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A note on the diophantine equation a2x4 −By2 = 1
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Jianhua Chen (Wuhan)

1. Introduction. Let A, B be coprime integers. The diophantine equa-
tion

(1) Ax4 −By2 = 1

has been studied extensively by many people, including Ljunggren [3] and
Cohn [1]. Ljunggren proved that (1) has at most two solutions. In a recent
paper in this journal, Le [2] proved some results on the diophantine equation

(2) a2x4 −By2 = 1,

for example he proved that when max(a2, B) > 2.374 ·1010, the diophantine
equation (2) has at most one integer solution. In fact, Ljunggren [4] proved
this result without that restriction. (The author would like to express his
gratitude to the referee for this reference.) The diophantine equation (2)
includes many interesting special cases such as x4−By2 = 1, 4x4−By2 = 1
and 9x4 −By2 = 1.

In the present note we will prove the following two results:

(I) the equation (2) has at most one solution;
(II) the solution, when it exists, occurs in the “first possible place”, i.e.,

comes from the least possible integer x for which x2 − By2 = 1 and x is
divisible by a.

The result (I) is a new proof of Ljunggren’s result, and the result (II)
enables one to prove easily that many equations are not solvable. We will
prove

Theorem. Let a > 1 and B > 0 be positive integers which are square-
free. Suppose ε = u+v

√
B > 1 is the fundamental solution of Pell’s equation

x2 −By2 = 1. Define

εn = un + vn
√
B, n = 1, 2, . . .
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If (2) is solvable then it has at most one solution (x, y) in positive integers,
and then

ax2 + v
√
B = εt

where t is the least positive integer such that ut ≡ 0 (mod a).

Remark 1. It is easy to see that we can “effectively” determine if the
equation (2) has an integer solution, because we can “effectively” determine
whether there exists a positive integer t such that ut ≡ 0 (mod a) is solvable
or not.

2. Preliminaries. In order to prove the Theorem we need some technical
lemmas. First we consider Pell’s equation

(3) x2 −By2 = 1.

Let ε = u + v
√
B be the fundamental solution of (3), define ε = u − v

√
B,

and for any integer n define

(4) εn = xn + yn
√
B.

Throughout the paper we always assume that a is a given positive integer
which is squarefree. If a2x4 − By2 = 1 has a solution then it is easy to
see that there must exist an integer n such that xn ≡ 0 (mod a). The next
lemma shows which n satisfy this congruence.

Lemma 2.1. Let xn be defined as in (4), and let a > 0 be an integer. If
xn ≡ 0 (mod a), then there exists a positive integer t such that n = (2k+1)t,
k = 1, 2, . . .

Remark 2. From Lemma 2.1 we see that t is the least positive integer
such that xt ≡ 0 (mod a).

P r o o f. Let t be the least positive integer such that xt ≡ 0 (mod a).
Then for 0 ≤ j < t, we have

(5) xj 6≡ 0 (mod a).

Since εt = xt+yt
√
B ≡ yt

√
B (mod a), it is easy to verify that for an integer

k we have

(6) ε2kt ≡ (yt
√
B)2k (mod a) ≡ (y2

tB)k ≡ ±1 (mod a).

Here we have made use of the relations

(7) x2
t −By2

t = 1

and

(8) xt ≡ 0 (mod a).

Similarly we have

(9) ε(2k+1)t ≡ (yt
√
B)2k+1 ≡ (y2

tB)k(yt
√
B) ≡ ±yt

√
B (mod a).
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From (9) we see that

(10) x(2k+1)t ≡ 0 (mod a).

Let n be an arbitrary positive integer. We write n as n = mt+ r, where
m ∈ Z and 0 ≤ r < t. We will prove that if xn ≡ 0 (mod a) then m is odd
and r = 0. If m is an even integer then from (6) we get

(11) εn = εmt+r ≡ εrεmt ≡ (xr + yr
√
B)(±1) (mod a).

From (11) we see that xn ≡ ±xr (mod a) ≡ 0 (mod a). So we are left with
odd m. For odd m we rewrite n as n = mt+ r = (m+ 1)t+ r− t; note that
m+ 1 is even. Using a similar method we have

(12) εn = ε(m+1)t+r−t ≡ ±εr−t (mod a).

Note that

(13) εr−t = xr−t + yr−t
√
B.

So if xn ≡ 0 (mod a) then from (11) and (12) we have xt−r ≡ 0 (mod a) and
by (5) we must have r = 0. The lemma follows.

Lemma 2.2. Let L > 0, M be integers, L− 4M > 0, (L,M) = 1, and let
α, β be two roots of x2 −

√
Lx+M = 0. If M = −1, L ≡ 0 (mod 4), put

Qn =
αn − βn
α− β

(n is an odd integer). Then for any odd prime p and integer z, we have

Qp 6= pz2.

P r o o f. See [6].

Lemma 2.3. Let t be the least integer such that xt ≡ 0 (mod a). Then
a2x4 −By2 = 1 is solvable if and only if xt = au2, u ∈ Z.

P r o o f. If xt = au2, then obviously a2x4 − By2 = 1 and thus equation
(2) is solvable. We now suppose a2x4 − By2 = 1 is solvable. Then there
exists an integer n such that

(14) xn = au2

and

(15) x2
n −By2 = 1.

Obviously xn ≡ 0 (mod a), hence by Lemma 2.1, n = (2k + 1)t. Assume
n = (2k + 1)t is the least solution of (14). If 2k + 1 = 1, the assertion
follows. So we assume that 2k + 1 > 1. We write 2k + 1 = ps, where p > 1
is an odd prime number and s is an odd integer. From (14) we have

(16) xn = ax2 =
ε(2k+1)t + ε(2k+1)t

2
=
εpst − εpst

2
.
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Putting α = εst and β = −εst, from (16) we get

(17) ax2 =
αp − βp

2
=
αp − βp
α− β · α− β

2
.

By Lemma 2.1 it is obvious that (α−β)/2 ≡ 0 (mod a), hence from (17) we
have

(18) x2 =
αp − βp
α− β · α− β

2a
.

Define

h =
(
αp − βp
α− β ,

α− β
2a

)
.

It is well known that h = 1 or h = p. If h = 1, from (18) we have u2 =
(α − β)/(2a) for some integer u, which contradicts the assumption that
n = (2k + 1)t is the least solution of (14). So h = p. From (18) we find

(19) pv2 =
αp − βp
α− β

for some integer v. Note that α, β are roots of the equation

x2 −
√

4By2
t x− 1 = 0.

By Lemma 2.2, (19) is impossible. This completes the proof.

We quote a result from Rickert [5] as our next lemma.

Lemma 2.4. For an integer N the numbers θ1 =
√

1− 1/N , θ2 =√
1 + 1/N satisfy

max(|θ1 − p1/q|, |θ2 − p2/q|) > 1/(271Nq1+λ),

for all integers p1, p2, q > 0, where

(20) λ =
log(12N

√
3 + 24)

log(27(N2 − 1)/32)
.

P r o o f. See Rickert [5], p. 469.

Lemma 2.5. Let u > 0 be an integer , au2 > 25. Consider the simultane-
ous Pell equations

(21) ax2 − (au2 − 1)z2
1 = 1, ax2 − (au2 + 1)z2

2 = −1.

Then all its positive integer solutions satisfy

(22) |√ax|1−λ < 141.89(
√
au)3+λ,

where λ is as in (20) and N = au2. Furthermore, if au2 > 99 and x > u,
then

√
ax > (2

√
au)569.
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P r o o f. Let x > 0 be a solution of (21). The equations (21) have an
obvious solution x = u, z1 = z2 = 1. So we assume x > u. Now we have

|√ax− z1

√
au2 − 1| = 1

|√ax+ z1
√
au2 − 1|

<
1

1.99
√
ax
.

Hence

|
√
a/(au2 − 1)− z1/x| <

1

1.99
√
ax2
√
au2 − 1

<
1

1.95aux2 .

Multiplying this inequality by u we get

(23) |
√
au2/(au2 − 1)− z1u/x| <

1
1.95ax2 .

Multiplying both sides of (23) by 1− 1/(au2) we get

(24) |
√

1− 1/N − z1(au2 − 1)/(aux)| < 1
1.95ax2 .

In a similar way from the second equation of (21) we get

(25) |
√

1 + 1/N − z2(au2 + 1)/(aux)| < 1
1.95ax2 .

Then by Lemma 2.4 we get

(26) 271au2|aux|1+λ > 1.91ax2.

From (26) we easily deduce that

|x|1−λ < 141.89u3+λa1+λ.

Multiplying this inequality by a(1−λ)/2 we get the conclusion.
We now prove

√
ax > (2

√
au)569. Put

η1 =
√
au+

√
au2 − 1, η1 =

√
au−

√
au2 − 1,(27)

η2 =
√
au+

√
au2 + 1, η2 =

√
au−

√
au2 + 1.(28)

Then all the solutions (x, z1) of ax2 − (au2 − 1)z2
1 = 1 are given by

(29) ηm1 =
√
ax+ z1

√
au2 − 1

for odd integers m > 0. All the solutions (x, z2) of ax2 − (au2 + 1)z2
2 = −1

are given by

(30) ηn2 =
√
ax+ z2

√
au2 + 1

for odd integers n > 0. Hence if (21) has another solution x, then

(31) ηm1 + ηm1 = ηn2 + ηn2 .

From (31) we get

(32) |n log(η2/η1) + (n−m) log η1| < 1.1/η2m
1 + 1.1/η2n

1 .
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Noting that n log(η2/η1) < n(η2 − η1)/η1, from (32) we get

n
η2 − η1

η1
> |n−m| log η1 − 2.2/η6

1 > 0.99 log η1

so n > 0.97
√
auη1 log η1 > 570, hence

√
ax = (ηn2 + ηn2 )/2 > (2

√
au)569,

and the lemma follows at once.

Remark 3. From the above lemma we can “effectively” solve the simul-
taneous equations as in the lemma when au2 > 25.

3. Proof of the Theorem. In this section, we will prove our main
theorem and discuss some special cases of it. First from Lemmas 2.1 and 2.3
we see that if the equation

(33) a2x4 −By2 = 1

is solvable, then

(34) au2 + yt
√
B = εt.

Since (εε)t = 1, we get a2u4 −By2
t = 1, thus we have

√
a2u4 − 1 =

√
By2

t ,

so
au2 +

√
a2u4 − 1 = εt.

For brevity we write D = a2u4 − 1, ε1 = εt, ε1 = εt. If (33) has another
solution (x, y), then by Lemma 2.3 we have

(35) ax2 =
ε2k+1

1 + ε2k+1
1

2
.

We write

(36) εn1 = Xn + Yn
√
D

for non-negative integers n. Notice that X1 = au2, Y1 = 1. Then (35) can
be written as

(37) ax2 = X2k+1.

It is easy to verify that

X2n+1 = X1X2n +DY2n,(38)

X2n = X2
n +DY 2

n , Y2n = 2XnYn.(39)

Combining (36) with (37) and (38), we get

(40) ax2 = X1(X2
k +DY 2

k ) + 2DXkYk.
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Since X2
k −DY 2

k = 1, we have

ax2 − 1 = X1(X2
k +DY 2

k ) + 2DXkYk − (X2
k −DY 2

k )

= (X1 − 1)X2
k +D(X1 + 1)Y 2

k + 2DXkYk

= (X1 − 1)(X2
k + (X1 + 1)2Y 2

k + 2(X1 + 1)XkYk)

= (X1 − 1)(Xk + (X1 + 1)Yk)2 = (X1 − 1)Z2
1 .

Here we have used the relation D = X2
1 − 1 = a2X4 − 1. In a similar way

we have

(41) ax2 + 1 = (X1 + 1)Z2
2 .

By Lemma 2.5 a solution x of the simultaneous equations

ax2 − 1 = (X1 − 1)Z2
1

and
ax2 + 1 = (X1 + 1)Z2

2

satisfies

(42) |√ax|1−λ < 141.89(
√
au)3+λ

where λ is just as in Lemma 2.5.
Note that for N = au2 > 99, we have λ < 0.84630254. From (42) we get

(43) |√ax| < 141.891/(1−λ)(
√
au)(3+λ)/(1−λ) < 1.01 · 1014(

√
au)25.026.

But from Lemma 2.5 we have
√
ax > (2

√
au)569, a contradiction. This proves

the lemma.

Remark 4. From the proof of the Theorem we see that au2 > 99 can be
relaxed.

Remark 5. By the same method, we can completely solve the equations
x4 −By2 = 1, 4x4 −By2 = 1 and 9x4 −By2 = 1.

Note added in proof. M. Bennett and G. Walsh proved the same result using a
different method (see Proc. Amer. Math. Soc. 127 (1999), 3481–3491). The author would
like to express his thanks to Professor Schinzel as well as Professor Walsh for telling him
about the above paper.
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