} / U_{L_{1} L_{2} L_{3} L_{4}}^{q}\right)
\end{aligned}
$$

is injective. Hence, under the assumption of Lemma 4.11, we have

$$
\begin{align*}
\sum_{j=1}^{4} q-\operatorname{rank} \varepsilon_{2}\left(U_{L_{j}}^{\prime} / U_{L_{j}}^{q}\right) & \leq q-\operatorname{rank} \varepsilon_{2}\left(U_{L_{1} L_{2} L_{3} L_{4}}^{\prime} / U_{L_{1} L_{2} L_{3} L_{4}}^{q}\right) \tag{4.7}\\
& \leq q-\operatorname{rank} \varepsilon_{2}\left(U_{E}^{\prime} / U_{E}^{q}\right)
\end{align*}
$$

Combining (4.4), (4.5), (4.7), Theorem 4.8, Lemma 4.10 and the proof of [1, Theorem 5.8], we obtain the following result.

Theorem 4.12. Let E_{j} be the subfield of E fixed by the group

$$
T_{j}=\left\langle\sigma^{r j} \tau^{-1}, \sigma^{t}\right\rangle, \quad j=0,1,2,3,4
$$

Then

$$
\begin{aligned}
\max _{0 \leq j \leq 4} q-\operatorname{rank} \varepsilon_{2}\left(U_{E_{j}}^{\prime} / U_{E_{j}}^{q}\right) & \leq q-\operatorname{rank} K_{2} \mathcal{O}_{F} \\
& \leq \sum_{j=0}^{4} q-\operatorname{rank} \varepsilon_{2} A_{E_{j}}+\sum_{j=0}^{4} q-\operatorname{rank} \varepsilon_{2}\left(U_{E_{j}}^{\prime} / U_{E_{j}}^{q}\right)
\end{aligned}
$$

Moreover, if $U_{E_{i_{1}} E_{i_{2}} E_{i_{3}} \cap E_{i_{4}}}^{\prime} / U_{E_{i_{1}} E_{i_{2}} E_{i_{3}} \cap E_{i_{4}}}^{q}=1$ for $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}=\{1,2,3,4\}$,
and the class number of the field $\mathbb{Q}\left(\zeta_{q}\right)$ is not divisible by q, then

$$
\begin{aligned}
\sum_{j=1}^{4} q-\operatorname{rank} \varepsilon_{2}\left(U_{E_{j}}^{\prime} / U_{E_{j}}^{q}\right) & \leq q-\operatorname{rank} K_{2} \mathcal{O}_{F} \\
& \leq \sum_{j=1}^{4} q-\operatorname{rank} \varepsilon_{2} A_{E_{j}}+\sum_{j=1}^{4} q-\operatorname{rank} \varepsilon_{2}\left(U_{E_{j}}^{\prime} / U_{E_{j}}^{q}\right)
\end{aligned}
$$

5. Orders of tame kernels. In this section, we assume that in F there is only one ramified prime $p, p \equiv 1(\bmod 10)$. We know that F is the unique quintic subfield of the cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$.

By the Birch-Tate conjecture, we can compute $\# K_{2} \mathcal{O}_{F}$. The conjecture states that whenever M is a totally real number field,

$$
\begin{equation*}
\# K_{2} \mathcal{O}_{M}=\omega_{2}(M)\left|\zeta_{M}(-1)\right| \tag{5.1}
\end{equation*}
$$

where ζ_{M} is the Dedekind zeta function of the field M, and

$$
\omega_{2}(M)=2 \prod_{l \text { prime }} l^{n_{l}}
$$

where n_{l} is the largest integer n such that M contains $Q\left(\zeta_{l^{n}}+\zeta_{l^{n}}^{-1}\right)$, the maximal real subfield of $Q\left(\zeta_{l^{n}}\right)$. The conjecture is known to be true when M is abelian over \mathbb{Q} and is known to be true in general up to a power of 2 . (See [8], [9] and [14].)

Let M^{+}denote the maximal real subfield of a number field M. For every quintic cyclic field F, we have $\omega_{2}(F)=24$, with one exception:

$$
\omega_{2}(F)=5 \cdot 24 \quad \text { for } F=\mathbb{Q}\left(\zeta_{11}\right)^{+} .
$$

Now, we return to quintic cyclic fields F with only one ramified prime $p>11$. In the following, we use two methods to compute $\left|\zeta_{F}(-1)\right|$.

1) The Dedekind zeta function $\zeta_{F}(s)$ of the field F is defined by the Euler product

$$
\begin{equation*}
\zeta_{F}(s)=\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{q \text { splits }}\left(1-\frac{1}{q^{s}}\right)^{-5} \prod_{q \text { is inert }}\left(1-\frac{1}{q^{5 s}}\right)^{-1} . \tag{5.2}
\end{equation*}
$$

From simple computations, it can be seen that $|d(F)|=p^{4}$ and $\Gamma(-1 / 2)=$ $-2 \sqrt{\pi}$. By the functional equation we obtain

$$
\left|\zeta_{F}(-1)\right|=\left|-\frac{p^{6}}{32 \pi^{10}} \zeta_{F}(2)\right|
$$

Consequently,

$$
\# K_{2} \mathcal{O}_{F}=\frac{3 p^{6}}{4 \pi^{10}} \zeta_{F}(2)
$$

From (5.2) we know that $1<\zeta_{F}(2)<\zeta(2)^{5}$, where $\zeta(s)$ is the Riemann zeta function. Hence

$$
\begin{equation*}
\frac{3}{4 \pi^{10}} p^{6}<\# K_{2} \mathcal{O}_{F}<\frac{1}{2^{7} \cdot 3^{4}} p^{6} \tag{5.3}
\end{equation*}
$$

2) The Dedekind zeta function of an abelian number field F is the product of L-series:

$$
\zeta_{F}(s)=\prod_{\chi} L(s, \chi)
$$

where χ runs through the linear characters of the Galois group $\operatorname{Gal}(F / \mathbb{Q})$.
Let g be a primitive root modulo p. Then the subgroup $H=\left\langle g^{5}\right\rangle$ of the group $(\mathbb{Z} / p)^{*}=\langle g\rangle$ has index 5, and there are four nontrivial cosets $g^{j} H$ for $j=1,2,3,4$.

In our case, there are four nontrivial Dirichlet characters χ_{j}, where

$$
\chi_{j}(a)= \begin{cases}\zeta_{5}^{j k} & \text { if } a(\bmod p) \in g^{k} H, k=0,1,2,3,4 \\ 0 & \text { if } p \mid a\end{cases}
$$

Hence,

$$
\zeta_{F}(s)=\zeta(s) \prod_{j=1}^{4} L\left(s, \chi_{j}\right)
$$

The generalized Bernoulli number $B_{2, \chi}$ corresponding to a Dirichlet character χ of conductor f is defined by

$$
B_{n, \chi}=f^{n-1} \sum_{j=1}^{f} \chi(j) B_{n}\left(\frac{j}{f}\right),
$$

where $B_{n}(X)$ is the nth Bernoulli polynomial.
Applying the formula (see [13, Theorem 4.2])

$$
L(-1, \chi)=-B_{2, \chi} / 2,
$$

and $\zeta(-1)=-1 / 12$, we get

$$
\zeta_{F}(-1)=-\frac{1}{192} \prod_{j=1}^{4} B_{2, \chi_{j}} .
$$

Hence

$$
\# K_{2} \mathcal{O}_{F}=\frac{1}{8} \prod_{j=1}^{4} B_{2, \chi_{j}}
$$

It is easy to compute $B_{2, \chi_{j}}$ (see [13, Exercise 4.2(a)]):

$$
B_{2, \chi_{j}}=\frac{1}{p} \sum_{i=1}^{p} \chi_{j}(i) i^{2} .
$$

For $k=0,1,2,3,4$, we define $T_{k}:=\left\{i: 1 \leq i \leq p-1, i(\bmod p) \in g^{k} H\right\}$ and

$$
S_{k}:=\frac{1}{p} \sum_{i \in T_{k}} i^{2} .
$$

Since $i \in T_{k}$ iff $i \equiv g^{5 r+k}(\bmod p)$ for some r with $0 \leq r \leq(p-6) / 5$, it follows that

$$
\sum_{i \in T_{k}} i^{2}=g^{2 k} \sum_{r=0}^{(p-6) / 5} g^{10 r}=g^{2 k} \frac{1-g^{2(p-1)}}{1-g^{10}} \equiv 0(\bmod p)
$$

since $g^{p-1} \equiv 1(\bmod p)$. Thus the S_{k} are integers, and in the ring $\mathbb{Z}\left[\zeta_{5}\right]$ we have the congruence

$$
B_{2, \chi_{j}} \equiv S_{0}+S_{1}+S_{2}+S_{3}+S_{4}\left(\bmod \left(1-\zeta_{5}\right)\right)
$$

Consequently,

$$
8 \# K_{2} \mathcal{O}_{F}=\prod_{j=1}^{4} B_{2, \chi_{j}} \equiv\left(S_{0}+S_{1}+S_{2}+S_{3}+S_{4}\right)^{4}\left(\bmod \left(1-\zeta_{5}\right)\right)
$$

Since both sides of the congruence are integers, we get

$$
\begin{align*}
8 \# K_{2} \mathcal{O}_{F} & \equiv\left(S_{0}+S_{1}+S_{2}+S_{3}+S_{4}\right)^{4}(\bmod 5) \tag{5.4}\\
& \equiv\left(\frac{p-1}{6}(2 p-1)\right)^{4}(\bmod 5)
\end{align*}
$$

Theorem 5.1. If $p \equiv 1(\bmod 10)$, then $5 \mid \# K_{2} \mathcal{O}_{F}$.
Proof. When $p=11$, since $\omega_{2}(F)=5 \cdot 24$, from (5.1) we know that $5 \mid \# K_{2} \mathcal{O}_{F}$.

When $p>11$, since $p \equiv 1(\bmod 10)$, from (5.4) we see that $5 \mid \# K_{2} \mathcal{O}_{F}$.
Theorem 5.2.

$$
\lim _{p \rightarrow \infty} \# K_{2} \mathcal{O}_{F}=\infty
$$

Proof. This follows from (5.3).

References

[1] J. Browkin, Tame kernels of cubic cyclic fields, Math. Comp. 74 (2005), 967-999.
[2] -, On the p-rank of the tame kernel of algebraic number fields, J. Reine Angew. Math. 432 (1992), 135-149.
[3] A. Brumer, On the group of units of an absolutely cyclic number field of prime degree, J. Math. Soc. Japan 21 (1969), 357-358.
[4] M. Geijsberts, The tame kernel, computational aspects, Ph.D. thesis, Catholic Univ. of Nijmegen, 1991.
[5] X. Guo and H. Qin, The 3-adic regulators and wild kernels, J. Algebra 312 (2007), 418-425.
[6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982.
[7] F. Keune, On the structure of the K_{2} of the ring of integers in a number field, K-Theory 2 (1989), 625-645.
[8] M. Kolster, A relation between the 2-primary parts of the main conjecture and the Birch-Tate conjecture, Canad. Math. Bull. 32 (1989), 248-251.
[9] B. Mazur and A. Wiles, Class fields of abelian extensions of \mathbb{Q}, Invent. Math. 76 (1984), 179-330.
[10] H. Qin, Reflection theorems and the p-Sylow subgroup of $K_{2} \mathcal{O}_{F}$ for a number field F, preprint.
[11] H. Qin and H. Zhou, The 3-Sylow subgroup of the tame kernel of real number fields, J. Pure Appl. Algebra 209 (2007), 245-253.
[12] J. Tate, Relations between K_{2} and Galois cohomology, Invent. Math. 36 (1976), 257-274.
[13] L. C. Washington, Introduction to Cyclotomic Fields, Springer, 1982.
[14] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), 493-540.
[15] H. Y. Zhou, Tame kernels of cubic cyclic fields, Acta Arith. 124 (2006), 293-313.
Department of Mathematics
Nanjing University
Nanjing 210093, China
E-mail: xiaxia80@gmail.com

Received on 2.2.2008
and in revised form on 28.3.2008

[^0]: 2000 Mathematics Subject Classification: Primary 11R70; Secondary 11R16, 11Y40, 19-04, 19C99.

 Key words and phrases: quintic fields, cyclic fields, tame kernels.
 Supported by NSFC.

