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A note on the Diophantine equation
(2™ +1)/(a"x£1)=y"+1

by

Jiacur Luo (Chengdu)

1. Introduction. Let Z,N denote the sets of integers and positive in-
tegers respectively. Le Mao Hua [4] has proved that the following equation
has no solution (x,y,m,n):

™ —1
1
(1) p—

=y"+1, zymneN, z>1,
y>1, m > 2, nan odd prime.
In this note, we investigate a more general equation applying another
method. For
n M 6
(2) u:y”—l—l, 0e{l,-1}, z,y € Z, a,m,n € N,
ax 4+ 0
m>2 n>1, |z|>1,
we prove the following results.
THEOREM 1. For § = —1,2 > 1 all solutions of equation (2) are given
by (a,z,y,m,n) = (u™ 2, u™, u™ 1 m,n) withu € N> 1.
For §=—1, x<—1 all solutions of equation (2) are given by (a,x,y, m,n)
= (u?F=2, 2=t 2kl 2k 21 — 1) with k,l,u € N > 1.

THEOREM 2. For § = 1,2 > 1 equation (2) has no solution.
For 6 =1,z < —1 all solutions of equation (2) are given by (a,z,y, m,n)
= (u?F73, —um, u?*72 2k — 1,n) with k,n,u € N> 1.
COROLLARY 1. The Diophantine equation
™ —1
rz—1

3)

has no solution (z,y,m,n).

=y"+1, =z,y€Z mmneN, |z|>1, m>2 n>1,
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COROLLARY 2. The Diophantine equation
™ +1

(4)
r+1
has no solution (z,y,m,n).

:yn+17 w,yGZ,m,nEN, |:U|>1,m>2,n>1,

Corollary 1 is a substantial generalization of Le’s result [4] for the equa-
tion (1).

2. Lemmas. Throughout this section, we assume that D and n are
positive integers.

LEMMA 1 ([3]). If n > 5, then the equation
X" - DY"=+1, X,YeN,
has at most one solution (X,Y) except possibly when D =2 or D =2"+1
and n € {5,6}.
LEMMA 2 ([5]). If D > 1, then the equation
X3+DY3 =1, X, Yez,
has at most one solution (X,Y’) other than X =1,Y = 0.

LEMMA 3. Let D be not a perfect square and z,y € N a solution of Pell’s
equation
(5) 2 —Dy*=1, =z,yel.
Let (xg,y0) be the fundamental solution of (5) and € = xo + yovV'D. If xo
is divisible by all prime diwisors of x, then x + yvD = e.
Proof. We may assume
(6) .’L'—i-y\/ﬁz (I‘o—i-yo\/l_))n, TLZ 1.
The result is clear for n = 1. We assume n > 1, then z > 1.
(1) If n is even, by (6) we get
n/2
n\ n_2 -
(7) T=2 (2 )x (g3 DY .
. J
7=0
Let p be a prime divisor of z. Under our assumption p|zq. By (7) we get
p|(Dy2)"/2. This is impossible.
(2) If n is odd, we may write
2+ yVD = (z9 + %oV D)" =z + yuVD.
If r| n, then x, + y-VD = (xo + yo\/ﬁ)r, xy | T, Therefore x, also satisfies
the assumption of the lemma. Now let p be any prime divisor of n. We have

Ty + yp\/ﬁ = (:EO + yO\/E)p'
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Then

(p—1)/2 »

i1 4

© sfeo= Y (2)at " uhD)
7=0

Assume ¢ is any prime divisor of x, /. Then ¢ | z¢, by assumption. By (8),
we get q\p(y%D)(p_l)/2. Since (q,yoD) = 1, we have ¢ = p. Furthermore
we claim that z,/zo is square-free. Otherwise, p?|z,/xo. By (8) we have
p? ]p(ygD)(p_l)/2. This is impossible. Therefore, z),/xo = p. On the other
hand, when p > 3, we find from (8) that

zp/x0 > pp—1)/2 > p.
This contradicts x,/xo = p. It shows that n has no prime divisor other
than 3. Thus n = 3/, f > 1. Therefore z3 | 2, and we have 3 = x3/x¢ =
23 + 3Dy2 = 4x% — 3, which is impossible.
Combining these results yields n = 1. The proof is complete.

DEFINITION. Let p be a prime and n a nonzero integer. Then ord, n is
defined to be the unique nonnegative integer ¢ such that pt|n and p'*!{n.

LEMMA 4. Let n > 1, p be the largest prime divisor of n, ord,n =1t > 1,
reN, 1<r<t Then (2" —1,(2" —1)/(2"" —1)) = 1.

Proof. Let n = p"s. If (27" —1,(2" —1)/(2"" — 1)) > 1, then there is
an odd prime ¢ such that 2°" =1 (modgq), (2" —1)/(2*" —1) =0 (mod gq).
We can find s = 0 (modg) and so g|n. Since 277! = 1 (modgq), we have
q| (2P — 1,271 — 1) = 2("a=1) _ 1 whence (p",q — 1) > 1. It follows that
plq — 1, whence ¢ > p, which is not true because p is the largest prime
divisor of n. The lemma is proved.

3. Proofs
Proof of Theorem 1. By (2), we have
9) a"z(z™ "t 1) = (a"x — 1)y™.

Assume first > 1. Let = = p{"* ...p%" be the prime decomposition of x,
r > 1, a; > 1 such that ord,, z = a;. Since (z, 2™ ' — 1) = (z,a"x — 1)
= 1, we have ordy, (z™"! — 1) = ord,,(a"x — 1) = 0. From (9) we get
nord,, a + a; = nordy,, y. Then a; = n(ordy, y — ordy, a) = nv; for all i.
Put u = pi* ... pYr. We obtain = = u™. Replacing = by u™ in (9), we get

(10) (au)™ (@™~ —1) = ((au)" — 1)y".

Since ((au)™, (au)™ — 1) = 1, we get au|y from (10). Replace y by auyy
in (10). Then

(11) u" ) — ((aw)” =1y =1, wu>1, y >0.
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(1) If 2| n, we see from (11) that (u”(m_l)/z,y?m) is a solution of Pell’s
equation X2—((au)*—1)Y? = 1. But ((au)™?,1) is its fundamental solution.
By Lemma 3 we get u™(™~1/2 = (qu)"/2, y; = 1. It follows that a = u™ 2,
y = u™ !. Thus in this case, the assertion of Theorem 1 is true.

(2) If n = 3, by (11) we see that (u™~!, —y;) is a solution of the equation
X3 + ((au)® — 1)Y? = 1. But (au,—1) also is a solution of this equation.
By Lemma 2, we get u™ 2 = a, y; = 1. Hence in this case, the assertion of
Theorem 1 is also true.

(3) If 2fn and n > 5, we find from (11) that (u™~!,y;) is a solution of
the equation

(12) X" = ((aw)"-1)Y" =1, X, YeN n>5 2{n.

By Lemma 1, (12) has at most one solution (X,Y’) except possibly when
(au) —1=2"+1and n =25 or (au)” — 1 = 2. The latter is impossible.
When n =5, (au)™ — 1 =2" 41 is clearly not true.
When n =5 and (au)”—1 =2"—1, we have a = 1, u = 2. Thus, by (11),

(13) 2°m=1) _ 1 = 3145.

Put s = m — 1. Let p be the largest prime divisor of s. Let p # 5. By
Lemma 4, (2P —1,(2° —1)/(2P — 1)) = 1. Notice that (2°° —1)/(2° - 1) =
245 4935 1 925 1. 25 4+ 1 =5 (mod2” — 1) and (2P — 1,5) = 1. We get
(2P —1,(2% —1)/(2P — 1)) = 1. Therefore we find from (13) that 27 —1 = 29,
which is impossible by [2]. Let p = 5. By Lemma 4, (2%5—1, (2°—1)/(2%-1))
= 1. We find from (13) that 22° — 1 = 312}. Then 2} = 1082401, which is
impossible. We conclude that (aw,1) is the only solution of (12). Hence
u™ P =qu,y; =1. Thus a = u™ 2, y = u™ L.

Combining the above results, Theorem 1 is proved in the case of x > 1.

Consider the case of + < —1. When 2|m and 2|n, the equation (2)
clearly has no solution. When 2{m, putting x = —x1, the problem is changed
into the case x > 1 of Theorem 2 and we refer to the proof of Theorem 2.
When 2|m and 2{n, i.e. m = 2k and n = 2] — 1 with k,l € N > 1, as at

the beginning of the proof, we may write x = —u", y = —auy; with u > 1,
y1,u € N. By (2), we get
(14) WD~ (au) + 1)y = —1.

If n = 3, we find from (14) that (—u™~!,y;) is a solution of the equation
X3 + ((auw)® + 1)Y? = 1. But so is (—au,1). By Lemma 2, a = u™ 2
m—1
y=—u"""
If n > 5, we find from (14) that (u™~!,y;) is a solution of the equation
(15) X" = ((au)" +1)Y" = —1.

By Lemma 1, (15) has at most one solution except possibly when n = 5 and
(au)” +1=2"+1 or (au)™ + 1 = 2. The latter is impossible.



A Diophantine equation 227

Of course (au, 1) is a solution of (15). This yields u™ 1 = au,y; = 1,
whence a = u™ 2 = 4?72 y = —u™ ! = —u?*~1 Since (au)" +1=2" -1
is clearly not true, there can only be an additional solution if n = 5 and
(au)™ +1 = 2" 4+ 1. This implies @ = 1, u = 2 whence z = —32. So (2)
reduces to the equation

(=32)™ —1

-32-1
which we rewrite as 33y} — 32(2m2)® = 1. According to [1] the equation
33X° — 32Y° = 1 has only the solution X =Y = 1. Thus y; = 1, m = 2,
contrary to the assumption m > 2. This completes the proof of Theorem 1.

= (—2y1)° +1  with m even, y; >0

Proof of Theorem 2. Suppose x > 1. As in the proof of Theorem 1, we
may put x = u", y = auyy, u > 1, y1 > 0. By (2), we get

(16) u ™Y — ((au)™ 4+ 1)yf = 1.
If 2|n, we find from (16) that (u”(m_l)m,y?m) is a solution of Pell’s

equation X2 — ((au)™ + 1)Y?2 = 1. But (2(au)™ + 1,2(au)™/?) is its funda-
mental solution. So we get

u"(mfl)/2+y?/2\/(au)" +1=2(au)"+1+42(au)"?\/(au)” +1]°, s> 1.

When 21s, we find that

(s—=1)/2 s
W=y (2 ) (2(aw)" + )" (4(aw)" ((aw)" + 1))’.
A J
7=0
Thus u | [2(au)™ + 1]°, which is impossible.
When 2| s, we find that
s/2
S . .
w02 = 3 () 2" 1) (o) + 1Y
j=0
Thus w|[2(auw)™ + 1]°, which is impossible. In this case, the assertion of
Theorem 2 is true.

If n = 3, we find from (16) that (u™~!, —y;) is a solution of the equation
X3+ ((au)® +1)Y3 = 1. But so is (—au, 1). By Lemma 2, y; = —1, which
is impossible.

If n > 5 and 2{n, we find from (16) that (u™ !, y;) is a solution of the
equation

(17) X" — ((au)” + 1)Y" = 1.

Notice that (au, 1) is a solution of the equation X" —((au)"+1)Y™ = —1. By
Lemma 1, we see that either n =5 and (au)"+1=2"+1or (au)”+1=2.
The latter is impossible.

When n =5, (au)™ + 1 = 2™ — 1 is clearly not true.
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When n =5 and (au)” +1=2"+1, we have a = 1, u = 2.
Thus, by (16),

(18) 2°(m=1) _ 1 = 33y},

If 2| m, we find from (18) that (2) = 1, which is not true because (2) = —1.
If 2¢m, put 2s = 5(m —1). Since (2° —1,2°+1) = 1 and 33|2° + 1, we find
from (18) that 2° — 1 = 27,2% + 1 = 3323. However 2° — 1 = 2} is not true
by [4]. We find that (16) is not true if n > 5 and 2{n.
Combining the above results, Theorem 2 is proved in the case x > 1.
Consider the case + < —1. When 2{m, putting + = —z1, the problem
is changed into the case x > 1 of Theorem 1 and we refer to the proof of

Theorem 1. When 2 |m and 2 |n, the equation (2) clearly has no solution.

When 2 | m and 21n, as at the beginning of the proof we may write x = —u",
y = —auyy, u > 1, y; > 0. We see from (2) that
(19) a0 — ((au)” = 1)y = —1.

If n = 3, we find from (19) that (—u™"1,y;) is a solution of the equation
X3+ ((au)™ —1)Y3 = 1. But so is (au, —1). By Lemma 2, y; = —1, which
contradicts y; > 0.

If n > 5, we find from (19) that (u™~!,y;) is a solution of the equation

(20) X" — ((au)” = 1)Y" = —1.

Notice that (au,1) is a solution of the equation X™ — ((au)™ — 1)Y™ = 1.
By Lemma 1, we deduce that either n = 5 and (au)” — 1 = 2" £ 1 or
(au)™ — 1 = 2. The latter is impossible.

When n =5, (au)™ — 1 = 2™ 4 1 is clearly not true.
When n =5 and (au)” —1=2" —1, we have a = 1 and u = 2.
We see from (19) that

25m=1) 4+ 1 = 31y},

Therefore 1 = (32—1) = (25?{1)) = (g—ll) = —1, which is impossible.

This completes the proof of Theorem 2.

By putting @ = 1 in Theorem 1 and in Theorem 2, we obtain Corollary 1
and Corollary 2, respectively.

REMARK 1. By using the same method, it can be proved that the equa-
tion
az™ —1 n
———=9y", ammneN, z,yeZ, |x|>1, m>2 n>1,
axr — 1

has no solution (a, z,y, m,n) which makes z an nth perfect power.
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2. Also, it can be proved that the equation

ana;.mfl -1
a"r————=y", amneN zy€eZ |g>1, m>2 n>1,
any —
has no solution.

The author would like to thank Professors Sun Qi and Pingzhi Yuan
for their help. Also, appreciation is given to the referee for his valuable
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