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Discrete self-similar multifractals with

examples from algebraic number theory

by

L. Olsen (St. Andrews)

1. Introduction and statement of results. A self-similar set is a
set that can be decomposed into a union of subsets which are scaled down
copies of the whole set. Similarly, a self-similar measure is a measure that
can be decomposed into a sum of measures which are scaled down copies
of the original measure. Self-similar sets such as the classical Cantor set,
the von Koch curve and the Sierpiński triangle are amongst the most well
known examples of fractal sets. Similarly, self-similar measures such as the
binomial Cantor measure (cf. Figure 1 below) are amongst the most well
known examples of fractal measures. Such fractal measures are called mul-
tifractal measures (or multifractals) and the study of the fractal properties,
and in particular, the study of the so-called Lq-multifractal spectra, of these
measures is referred to as multifractal analysis.
The basic ideas leading to the study of multifractal measures and their

Lq-multifractal spectra originate from the work of theoretical physicists
[HJKPS] in the 1980’s, and during the past 20 years multifractal measures
and, in particular, self-similar multifractal measures in Rd and their fractal
structure have attracted an enormous interest in the mathematical litera-
ture. Indeed, the Lq-multifractal spectra of self-similar measures in Rd are
by now well understood (cf. for example [AP, St] or the textbooks [Ed, Fa]
and the references therein).
In this paper we will attempt to define self-similar multifractal mea-

sures in a discrete, and typically algebraic, setting and study their fractal
structure. Firstly, we will provide definitions of a self-similar measure and
its Lq-multifractal spectrum in a discrete (algebraic) setting; cf. Section 1.2
and, in particular, (1.5)–(1.7). Secondly, in Theorem 1.1 we obtain a formula
for the Lq-multifractal spectrum of a self-similar multifractal in a discrete
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(algebraic) setting. This formula is analogous to the classical formula for the
Lq-multifractal spectrum of an ordinary self-similar measure in Rd. Thirdly,
we provide a number of illustrative examples taken from algebraic number
theory: in Section 2 we consider self-similar fractal measures of ideals of
number fields, and in Section 3 we consider self-similar fractal measures on
polynomial rings over finite fields.

1.1. Self-similar measures in Rd. To motivate our definitions and results,
we begin by a brief description of self-similar measures in Euclidean space
and their Lq-multifractal spectra. Therefore, let d be a positive integer.
A map S : Rd → Rd is called a similarity if there exists a positive real
number r > 0 such that

|S(x)− S(y)| = r|x− y|

for all x, y ∈ Rd. The number r is called the contracting ratio of S. If
r < 1, the map S is said to be contractive. In 1981 Hutchinson [Hu] proved
that finite families of contracting similarities can be used for generating
self-similar measures.

Definition ([Hu]). Let (S1, . . . , Sm) be a finite family of contracting
similarities in Rd and let (p1, . . . , pm) be a probability vector. A Borel prob-
ability measure in Rd is called self-similar with respect to the family (Si, pi)i
if

(1.1) µ =
∑

i

piµ ◦ S
−1
i .

For each finite family (S1, . . . , Sm) of contracting similarities in Rd and
each probability vector (p1, . . . , pm), there exists a unique Borel probability
measure µ satisfying (1.1).

During the 1980’s and 1990’s self-similar measures, and generalizations
thereof, have attracted a lot of interest. In particular, there has been an
enormous amount of literature investigating the Lq-multifractal spectra of
these measures. The Lq-multifractal spectrum of a measure µ is defined as
follows. For a real number q and r > 0, write

Iq
R
(r) =

\
µ(B(x, r))q−1 dµ(x).

We now define the lower and upper Lq-multifractal spectra, sometimes also
called the lower and upper Rényi spectra, of µ by

(1.2)

τ
R
(q) = lim inf

rց0

log Iq(r)

− log r
= lim inf

rց0

log
T
µ(B(x, r))q−1 dµ(x)

− log r
,

τR(q) = lim sup
rց0

log Iq(r)

− log r
= lim sup

rց0

log
T
µ(B(x, r))q−1 dµ(x)

− log r
.
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The main result is the following theorem providing an explicit formula for
Lq-multifractal spectra of a self-similar measure. This result appears explic-
itly in [AP, St] but is also implicit in [Ra]. For a more thorough discussion of
this result and a more comprehensive list of references the reader is referred
to [Fa, Lau].

Theorem A ([AP, St, Ra]). Let (S1, . . . , Sm) be a finite family of con-
tracting similarities in Rd and let (p1, . . . , pm) be a probability vector. Let
ri denote the contracting ratio of Si. Let µ be the unique self-similar mea-
sure associated with the family (Si, pi)i and write K for the support of µ.
Assume that the following condition is satisfied.

(i) Si(K) ∩ Sj(K) = ∅ for all i 6= j.

For each q ∈ R, define the real number β(q) by

(1.3)
∑

i

pqi r
β(q)
i = 1.

Then

τ
R
(q) = τR(q) = β(q).

Example. The classical ternary Cantor C is defined by

(1.4) C =

{ ∞
∑

l=1

al
3l

∣

∣

∣

∣

a1, a2, . . . = 0, 2

}

.

Let (p0, p2) be a probability vector. It follows by a standard argument that
there exists a unique probability measure µ on C such that

(1.5) µ

({

a1
3
+
a2
32
+ · · ·+

an
3n
+

∞
∑

l=n+1

dl
3l

∣

∣

∣

∣

dn+1, dn+2, . . . = 0, 2

})

= pa1 · · · pan

for all positive integers n and all a1, . . . , an = 0, 2. The measure µ is known
as the binomial Cantor measure and is sketched in Figure 1 for (p0, p2) =
(

2
3 ,
1
3

)

. The measure µ is the standard example of a self-similar measure.
Indeed, if we define S0, S2 : R→ R by S0(x) =

1
3x and S2(x) =

1
3x+

2
3 , then

clearly µ = p0µ ◦ S
−1
0 + p2µ ◦ S

−1
2 . Since also S0(C) ∩ S2(C) = ∅, it follows

from Theorem A that τ
R
(q) = τR(q) = β(q), where β(q) is the solution to

the equation
∑

i=0,2 p
q
i

(

1
3

)β(q)
= 1, whence

(1.6) τ
R
(q) = τR(q) =

log(pq0 + p
q
2)

log 3
.

1.2. Self-similar measures on normed structures. The purpose of this pa-
per is to provide an analogous definition of a self-similar measure µ in various
discrete algebraic settings and to obtain a formula for the Lq-multifractal
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0 1 0 1

0 1 0 1

Fig. 1. This figure shows the first four measures µ1, . . . , µ4 in a sequence (µn)n of proba-

bility measures converging weakly to the binomial Cantor measure. The measures µn are

defined as follows. Define S0, S2 : R → R by S0(x) =
1
3x and S2(x) =

1
3x +

2
3 , and put

(p0, p2) =
(

2
3 ,
1
3

)

. Then µn =
∑
i1,...,in=0,2

pi1 · · · pinδSi1 ···Sin (0)
where δx denotes the

Dirac measure concentrated at x. The height of each vertical bar is proportional to the

measure µn({Si1 · · ·Sin(0)}) = pi1 · · · pin of the singleton {Si1 · · ·Sin(0)}.

spectrum of µ similar to Theorem A. However, we first consider a somewhat
more general setting, namely, that of normed structures.

Definition. A normed structure is a pair (X,N) where X is a set and
N : X → R+ is a function such that for all r > 0, we have

|{x ∈ X | N(x) ≤ r}| <∞.

We now list a few examples of normed structures.

Example. Fix p ≥ 1. Let X = Zd and put N(x) = (
∑

i |xi|
p)1/p for

x = (x1, . . . , xd) ∈ Zd. Then (X,N) is a normed structure.
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Example. Fix p ≥ 1. Let X be a lattice in Rd and put N(x) =
(
∑

i |xi|
p)1/p for x = (x1, . . . , xd) ∈ X. Then (X,N) is a normed structure.

Example. Let k be a number field. Let O denote the ring of integers
in k and let J be a subfamily of ideals in O. For x ∈ J , let N(x) denote the
norm of x. Then (J , N) is a normed structure. This example is investigated
in detail in Section 2.

Example. Let l be a positive integer and let F be a finite field. For
p ∈ F[X1, . . . , Xl], let N(p) = |F|

deg(p) where deg(p) denotes the total de-
gree of p. Then (F [X1, . . . , Xl], N) is a normed structure. This example is
investigated in Section 3.

Example. Let G be an arithmetical semigroup with norm N (cf. [Kn]).
Then (G,N) is a normed structure.

Observe that if (X,N) is a normed structure, then X is countable (this
is so since X =

⋃

n∈N{x ∈ X | N(x) ≤ n} and each set {x ∈ X | N(x) ≤ n}

is finite). Let (X,N) be a normed structure. If f : X → R is a function and
r ∈ R, we will say that f(x) tends to r as N(x)→∞, written

f(x)→ r as N(x)→∞,

if the following is satisfied: for each ε > 0, there exists M > 0 such that if
x ∈ X and N(x) ≥M , then

|f(x)− r| ≤ ε.

Definition. A function S : X → X is called power-like if there exist
r > 0 and t ≥ 1 such that

N(S(x))

N(x)t
→ r as N(x)→∞.

Motivated by definition (1.1) of a self-similar measure in Rd, we define
a self-similar measure on X as follows.

Definition. Let Si : X → X for i = 1, . . . ,m be power-like functions
and let (p1, . . . , pm) be a probability vector. A measure µ on X is called
self-similar with respect to the family (Si)i if

(1.7) µ =
∑

i

piµ ◦ S
−1
i .

The reader will observe that this definition is analogous to that of self-
similar measures in Rd, and our main aim is to formulate and prove a re-
sult for µ similar to Theorem A. Next, we define the lower and upper Lq-
multifractal spectra of a measure µ on a normed structure. However, first
observe that any normed structure is countable and therefore often consists
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of isolated points. Hence, typically µ(B(x, r)) equals 0 for all sufficiently
small r > 0, and so typically we have

lim inf
rց0

log
T
µ(B(x, r))q−1 dµ(x)

− log r
= lim sup

rց0

log
T
µ(B(x, r))q−1 dµ(x)

− log r

=

{

∞ for q < 1,

−∞ for 1 ≤ q.

Hence, in general, the Lq-spectra τ
R
(q) and τR(q) introduced in (1.2) do not

provide “the correct” way of investigating the multifractal structure of µ. We
therefore define the lower and upper Lq-multifractal spectra of a measure µ
on a normed structure as follows. However, first we introduce some notation.

If x ∈ X, we will abuse notation slightly and write µ(x) instead of µ({x}).
For r > 0, let

(1.8) B(r) = {x ∈ X | N(x) ≤ r}.

Next, fix a measure µ on X. For E ⊆ X, q ∈ R and r > 0, we write

(1.9) Iq(E; r) =
\

E∩B(r)

µ(x)q−1 dµ(x).

Observe that since |{x ∈ X | N(x) ≤ r}| <∞ for all r > 0, it follows that if
µ(x) > 0 for all x ∈ E, then Iq(E; r) is finite. We now define the lower and
upper q-fractal dimension of E by

(1.10)

dimq(E) = lim inf
r→∞

log Iq(E; r)

log r

= lim inf
r→∞

log
T
E∩B(r)

µ(x)q−1 dµ(x)

log r
,

dimq(E) = lim sup
r→∞

log Iq(E; r)

log r

= lim sup
r→∞

log
T
E∩B(r)

µ(x)q−1 dµ(x)

log r
.

Write K for the support of µ, i.e.

K = {x ∈ X | µ(x) > 0}.

The functions

τ : q → dimq(K), τ : q → dimq(K),

are called the lower and upper Lq-multifractal spectra of µ, respectively.
We can now state our main result providing a formula similar to (1.3) for
the lower and upper Lq-multifractal spectra of a self-similar measure on a
normed structure.
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Theorem 1.1. Let (X,N) be a normed structure. Let Si : X → X for
i = 1, . . . ,m be power-like functions, i.e. for each i there exist ri > 0 and
ti ≥ 1 such that

N(Si(x))

N(x)ti
→ ri as N(x)→∞.

Let (p1, . . . , pm) be a probability vector. Let µ be a measure on X that is
self-similar with respect to the family (Si, pi)i and write K for the support
of µ. Assume that the following three conditions are satisfied :

(i) ri > 1 for all i with ti = 1;
(ii) Si is injective for all i;
(iii) Si(K) ∩ Sj(K) = ∅ for all i 6= j.

For each q ∈ R, define the real number β(q) by

(1.11)
∑

i:ti=1

pqi
1

r
β(q)
i

= 1.

If either (a) 0 ≤ β(q), or (b) β(q) < 0 and ti = 1 for all i, then we have

τ(q) = τ(q) = β(q).

In Sections 2 and 3 we consider several examples of normed structures
taken from algebraic number theory. Finally, Theorem 1.1 is proved in Sec-
tion 4. To present the proof we derive two renewal type inequalities for the
function r 7→ Iq(K; r) (cf. (4.3) and (4.9)). For each positive δ > 0, these
inequalities are seen to imply the existence of a constant c > 0 such that
Iq(K; r) ≤ crβ(q)+δ and Iq(K; r) ≥ crβ(q)−δ for all r > 0. Theorem 1.1 fol-
lows immediately from this. The reader is referred to [Lal, Ol1] for related
(but different) arguments.
If q = 0, then the dimensions dimq(E) and dimq(E) simplify to

(1.12)

dim0(E) = lim inf
r→∞

|{x ∈ E | N(x) ≤ r}|

log r
,

dim0(E) = lim sup
r→∞

|{x ∈ E | N(x) ≤ r}|

log r
.

For the case where X = Z and N(x) = |x| for x ∈ Z, the dimensions
in (1.12) have been introduced and studied earlier by various authors; see,
for example, [BaT1, BaT2, BeF, Ol2, Ol3].

2. Example: self-similar multifractals of ideals in number fields.

We now consider the case where the normed structure is the family of ideals
of the ring of integers in a number field. Therefore, let k be a number field
and let O be the ring of integers in k. Let I denote the family of ideals of
O and let J ⊆ I. For x ∈ I, let N(x) denote the norm of x. It is well known
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that for each r > 0, we have

|{x ∈ I | N(x) ≤ r}| <∞.

In particular, this shows that (J , N) is a normed structure. In this case we
see that the lower and upper Lq-multifractal spectra of a measure µ on J
are given by

τ(q) = lim inf
r→∞

log
∑

x∈J :N(x)≤r µ(x)
q

log r
,

τ(q) = lim sup
r→∞

log
∑

x∈J :N(x)≤r µ(x)
q

log r
.

By applying Theorem 1.1 to this setting we obtain the following result.

Theorem 2.1. Let k be a number field and let O be the ring of integers

in k. Let I denote the family of ideals of O and let J ⊆ I. Let Si : J → J
for i = 1, . . . ,m be power-like functions, i.e. for each i there exist ri > 0
and ti ≥ 1 such that

N(Si(x))

N(x)ti
→ ri as N(x)→∞.

Let (p1, . . . , pm) be a probability vector. Let µ be a measure on J that is
self-similar with respect to the family (Si, pi)i and write K for the support
of µ. Assume that the following three conditions are satisfied :

(i) ri > 1 for all i with ti = 1;
(ii) Si is injective for all i;
(iii) Si(K) ∩ Sj(K) = ∅ for all i 6= j.

For each q ∈ R, define the real number β(q) by

(2.1)
∑

i:ti=1

pqi
1

r
β(q)
i

= 1.

If either (a) 0 ≤ β(q), or (b) β(q) < 0 and ti = 1 for all i, then we have

τ(q) = τ(q) = β(q).

We are certainly not the first to consider the asymptotic behaviour of
sums of the form

∑

x∈J, N(x)≤r µ(x)
q for various choices of µ. Indeed, there

is a huge body of literature analyzing this problem for different choices of µ;
cf. [Nar, Chapter 7] or [PS, Section 6.6] for numerous examples. However,
this appears to be the first study of this problem in the setting of general
self-similar measures µ on I.

Example. Fix θ ∈ O \ {0} and let J be the family of principal ideals
x of the form x = nθO for n ∈ N, i.e. J = {nθO | n ∈ N}. Fix a positive
integer M with M ≥ 2 and let I ⊆ {0, 1, . . . ,M − 1}. For i ∈ I, define
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Si : J → J by

(2.2) Si(nθO) = (Mn+ i)θO.

It is easily seen that Si is well defined and injective for all i. We now claim
that Si is a power-like function for all i; in fact, we will prove that

(2.3)
N(Si(x))

N(x)
→M [k:Q] as N(x)→∞

for all i. Indeed, for x = nθO with n ∈ N, we clearly have

N(Si(x)) = N(Si(nθO)) = N((Mn+ i)θO) = |N((Mn+ i)θ)|

= |N(Mn+ i)| |N(θ)| = (Mn+ i)[k:Q] |N(θ)|

and
N(x) = N(nθO) = |N(nθ)| = |N(n)| |N(θ)| = n[k:Q] |N(θ)|

(here we have used the fact that if x ∈ Q, then N(x) = x[k:Q]), whence

N(Si(x))

N(x)
=
(Mn+ i)[k:Q] |N(θ)|

n[k:Q] |N(θ)|
=

(

M +
i

n

)[k:Q]

=

(

M +
i

(N(x)/|N(θ)|)1/[k:Q]

)[k:Q]

.

Equation (2.3) follows immediately from this.
Let (pi)i∈I be a probability vector and define a measure µ on J as

follows. For x ∈ J , we put

µ(x) =















pa0pa1 · · · pan if x ∈ J has the form

x = (a0 + a1M + · · ·+ anMn)θO

for n ∈ N and a0, a1, . . . , an ∈ I with an 6= 0,

0 otherwise.
The support K of µ is clearly equal to

K = {(a0 + a1M + · · ·+ anM
n)θO | ai ∈ I, n ∈ N}.

It is not difficult to see that

(2.4) µ =
∑

i∈I

piµ ◦ S
−1
i .

Indeed, to prove this it clearly suffices to show µ(x) =
∑

i∈I piµ(S
−1
i (x)) for

all x ∈ J . For this, let x ∈ J . If x 6∈ K, then S−1i (x) = ∅ for all i, whence
µ(x) = 0 and

∑

i∈I piµ(S
−1
i (x)) = 0. On the other hand, if x ∈ K, then x has

the form x = (a0 + a1M + · · ·+ anM
n)θO for n ∈ N and a0, a1, . . . , an ∈ I.

This implies that

S−1i (x) =

{

(a1 + a2M + · · ·+ anM
n−1)θO if i = a0,

∅ if i 6= a0,
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whence
∑

i∈I

piµ(S
−1
i (x)) = pa0µ(S

−1
a0 (x)) = pa0µ((a1 + a2M + · · ·+ anM

n−1)θO)

= pa0pa1 · · · pan =µ((a0 + a1M + · · ·+ anM
n)θO) =µ(x).

This proves (2.4). It is also easily seen that Si(K)∩Sj(K) = ∅ for all i 6= j.
It therefore follows from Theorem 2.1 that τ(q) = τ(q) = β(q), where β(q)
is the solution to the equation

∑

i∈I

pqi
1

M [k:Q]β(q)
= 1,

whence

(2.5) τ(q) = τ(q) =
1

[k : Q]

log
∑

i∈I p
q
i

logM
.

If M = 3 and I = {0, 2}, then the measure µ is given by

(2.6) µ(x) =



















pa0pa1 · · · pan if x ∈ J has the form

x = (a0 + a13 + · · ·+ an3
n)θO for n ∈ N

and a0, a1, . . . , an = 0, 2 with an 6= 0,

0 otherwise,

and the set K equals

(2.7) K = {(a0 + a13 + · · ·+ an3
n)θO | ai = 0, 2, n ∈ N}.

Figure 2 provides a graphical illustration of the measure µ in (2.6) for
(p0, p2) =

(

2
3 ,
1
3

)

. The reader should note the similarity between this figure
and the Cantor measure in Figure 1. It also follows from (2.5) that the lower
and upper Lq-multifractal spectra τ(q) and τ (q) of µ are given by

(2.8) τ(q) = τ(q) =
1

[k : Q]

log(pq0 + p
q
2)

log 3
.

In this case the set K and the measure µ are clearly discrete ideal analogues
of the classical ternary Cantor set C in (1.4) and the Cantor measure in (1.5),
respectively, and formula (2.8) for the lower and upper Lq-multifractal spec-
tra of µ is clearly analogous to formula (1.6) for the lower and upper Lq-
multifractal spectra of the Cantor measure.

3. Example: self-similar multifractals in polynomial rings. Let
l be a positive integer and let F be a finite field. We now consider the case
where the normed structure is the ring F[X1, . . . , Xl] of polynomials of l
variables with coefficients in F. For p ∈ F[X1, . . . , Xl], let deg(p) denote the
total degree of p, and put N(p) = |F|deg(p). It is clear that for each r > 0,
we have |{p ∈ F[X1, . . . , Xl] | N(p) ≤ r}| < ∞. In particular, this shows
that (F[X1, . . . , Xl], N) is a normed structure. In this case we see that the
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mθ
0 c0θ

mθ
c1θ0

mθ
c2θ0 0

mθ
c3θ

Fig. 2. This figure provides a graphical illustration of the measure µ in (2.6) for (p0, p2)

=
(

2
3 ,
1
3

)

. For n = 0, 1, 2, 3, the measure restricted to the set {mθO | m = 0, 1, . . . , cn},
where cn = 2+2 ·3+2 ·3

2+ · · ·+2 ·3n = 3n+1−1, is sketched. In the figure each principal
ideal of the form mθO with m ∈ N is identified with the number mθ, and the height of
each vertical bar is proportional to the measure µ(mθO) of the singleton {mθO}.

lower and upper Lq-multifractal spectra of a measure µ on F[X1, . . . , Xl] are
given by

τ(q) = lim inf
r→∞

log
∑

p∈F[X1,...,Xl]:|F|deg(p)≤r
µ(p)q

log r
,

τ(q) = lim sup
r→∞

log
∑

p∈F[X1,...,Xl]:|F|deg(p)≤r
µ(p)q

log r
.

By applying Theorem 1.1 to this setting we obtain the following result.
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Theorem 3.1. Let l be a positive integer and let F be a finite field. Let

Si : F[X1, . . . , Xl]→ F[X1, . . . , Xl] for i = 1, . . . ,m be power-like functions,
i.e. for each i there exist ri > 0 and ti ≥ 1 such that

N(Si(p))

N(p)ti
→ ri as N(p)→∞.

Let (p1, . . . , pm) be a probability vector. Let µ be a measure on F[X1, . . . , Xl]
that is self-similar with respect to the family (Si, pi)i and write K for the
support of µ. Assume that the following three conditions are satisfied :

(i) ri > 1 for all i with ti = 1;

(ii) Si is injective for all i;
(iii) Si(K) ∩ Sj(K) = ∅ for all i 6= j.

For each q ∈ R, define the real number β(q) by

(3.1)
∑

i:ti=1

pqi
1

r
β(q)
i

= 1.

If either (a) 0 ≤ β(q), or (b) β(q) < 0 and ti = 1 for all i, then we have

τ(q) = τ(q) = β(q).

Example. For i = 1, . . . , l, let Ji be a finite set, and let {ai,j | j ∈ Ji}
be a subset of F. For i = 1, . . . , l and j define Si,j : F[X1, . . . , Xl] →
F[X1, . . . , Xl] by

Si,j(p) = Xip+ ai,j .

It is easily seen that Si,j is injective, and that

N(Si,j(p))

N(p)
→ |F| as N(p)→∞.

Let (pi,j)i,j be a probability vector and define a measure µ on F[X1, . . . , Xl]
as follows:

µ(p) =



























pi0,j0pi1,j1 · · · pin−1,jn−1 if p ∈ F[X1, . . . , Xl] has the from

p= ai0,j0+ai1,j1Xi0+ai2,j2Xi0Xi1+ · · ·

· · ·+ ain,jnXi0Xi1 · · ·Xin−1
for n ∈ N with ain,jn 6= 0,

0 otherwise.

The support K of µ is clearly equal to

K = {ai0,j0+ai1,j1Xi0+ai2,j2Xi0Xi1 +· · ·+ ain,jnXi0Xi1 · · ·Xin−1 | n ∈ N}.

It is not difficult to see that

µ =
∑

i,j

pi,jµ ◦ S
−1
i,j .
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It is also easily seen that Si1,j1(K) ∩ Si2,j2(K) = ∅ for all (i1, j1) 6= (i2, j2).
It therefore follows from Theorem 3.1 that τ(q) = τ(q) = β(q), where β(q)
is the solution to the equation

∑

i,j

pqi,j
1

|F|β(q)
= 1,

whence

τ(q) = τ(q) =
log
∑

i,j p
q
i,j

log |F|
.

4. Proof of Theorem 1.1

Lemma 4.1. Let (X,N) be a normed structure. Let Si : X → X for
i = 1, . . . ,m be power-like functions. Let (p1, . . . , pm) be a probability vector.
Let µ be a measure on X that is self-similar with respect to the family
(Si, pi)i and write K for the support of µ.

(i) If Si is injective for all i, then

K =
⋃

i

Si(K).

(ii) If Si is injective for all i and Si(K)∩ Sj(K) = ∅ for all i 6= j, then

µ(Six) = piµ(x)

for all x ∈ K.

Proof. (i) We first prove that K ⊆
⋃

i Si(K). Let x ∈ K. It follows from
(1.7) that 0 < µ(x) =

∑

i piµ(S
−1
i x), and we therefore conclude that there

exists j such that µ(S−1j x) > 0. This shows that S
−1
j x ⊆ K, whence x ∈

Sj(K) ⊆
⋃

i Si(K). Next, we prove that
⋃

i Si(K) ⊆ K. Let x ∈
⋃

i Si(K).
In particular, this implies that there exists j such that x ∈ Sj(K), whence

S−1j x ∈ K, and so µ(S
−1
j x) > 0. Again, using (1.7), we infer that µ(x) =

∑

i piµ(S
−1
i x) ≥ pjµ(S

−1
j x) > 0. This shows that x ∈ K.

(ii) Using (1.7) we see that

µ(Six) =
∑

j

pjµ(S
−1
j Six).

However, since Sl is injective for all l and Sl(K) ∩ Sj(K) = ∅ for all l 6= j,
we conclude that S−1j Six = ∅ for i 6= j and that S

−1
i Six = x. Hence

µ(Six) =
∑

j

pjµ(S
−1
j Six) = piµ(S

−1
i Six) = piµ(x).

This completes the proof.
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Proof of Theorem 1.1. Part 1. We must prove that τ(q) ≤ β(q). Fix
δ > 0. It follows from the definition of β(q) that

1 =
∑

i:ti=1

pqi
1

r
β(q)
i

>
∑

i:ti=1

pqi
1

r
β(q)+δ
i

,

and we can thus choose ε > 0 such that
∑

i:ti=1

pqi
1

(ri − ε)β(q)+δ
< 1.

Recall that either (a) 0 ≤ β(q), or (b) β(q) < 0 and ti = 1 for all i. This
combined with the previous inequality implies that there exists R0 > 0 such
that

(4.1)
∑

i:ti=1

pqi
1

(ri − ε)β(q)+δ

+
∑

i:ti 6=1

pqi
1

(ri − ε)(β(q)+δ)/ti
1

r(1−1/ti)(β(q)+δ)
< 1

for all r > R0.

Next, observe that since N(Si(x))/N(x)
ti → ri as N(x) → ∞, there

exists a positive number M > 0 such that

(4.2)

∣

∣

∣

∣

N(Si(x))

N(x)ti
− ri

∣

∣

∣

∣

≤ ε

for all x ∈ X with N(x) ≥M and all i.
Finally, write

R = max(R0, (M max
i
(ri − ε)

1/ti)maxi ti).

Claim 1. For all r ≥ R we have

Si(K) ∩B(r) ⊆ Si

(

K ∩B

((

r

ri − ε

)1/ti))

for all i.

Proof of Claim 1. Let x ∈ Si(K)∩B(r). We must now prove that Si(x) ∈

Si(K∩B((r/(ri − ε))
1/ti)). Since x ∈ Si(K)∩B(r), there exists u ∈ K such

that x = Si(u). We have to show that u ∈ K∩B((r/(ri − ε))
1/ti). It is clear

that u ∈ K. Hence we must show that N(u) ≤ (r/(ri − ε))
1/ti . There are

two cases to consider.

Case 1: M ≤ N(u). In this case it follows from (4.2) that
∣

∣

∣

∣

N(Si(u))

N(u)ti
− ri

∣

∣

∣

∣

≤ ε.
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Rearranging this inequality shows that

N(u) ≤

(

N(Si(u))

ri − ε

)1/ti

=

(

N(x)

ri − ε

)1/ti

≤

(

r

ri − ε

)1/ti

.

Case 2: N(u) ≤ M . Since r ≥ R ≥ (M maxi(ri − ε)
1/ti)maxi ti , we see

that M ≤ (r/(ri − ε))
1/ti . Hence, in Case 2 we also have

N(u) ≤M ≤

(

r

ri − ε

)1/ti

.

This completes the proof of Claim 1.

Since (by Lemma 4.1) K =
⋃

i Si(K), it follows from Claim 1 that for
all r ≥ R we have

Iq(K; r) =
∑

x∈K∩B(r)

µ(x)q ≤
∑

i

∑

x∈Si(K)∩B(r)

µ(x)q

≤
∑

i

∑

Si(K∩B((
r

ri−ε
)1/ti ))

µ(x)q =
∑

i

∑

u∈K∩B(( r
ri−ε

)1/ti )

µ(Six)
q.

Finally, by Lemma 4.1, this implies that

Iq(K; r) ≤
∑

i

∑

u∈K∩B(( r
ri−ε

)1/ti )

pqiµ(x)
q(4.3)

=
∑

i

pqi I
q

((

r

ri−ε

)1/ti)

.

Next, define W : R+ → R by

W (r) = r−(β(q)+δ)Iq(K; r).

It follows from (4.1) and (4.3) that if r ≥ R, then

(4.4) W (r) ≤ r−(β(q)+δ)
∑

i

pqi

(

r

ri − ε

)(β(q)+δ)/ti

W

((

r

ri − ε

)1/ti)

=
∑

i

pqi
1

(ri − ε)(β(q)+δ)/ti
1

r(1−1/ti)(β(q)+δ)
W

((

r

ri − ε

)1/ti)

≤

(

∑

i

pqi
1

(ri − ε)(β(q)+δ)/ti
1

r(1−1/ti)(β(q)+δ)

)

sup
j
W

((

r

rj − ε

)1/tj)
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=

(

∑

i:ti=1

pqi
1

(ri − ε)β(q)+δ
+
∑

i:ti 6=1

pqi
1

(ri − ε)(β(q)+δ)/ti
1

r(1−1/ti)(β(q)+δ)

)

× sup
j
W

((

r

rj − ε

)1/tj)

≤ sup
j
W

((

r

rj − ε

)1/tj)

.

Now, write ∆ = mini(ri− ε)
1/ti > 1. Next, we prove that for all positive

integers l with R ≤ ∆l−1, we have

(4.5) sup
0<r≤∆l

W (r) ≤ sup
0<r≤∆l−1

W (r).

Indeed, for r with R ≤ r ≤ ∆l, we have
(

r

rj − ε

)1/tj

=
r1/tj

(rj − ε)1/tj
≤
r

∆
≤
∆l

∆
= ∆l−1

for all j, and (4.4) therefore implies that

W (r) ≤ sup
j
W

((

r

rj − ε

)1/tj)

≤ sup
0<̺≤∆l−1

W (̺).

This proves (4.5).

Choose a positive integer l0 with∆
l0 ≥R. Successive applications of (4.5)

yield

sup
0<r
W (r) = sup

l0<l
sup
0<r≤∆l

W (r)(4.6)

≤ sup
l0<l

sup
0<r≤∆l−1

W (r)

...

≤ sup
l0<l

sup
0<r≤∆l0

W (r)

= sup
0<r≤∆l0

W (r).

Since clearly c = sup0<r≤∆l0 W (r) = sup0<r≤∆l0 r
−(β(q)+δ)Iq(K; r) < ∞

(because Iq(K; r) = 0 for all sufficiently small r 6= 0), we conclude from
(4.6) that r−(β(q)+δ)Iq(K; r) =W (r) ≤ c for all r > 0. This clearly implies

τ(q) = lim sup
r→∞

log Iq(K; r)

log r
≤ β(q) + δ.

Letting δ ց 0 gives the desired result.
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Proof of Theorem 1.1. Part 2. We must prove that β(q) ≤ τ(q). Fix
δ > 0. It follows from the definition of β(q) that

1 =
∑

i:ti=1

1

r
β(q)
i

<
∑

i:ti=1

1

r
β(q)−δ
i

,

and we can thus choose ε > 0 such that

(4.7)
∑

i:ti=1

1

(ri + ε)β(q)−δ
> 1.

Next, observe that since N(Si(x))/N(x)
ti → ri as N(x) → ∞, there

exists a positive number M > 0 such that

(4.8)

∣

∣

∣

∣

N(Si(x))

N(x)
− ri

∣

∣

∣

∣

≤ ε

for all x ∈ X with N(x) ≥M and all i with ti = 1.
Finally write

R = sup
i:N(x)≤M

N(Si(x)) <∞.

Claim 2. For all r ≥ R we have

Si

(

K ∩B

(

r

ri + ε

))

⊆ Si(K) ∩B(r)

for all i with ti = 1.

Proof of Claim 2. Let x ∈ K∩B
(

r
ri+ε

)

. We must now prove that Si(x) ∈
Si(K) ∩ B(r). It is clear that Si(x) ∈ Si(K). Hence we have to show that
|Si(x)| ≤ r.

Case 1: M ≤ N(x). In this case it follows from (4.8) that
∣

∣

∣

∣

N(Si(x))

N(x)
− ri

∣

∣

∣

∣

≤ ε.

Also, x ∈ K ∩ B
(

r
ri+ε

)

, whence N(x) ≤ r
ri+ε
. Rearranging this inequality

shows that (ri + ε)N(x) ≤ r. Hence

N(Si(x)) = riN(x) +N(x)

(

N(Si(x))

N(x)
− ri

)

≤ riN(x) +N(x)

∣

∣

∣

∣

N(Si(x))

N(x)
− ri

∣

∣

∣

∣

≤ riN(x) +N(x)ε ≤ r.

Case 2: N(x) ≤M . Since N(x) ≤M and r ≥ R, we see that

N(x) ≤ sup
i:N(y)≤M

N(Si(y)) = R ≤ r.

This completes the proof of Claim 2.
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Since K =
⋃

i Si(K) and Si(K) ∩ Sj(K) = ∅ for i 6= j, it follows from
Claim 2 that for all r ≥ R we have

Iq(K; r) =
∑

x∈K∩B(r)

µ(x)q =
∑

i

∑

x∈Si(K)∩B(r)

µ(x)q

≥
∑

i:ti=1

∑

x∈Si(K)∩B(r)

µ(x)q ≥
∑

i:ti=1

∑

x∈Si(K∩B(
r

ri+ε
))

µ(x)q

≥
∑

i:ti=1

∑

u∈K∩B( r
ri+ε

)

µ(Siu)
q.

Finally, by Lemma 4.1, this implies that

(4.9) Iq(K; r) ≥
∑

i:ti=1

∑

u∈K∩B( r
ri+ε

)

pqiµ(u)
q =
∑

i:ti=1

pqi I
q

(

r

ri + ε

)

.

Next, define W : R+ → R by

W (r) = r−(β(q)−δ)Iq(K; r).

It follows from (4.7) and (4.9) that if r ≥ R, then

W (r) ≥ r−(β(q)−δ)
∑

i:ti=1

pqi

(

r

ri + ε

)β(q)−δ

W

(

r

ri + ε

)

(4.10)

=
∑

i:ti=1

pqi
1

(ri + ε)β(q)−δ
W

(

r

ri + ε

)

≥

(

∑

i:ti=1

pqi
1

(ri + ε)β(q)−δ

)

inf
j:tj=1

W

(

r

rj + ε

)

≥ inf
j:tj=1

W

(

r

rj + ε

)

.

Now, write ∆ = mini(ri + ε) > 1. Next, we prove that for all positive
integers l with R ≤ ∆l−1, we have

(4.11) inf
0<r≤∆l

W (r) ≥ inf
0<r≤∆l−1

W (r).

Indeed, for r with R ≤ r ≤ ∆l, we have

r

rj + ε
≤
r

∆
≤
∆l

∆
= ∆l−1

for all j, and (4.10) therefore implies that

W (r) ≥ inf
j:tj=1

W

(

r

rj + ε

)

≥ inf
0<̺≤∆l−1

W (̺).

This proves (4.11).
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Choose a positive integer l0 with ∆
l0 ≥ R. Successive applications of

(4.11) yields

inf
0<r
W (r) = inf

l0<l
inf

0<r≤∆l
W (r)(4.12)

≥ inf
l0<l

inf
0<r≤∆l−1

W (r)

...

≥ inf
l0<l

inf
0<r≤∆l0

W (r)

= inf
0<r≤∆l0

W (r).

Since clearly c = inf0<r≤∆l0 W (r) = inf0<r≤∆l0 r
−(β(q)−δ)Iq(K; r) > 0, we

conclude from (4.12) that r−(β(q)−δ)Iq(K; r) =W (r) ≥ c for all r > 0. This
clearly implies

τ(q) = lim inf
r→∞

log Iq(K; r)

log r
≥ β(q)− δ.

Letting δ ց 0 gives the desired result.
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