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Discrete self-similar multifractals with
examples from algebraic number theory

by

L. OLSEN (St. Andrews)

1. Introduction and statement of results. A self-similar set is a
set that can be decomposed into a union of subsets which are scaled down
copies of the whole set. Similarly, a self-similar measure is a measure that
can be decomposed into a sum of measures which are scaled down copies
of the original measure. Self-similar sets such as the classical Cantor set,
the von Koch curve and the Sierpinski triangle are amongst the most well
known examples of fractal sets. Similarly, self-similar measures such as the
binomial Cantor measure (cf. Figure 1 below) are amongst the most well
known examples of fractal measures. Such fractal measures are called mul-
tifractal measures (or multifractals) and the study of the fractal properties,
and in particular, the study of the so-called L?-multifractal spectra, of these
measures is referred to as multifractal analysis.

The basic ideas leading to the study of multifractal measures and their
Li-multifractal spectra originate from the work of theoretical physicists
[HJKPS] in the 1980’s, and during the past 20 years multifractal measures
and, in particular, self-similar multifractal measures in R% and their fractal
structure have attracted an enormous interest in the mathematical litera-
ture. Indeed, the L9-multifractal spectra of self-similar measures in R are
by now well understood (cf. for example [AP, St] or the textbooks [Ed, Fa]
and the references therein).

In this paper we will attempt to define self-similar multifractal mea-
sures in a discrete, and typically algebraic, setting and study their fractal
structure. Firstly, we will provide definitions of a self-similar measure and
its L9-multifractal spectrum in a discrete (algebraic) setting; cf. Section 1.2
and, in particular, (1.5)—(1.7). Secondly, in Theorem 1.1 we obtain a formula
for the LY-multifractal spectrum of a self-similar multifractal in a discrete
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(algebraic) setting. This formula is analogous to the classical formula for the
L9-multifractal spectrum of an ordinary self-similar measure in R?. Thirdly,
we provide a number of illustrative examples taken from algebraic number
theory: in Section 2 we consider self-similar fractal measures of ideals of
number fields, and in Section 3 we consider self-similar fractal measures on
polynomial rings over finite fields.

1.1. Self-similar measures in R%. To motivate our definitions and results,
we begin by a brief description of self-similar measures in Euclidean space
and their L%-multifractal spectra. Therefore, let d be a positive integer.
A map S : R? — R? is called a similarity if there exists a positive real
number r > 0 such that

15(x) = S(y)| = rle -yl
for all z,y € R The number r is called the contracting ratio of S. If
r < 1, the map S is said to be contractive. In 1981 Hutchinson [Hu] proved
that finite families of contracting similarities can be used for generating
self-similar measures.

DEFINITION ([Hu]). Let (S1,...,Sm,) be a finite family of contracting
similarities in R? and let (p1,...,pm) be a probability vector. A Borel prob-
ability measure in R? is called self-similar with respect to the family (S;, p;);
if

(1.1) p=> pipoS;t.

For each finite family (Si,...,S,) of contracting similarities in R¢ and
each probability vector (p1,...,pm), there exists a unique Borel probability
measure (4 satisfying (1.1).

During the 1980’s and 1990’s self-similar measures, and generalizations
thereof, have attracted a lot of interest. In particular, there has been an
enormous amount of literature investigating the L?-multifractal spectra of
these measures. The L?-multifractal spectrum of a measure u is defined as
follows. For a real number ¢ and r > 0, write

I(r) =\ u(B(z,7)"" du(z).

We now define the lower and upper Li-multifractal spectra, sometimes also
called the lower and upper Rényi spectra, of u by

I 11 1 B q,ld
7r(q) = liminf L(T) = liminf ogg,u( (z,7)) ,u(fL’)7
(1.2) ™0 —logr ™0 —logr
7r(g) = limsup log I(r) — limsup og § u(B(z,r)) u(m)

m~o —logr N0 —logr
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The main result is the following theorem providing an explicit formula for
Li-multifractal spectra of a self-similar measure. This result appears explic-
itly in [AP, St] but is also implicit in [Ra]. For a more thorough discussion of
this result and a more comprehensive list of references the reader is referred
to [Fa, Lau].

THEOREM A ([AP, St, Ral]). Let (S1,...,Sm) be a finite family of con-
tracting similarities in R® and let (py,...,pm) be a probability vector. Let
r; denote the contracting ratio of S;. Let p be the unique self-similar mea-
sure associated with the family (S;,p;): and write K for the support of u.
Assume that the following condition is satisfied.

For each q € R, define the real number 3(q) by

(1.3) S ple 0 =1,

Then
mr(q) = Tr(q) = B(q).
ExaMPLE. The classical ternary Cantor C' is defined by

(1.4) C:{Z%

=1

ai,ag, ... :0,2}

Let (po,p2) be a probability vector. It follows by a standard argument that
there exists a unique probability measure y on C' such that

a1 a2 (07%) = dl
1.5 —_— = - -

dn+17dn+27' = 072}>

= Pa; """ Pay

for all positive integers n and all a4, ...,a, = 0,2. The measure p is known
as the binomial Cantor measure and is sketched in Figure 1 for (pg,p2) =

(%, %) The measure p is the standard example of a self-similar measure.

Indeed, if we define Sy, Sz : R — R by Sp(z) = %x and Sy(z) = %x%— %, then
clearly p = pop o Sy ' + pap o S5 1. Since also Sp(C) N S2(C) = 0, it follows

from Theorem A that 7x(q) = Tr(q) = B(q), where ((q) is the solution to

the equation >, g, pg(%)’g(w = 1, whence
_ log(pg + p3
(16) ralq) = Talg) = B0 LLE),

log 3
1.2. Self-similar measures on normed structures. The purpose of this pa-

per is to provide an analogous definition of a self-similar measure p in various
discrete algebraic settings and to obtain a formula for the L?-multifractal
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o u o 1
| || || l
o 1 o 1
Fig. 1. This figure shows the first four measures p1, ..., uq in a sequence (pn )n of proba-

bility measures converging weakly to the binomial Cantor measure. The measures puy, are
defined as follows. Define So, S : R — R by So(z) = 3z and Sa(z) = 2 + 2, and put

(po,p2) = (%, %) Then pn =32, i —0.2Pi “+Pi,0s,; .5, (0) where 6z denotes the
Dirac measure concentrated at x. The height of each vertical bar is proportional to the
measure fn({Si, -+ Si,(0)}) = pi, - - - pi,, of the singleton {S;, ---S;, (0)}.

spectrum of y similar to Theorem A. However, we first consider a somewhat
more general setting, namely, that of normed structures.

DEFINITION. A normed structure is a pair (X, N) where X is a set and
N : X — R, is a function such that for all » > 0, we have

Hz e X | N(z) <r} < .
We now list a few examples of normed structures.

ExaMPLE. Fix p > 1. Let X = Z% and put N(z) = (3, |=;|?)}/? for
r=(21,...,74) € Z* Then (X, N) is a normed structure.
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EXAMPLE. Fix p > 1. Let X be a lattice in R? and put N(z) =
(X, lz:|P)Y/P for @ = (21,...,24) € X. Then (X, N) is a normed structure.

EXAMPLE. Let k be a number field. Let O denote the ring of integers
in k and let J be a subfamily of ideals in . For ¢ € 7, let N(r) denote the
norm of r. Then (7, N) is a normed structure. This example is investigated
in detail in Section 2.

EXAMPLE. Let [ be a positive integer and let ' be a finite field. For
p € F[X1,...,X)], let N(p) = |F|4&(P) where deg(p) denotes the total de-
gree of p. Then (F[Xy,...,X;], N) is a normed structure. This example is
investigated in Section 3.

EXAMPLE. Let G be an arithmetical semigroup with norm N (cf. [Kn]).
Then (G, N) is a normed structure.

Observe that if (X, N) is a normed structure, then X is countable (this
is so since X = |J,,cy{z € X | N(z) <n} and each set {x € X | N(z) < n}
is finite). Let (X, N) be a normed structure. If f : X — R is a function and
r € R, we will say that f(x) tends to r as N(x) — oo, written

f(x) > r as N(z) — oo,

if the following is satisfied: for each € > 0, there exists M > 0 such that if
xz € X and N(z) > M, then

[f(z) —r| <e.

DEFINITION. A function S : X — X is called power-like if there exist
r > 0 and ¢t > 1 such that

N(S(z))

N @) —1r as N(z) — oo.

Motivated by definition (1.1) of a self-similar measure in R?, we define
a self-similar measure on X as follows.

DEFINITION. Let S; : X — X for i = 1,...,m be power-like functions
and let (p1,...,pm) be a probability vector. A measure p on X is called
self-similar with respect to the family (.S;); if

(1.7) p=> pipoS;t

The reader will observe that this definition is analogous to that of self-
similar measures in R?, and our main aim is to formulate and prove a re-
sult for p similar to Theorem A. Next, we define the lower and upper L?-
multifractal spectra of a measure p on a normed structure. However, first
observe that any normed structure is countable and therefore often consists
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of isolated points. Hence, typically pu(B(x,r)) equals 0 for all sufficiently
small » > 0, and so typically we have

log § u(B(z, 7))~ " du(x) log § p(B(,7))7"" du(z)

lim inf = limsup
™0 —logr N0 —logr
00 for g < 1,
|- forl<g.

Hence, in general, the L9-spectra 7g(q) and Tr(q) introduced in (1.2) do not
provide “the correct” way of investigating the multifractal structure of . We
therefore define the lower and upper L4-multifractal spectra of a measure
on a normed structure as follows. However, first we introduce some notation.

If x € X, we will abuse notation slightly and write p(z) instead of u({x}).
For r > 0, let

(1.8) B(r)={x € X | N(z) <r}.
Next, fix a measure p on X. For E C X, ¢ € R and r > 0, we write
(1.9) (B = | ) du().

ENB(r)

Observe that since [{z € X | N(z) < r}| < oo for all > 0, it follows that if
wu(x) > 0 for all x € E, then I[7(FE;r) is finite. We now define the lower and
upper q-fractal dimension of E by

log I1( E;
dim?(E) = lim inf 28 T(F57)
r—00 logr
. log SEOB(T) ()" dp(x)
= lim inf

r—00 logr

- log I9(E;
dim?(FE) = limsup log I"(E; )
r—00 log r
, 108 § oy oy ()" ()
= lim sup .

P00 logr

)

(1.10)

Write K for the support of u, i.e.
K ={ze X | pu(x) >0}
The functions
7:q—dim!(K), 7:q— dim?(K),

are called the lower and upper Li-multifractal spectra of u, respectively.
We can now state our main result providing a formula similar to (1.3) for
the lower and upper L4-multifractal spectra of a self-similar measure on a
normed structure.
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THEOREM 1.1. Let (X, N) be a normed structure. Let S; : X — X for
1 =1,...,m be power-like functions, i.e. for each i there exist r; > 0 and
t; > 1 such that

N(Si(z))
N (z)*

Let (p1,...,pm) be a probability vector. Let p be a measure on X that is
self-similar with respect to the family (S;,p;); and write K for the support
of u. Assume that the following three conditions are satisfied:

(i) r; > 1 for all © with t; = 1;

(ii) S; is injective for all i;

(iii) S;(K)NS;(K) =0 for all i # j.
For each q € R, define the real number $(q) by

1
q _
(1.11) g Pi gy = L
itg=1 Ty

—7r; as N(z) — oo.

If either (a) 0 < 3(q), or (b) B(q) <0 and t; =1 for all i, then we have
7(q) = 7(q) = B(q)-

In Sections 2 and 3 we consider several examples of normed structures
taken from algebraic number theory. Finally, Theorem 1.1 is proved in Sec-
tion 4. To present the proof we derive two renewal type inequalities for the
function r — I9(K;r) (cf. (4.3) and (4.9)). For each positive 6 > 0, these
inequalities are seen to imply the existence of a constant ¢ > 0 such that
I9(K;r) < erB@%9 and T9(K;r) > ¢r?@=9 for all » > 0. Theorem 1.1 fol-
lows immediately from this. The reader is referred to [Lal, Ol1] for related
(but different) arguments.

If ¢ = 0, then the dimensions dim?(E) and dim9(E) simplify to

<
dim®(E) = lim inf 12 € Z 1N @) <7

r—00 log r ’
(1.12)
T E|N <
dim®(E) = lim sup {zr e F|N(x) < r}|.
r—00 logr

For the case where X = Z and N(z) = |z| for x € Z, the dimensions
in (1.12) have been introduced and studied earlier by various authors; see,
for example, [BaT1, BaT2, BeF, 012, Ol3].

2. Example: self-similar multifractals of ideals in number fields.
We now consider the case where the normed structure is the family of ideals
of the ring of integers in a number field. Therefore, let k£ be a number field
and let O be the ring of integers in k. Let Z denote the family of ideals of
O and let J C Z. For ¢ € Z, let N(x) denote the norm of . It is well known
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that for each r > 0, we have
{eeZ|N() <r} < oo

In particular, this shows that (7, N) is a normed structure. In this case we
see that the lower and upper Li-multifractal spectra of a measure p on J
are given by

log : T/’L L a

7(q) = lim inf Zreiwms (¥) 7
r—00 og T

4 lOg Z;EJ:N(;)ST M(?)q

7(g) = lim su
(9) erp log r

By applying Theorem 1.1 to this setting we obtain the following result.

THEOREM 2.1. Let k be a number field and let O be the ring of integers
in k. Let T denote the family of ideals of O andlet J CZI. Let S; : J — J

for i =1,...,m be power-like functions, i.e. for each i there exist r; > 0
and t; > 1 such that
N(Si(r))
——= —7r;  as N(r) — oo.
N ()t )

Let (p1,...,pm) be a probability vector. Let pu be a measure on J that is
self-similar with respect to the family (S;,p;); and write K for the support
of u. Assume that the following three conditions are satisfied:

(i) r; > 1 for all i with t; = 1;
(ii) S; is injective for all i;

(iii) Si(K)NS;(K) =0 for all i # j.
For each q € R, define the real number 3(q) by

1
q — T
(2-1) Z b; T@(q) 1

i:t; =1 7

If either (a) 0 < B(q), or (b) B(q) <0 and t; =1 for all i, then we have
(q) = 7(q) = B(q)-

We are certainly not the first to consider the asymptotic behaviour of
sums of the form > 7 ()<, #(x)? for various choices of p. Indeed, there
is a huge body of literature analyzing this problem for different choices of u;
cf. [Nar, Chapter 7] or [PS, Section 6.6] for numerous examples. However,
this appears to be the first study of this problem in the setting of general
self-similar measures p on 7.

ExaMpPLE. Fix 6 € O\ {0} and let J be the family of principal ideals
¢ of the form ¢ = ndO for n € N, i.e. 7 = {nfO | n € N}. Fix a positive
integer M with M > 2 and let I C {0,1,...,M — 1}. For ¢ € I, define
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Si:J —J by
(2.2) Si(nfO) = (Mn +1)69.
It is easily seen that S; is well defined and injective for all ;. We now claim

that .S; is a power-like function for all 4; in fact, we will prove that

(2.3) — MFU a5 N(1) — o0

for all ¢. Indeed, for r = nfO with n € N, we clearly have
N(S8i(x)) = N(Si(n#9)) = N((Mn +14)00) = [N((Mn + 1)0)|
= IN(Mn + )| [N(9)| = (Mn + )= |N(0)]

and
N(F) = N(nb9) = [N(nd)| = [N(n)] [N (9)] = nlt¥ | N (6)]

(here we have used the fact that if 2 € Q, then N(z) = 2*), whence
N(S; M A\ [k:Q] N(O -\ [k:Q]
(Si(x)) _ (Mn+ i)™= | ()|:<M+Z>

N AN

n

; )
- <M+ (N(zc)/IN(G)I)l/[’“@]) |

Equation (2.3) follows immediately from this.
Let (pi)icr be a probability vector and define a measure p on J as

follows. For ¢ € J, we put

DagPa; ***Pa, if t € J has the form

() = r=(ap+a1M+---+a, M™)0O
for n € N and ag, a1,...,a, € I with a, # 0,

0 otherwise.
The support K of u is clearly equal to

K={(ap+arM+---+a,M")0O | a;, € I, n € N}.
It is not difficult to see that
(2.4) p=> pipoS; "

iel

Indeed, to prove this it clearly suffices to show u(x) = >, pip(S; ' (x)) for
all x € J. For this, let x € J. If ¢t € K, then S{l(;) = () for all 7, whence
w(r) =0 and Zielpiu(Si_l(x)) = 0. On the other hand, if x € K, then 1 has
the form ¢ = (ap + a1 M + -+ - + a, M™)0O for n € N and ag,aq,...,a, € I.
This implies that
S_l(p) B { (a1 +asM + -+ a, M~ 1)0O if i = ay,

@ le 7é aop,

(2
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whence
> pit(S;H(¥) = Paott(Say (7)) = Papit((a1 + a2 M + -+ + an M™~1)0D)
iel
= PagPar ** Pa,, = (a0 + ar M + - -+ + a, M"™)09) = pu(x).
This proves (2.4). It is also easily seen that S;(K)N.S;(K) =0 for all ¢ # j.

It therefore follows from Theorem 2.1 that 7(q) = 7(q) = ((q), where 3(q)
is the solution to the equation

1
q _
> MR b
iel
whence
1 log) e, pf
2.5 =7(q) = e
(2.5) 7(q) =7(q) 50 logM
If M =3 and I = {0, 2}, then the measure p is given by
DagPay ***Pa, if r € J has the form
t=(ap+a13+ -+ a,3")00 for n € N
and ag, ay,...,a, = 0,2 with a, # 0,

0 otherwise,
and the set K equals

(2.7) K ={(ap+a13+---+ap3")00 | a; = 0,2, n € N}.

Figure 2 provides a graphical illustration of the measure p in (2.6) for
(po,p2) = (%, %) The reader should note the similarity between this figure
and the Cantor measure in Figure 1. It also follows from (2.5) that the lower
and upper L9-multifractal spectra 7(q) and 7(gq) of u are given by

(2.8) 7(q) =7(q) = 7 :1(@] log(ﬁf’g; p3)

In this case the set K and the measure p are clearly discrete ideal analogues
of the classical ternary Cantor set C'in (1.4) and the Cantor measure in (1.5),
respectively, and formula (2.8) for the lower and upper L?-multifractal spec-
tra of p is clearly analogous to formula (1.6) for the lower and upper L9-
multifractal spectra of the Cantor measure.

3. Example: self-similar multifractals in polynomial rings. Let
[ be a positive integer and let F be a finite field. We now consider the case
where the normed structure is the ring F[X,..., X;| of polynomials of [
variables with coefficients in F. For p € F[Xy,..., Xj], let deg(p) denote the
total degree of p, and put N(p) = |F|4°8(P) It is clear that for each r > 0,
we have [{p € F[X1,...,X;] | N(p) < r}| < co. In particular, this shows
that (F[X1,...,X;], N) is a normed structure. In this case we see that the
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mé mé

L
0 mo

(0] (0] c0

Fig. 2. This figure provides a graphical illustration of the measure p in (2.6) for (pg, p2)
= (%, %) For n = 0,1, 2,3, the measure restricted to the set {mfO | m =0,1,...,cn},
where ¢, = 24+2-3+42-324+...42.3% = 31 _1_is sketched. In the figure each principal
ideal of the form m#®O with m € N is identified with the number m6, and the height of
each vertical bar is proportional to the measure p(m#9) of the singleton {mé9O}.

lower and upper L?-multifractal spectra of a measure p on F[X1,..., X;] are
given by

IOg . eg(p) <p H\D ?
7(g) = lim int ZPGF[X1,~--,1X1]-|1FI°‘ st <7 1(P)
r—00 ogr
log |F|de p(p)?
7(q) = limsup Zpemxl,...i;cgfd s < (D)

)

By applying Theorem 1.1 to this setting we obtain the following result.
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THEOREM 3.1. Let | be a positive integer and let F be a finite field. Let
Si F[Xy,...,Xi] = F[Xq,...,X)] fori=1,...,m be power-like functions,
i.e. for each i there exist r; > 0 and t; > 1 such that

N(Si(p))
N(p)*

Let (p1,...,pm) be a probability vector. Let u be a measure on F[ X1, ..., X|]
that is self-similar with respect to the family (S;,pi); and write K for the
support of p. Assume that the following three conditions are satisfied:

(i) r; > 1 for all © with t; = 1;

(ii) S; is injective for all i

(iii) S;(K)NS;(K) =0 for all i # j.
For each q € R, define the real number 3(q) by

1
a —
(3.1) > b o = L

it;=1 i

—7r; as N(p) — oo.

If either (a) 0 < 3(q), or (b) B(q) <0 and t; =1 for all i, then we have

7(q) =7(q) = B(q).

ExXAMPLE. For i =1,...,[, let J; be a finite set, and let {a;; | j € J;}
be a subset of F. For ¢ = 1,...,l and j define S;; : F[Xy,...,X;] —
F[X1,...,X;] by

Sij(p) = Xip + a; ;.
It is easily seen that \S; ; is injective, and that
N(Si;(p))
N(p)

Let (pi,j)i,; be a probability vector and define a measure p on F[X7, ..., X)]
as follows:

— |F| as N(p) — oc.

PiojoPin g1 Din—1.jm_1 1L p € FIX1,..., X;] has the from
P = Qig,j0 +ai1771Xio +ai2,j2XioXi1 +oee
n(p) = ot g g, Xig Xy Xy,
for n € N with a;, ;, # 0,

0 otherwise.
The support K of u is clearly equal to

K ={aiq jo + iy jy Xig iy 5, Xig Xiy ++ -+ ai,, j, Xig Xiy - Xy, [ n € N}
It is not difficult to see that

p= pignoS;;.
7
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It is also easily seen that S;, ;, (K) N S,, j,(K) = 0 for all (i1, j1) # (i2, j2)-
It therefore follows from Theorem 3.1 that 7(q) = 7(q) = ((q), where 3(q)
is the solution to the equation

q 1 =1
me’ F|3@ ~
17]

whence

_oy logdli,piy
r(q) =70) = — |’fF| .

4. Proof of Theorem 1.1

LEMMA 4.1. Let (X, N) be a normed structure. Let S; : X — X for
i=1,...,m be power-like functions. Let (p1,...,pm) be a probability vector.
Let p be a measure on X that is self-similar with respect to the family
(Si,pi)i and write K for the support of w.

(i) If S; is injective for all i, then
K =] Ssi(K).

(ii) If S; is injective for all i and S;(K)NS;(K) =0 for all i # j, then
u(Six) = pip(x)
forall x € K.

Proof. (i) We first prove that K C J; S;(K). Let = € K. It follows from
(1.7) that 0 < pu(x) = 3, piu(S; '), and we therefore conclude that there
exists j such that M(Sj*lx) > 0. This shows that S;lsc C K, whence z €
S;(K) C |, Si(K). Next, we prove that |J, S;(K) C K. Let z € |J; S;(K).
In particular, this implies that there exists j such that € S;(K), whence
S;lzn € K, and so u(S;lac) > 0. Again, using (1.7), we infer that u(z) =
> piu(Si_lm) > pj,u(Sj_lx) > 0. This shows that z € K.

(ii) Using (1.7) we see that

p(Siw) = 3 pin(S; " Si).

J

However, since S; is injective for all [ and S;(K) N S;(K) = 0 for all I # j,
we conclude that Sj_lSix = () for ¢ # j and that Si_lSix = z. Hence

p(Siz) = pipu(S;tSix) = pip(S; ' Six) = piplx).
J

This completes the proof. m
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Proof of Theorem 1.1. Part 1. We must prove that 7(q) < B(g). Fix
0 > 0. It follows from the definition of 3(q) that

1=> ﬂ(q) > > 1 B(q)+5’

i:t; =1 z 2:t;=1 z
and we can thus choose € > 0 such that
Z pz . B(q)+5 <L
it =1

Recall that either (a) 0 < B(q), or (b) B(¢) < 0 and t; = 1 for all 7. This
combined with the previous inequality implies that there exists Ry > 0 such
that

DY pz o B(q)+5

2:t;=1

1
" élpl T — (ﬂ(q)+5)/tz PO 176 B@+0) <!

for all » > Ry.
Next, observe that since N(S;(z))/N(z)% — r; as N(x) — oo, there
exists a positive number M > 0 such that

for all z € X with N(z) > M and all i.
Finally, write

<e

R = maX(RO, (M max(ri _ E)l/ti)maxi ti).

CLAIM 1. For all » > R we have

s s (xn((=) "))
for all 4.

Proof of Claim 1. Let z € S;(K)NB(r). We must now prove that S;(z) €
S;(KNB((r/(r; —€))'/*%)). Since x € S;(K)N B(r), there exists u € K such
that = S;(u). We have to show that v € KN B((r/(r; — €))*/*). It is clear
that u € K. Hence we must show that N(u) < (r/(r; —))*/%. There are
two cases to consider.

CASE 1: M < N(u). In this case it follows from (4.2) that
‘N (Si(w))

<e.

%
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Rearranging this inequality shows that

s (382" () < ()

CASE 2: N(u) < M. Since r > R > (M max;(r; — )/t )maxiti we see
that M < (r/(r; —¢))"/%. Hence, in Case 2 we also have

r 1/t;
N(u) <M < ( ) :
r, — &
This completes the proof of Claim 1. m

Since (by Lemma 4.1) K = |J, Si(K), it follows from Claim 1 that for
all » > R we have

IK;r)y= Y p@)'<d Y @)

zeKNB(r) i xeS;(K)NB(r)
<> > pla)t =Y > u(Ss)?.
7 Si(KﬂB((#)l/ti)) i ueKQB((mia)l/ti)
Finally, by Lemma 4.1, this implies that
(4.3) I9K;r) <) > pip(x)?
v ueKmB((rrE)l/ti)

(=)

Next, define W : R™ — R by
W(r) = r=B@HIT9()C ).
It follows from (4.1) and (4.3) that if » > R, then

(44) W(r) < r—(ﬁ(q)+6) qu r (B(Q)+5)/tiw ” 1/t;
_ q 1 1 - r 1/t;
- ;pi (r; — ) B@+0)/ti p(1-1/t:)(B(a)+9) p—

1 1 ro\V
q
= <Zi:pi (ri — )@+t r(l—l/m(ﬁ(q)m) S‘;pw<(7«j _5) >
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B 1 1
= X pz - ﬁ@)+5'+ ji: P (ri — 2)B@+)/t: p(1-1/t)(B(0)+0)

i:t; =1 ity #

r 1/t;
xsupW<( ) )
j Tj—E
1/t;
cop((52)")
j r;—€

Now, write A = min;(r; —e)*/% > 1. Next, we prove that for all positive
integers [ with R < A'~!, we have

(4.5) sup W(r) < sup W(r).
o<r<Al o<r<Al-1

Indeed, for r with R < r < A!, we have

1/t )
( T)ﬁ:_iﬁ—<i<4:41
T —€ (T‘j—E)l/tﬂ' —AT A

for all 7, and (4.4) therefore implies that

1/t;
Wi(r) < supW(( " > ) < sup W(o).

J Ty —¢ 0<p<Al-1

This proves (4.5).
Choose a positive integer lp with A > R. Successive applications of (4.5)

yield
(4.6) supW(r) =sup sup W(r)

o<r lo<l 0<r<Al

<sup sup W(r)
lo<l 0<r<Al-1

<sup sup W(r)
lo<l 0<r<Alo

= sup W(r).
o<r<Alo

Since clearly ¢ = supg.,< a0 W(r) = supg,<ato 7~ POTIIYK;r) < oo
(because I9(K;r) = 0 for all sufficiently small r # 0), we conclude from
(4.6) that r~B@+)19(K; 1) = W(r) < ¢ for all r > 0. This clearly implies

log I9(K;
r—o0 logr

Letting § \, O gives the desired result. m

< B(q)+d
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Proof of Theorem 1.1. Part 2. We must prove that ((q) < 7(g). Fix
0 > 0. It follows from the deﬁnition of B(q) that

=3 ﬁ(q) <> ﬁ(q) 5

i:t;=1 7’ i:t; =1 7’
and we can thus choose € > 0 such that
1
(4.7) tz_: e 1.

Next, observe that since N(S;(x))/N(z)% — r; as N(z) — oo, there
exists a positive number M > 0 such that

(4.8) ol <

for all z € X with N(z) > M and all ¢ with ¢; = 1.
Finally write

R= sup N(S;(z)) < 0.

CLAIM 2. For all » > R we have

Si(KmB< r ))CSi(K)ﬂB(r)
ri +¢€
for all © with t; = 1.

Proof of Claim 2. Let x € KNB(+ :LE) We must now prove that S;(x) €
S;(K)N B(r). It is clear that S;(x) € S;(K). Hence we have to show that
|Si(z)] <.

CASE 1: M < N(x). In this case it follows from (4.8) that

N(S;
RICTUINY P
Also, z € KN B( ) whence N (z) < riie. Rearranging this inequality

shows that (r; + 5) ( ) < r. Hence
N(Si(x)) = riN(z) + N(x) (N(S(l(“;’)) - m)
N(Si(x))
N(@)
<r;N(z)+ N(z)e <r.
CASE 2: N(z) < M. Since N(z) < M and r > R, we see that

N(z)< sup N(Si(y)=R<r.
i:N(y)<M

<r;N(z)+ N(x)

—Tq

This completes the proof of Claim 2. m
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Since K = |J; Si(K) and S;(K) N S;(K) = 0 for i # j, it follows from
Claim 2 that for all » > R we have

Iy = > p@)=>" > ()

zEKNB(r) i x€S;(K)NB(r)
Y Y Y Y ey
it;=1 z€S; (K)NB(r) it =1 reSi(KﬂB(T’;E))

> ) > u(Sw)

;=1 ueKNB(-57)
k2

Finally, by Lemma 4.1, this implies that
AR ) > ) =
(4.9)  IU(K;r) > mzz::l uem;ﬁqg)pm Zg_:lp <n " E)
Next, define W : Rt — R by
W(r) = r*(B(Q)*‘S)IQ(K; T).
It follows from (4.7) and (4.9) that if » > R, then

B(q)—46
(4.10)  W(r) > @9 N pa( T v wi(—
- "\r;+e i +¢€

i:tizl

1 r
B Z P (ri +&)Pl@)=o W(n—+5>

iit;=1

1 T
> I S

> inf W ! .
jit;=1 ri+e¢
Now, write A = min;(r; +¢) > 1. Next, we prove that for all positive

integers [ with R < A= we have

4.11 inf Wi(r)> inf W(r).
( ) O<1:1§Al (r)_o<r1£AH )

Indeed, for r with R < r < A!, we have

r T
ri+e¢ A~ A
for all j, and (4.10) therefore implies that

>2 inf  Wi(o).

O<Q§Al*1

W(r) > inf W<

T ogit=1 T‘j+€

This proves (4.11).
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Choose a positive integer Iy with Al > R. Successive applications of
(4.11) yields

(4.12) ér<1£ W(r)= l10n<fl 0<1:1§fAl W(r)

> inf inf  W(r)

lo<l 0<r<Al-1

> inf inf W(r)

lo<l 0<r<Alo
= inf W(r).
o<r<Alo
Since clearly ¢ = infy_,< a0 W(r) = infy_p.c a1 =P O=III(K;7) > 0, we
conclude from (4.12) that r~B@=919(K;r) = W(r) > ¢ for all » > 0. This
clearly implies

log I1(K;
7(¢) = liminf -l L) (A7)
T—00 logr

Letting d \, 0 gives the desired result. m

> B(q) — 0.
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