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1. Introduction. For a positive integer N , let X1(N) = H∗/Γ1(N)
and X0(N) = H∗/Γ0(N) denote the usual modular curves. Let C denote an
isogeny class of elliptic curves defined over Q of conductor N . For i = 0, 1,
there is a unique curve Ei ∈ C and a parametrization φi : Xi(N)→ Ei such
that for any E ∈ C and parametrization φ′i : Xi(N)→ E, there is an isogeny
πi : Ei → E such that πi ◦ φi = φ′i. For i = 0, 1, the curve Ei is called the
Xi(N)-optimal curve.

It seems that for most isogeny classes C, E0 and E1 are the same. How-
ever, there are examples where they differ. For example, E0 = X0(11) and
E1 = X1(11) differ by a 5-isogeny. Stein and Watkins [SW] have made a pre-
cise conjecture about when E0 and E1 differ by a 2-isogeny or a 3-isogeny,
based on numerical observations. For the 3-isogeny case, the conjecture is
the following.

Conjecture (Stein and Watkins). For i = 0, 1, let Ei be the Xi(N)-
optimal curve of an isogeny class C of elliptic curves defined over Q of
conductor N . Then the following statements are equivalent:

(A) There is an elliptic curve E ∈ C given by E : y2 +axy+ y = x3 with
discriminant a3 − 27 = (a − 3)(a2 + 3a + 9), where a is an integer
such that no prime factors of a−3 are congruent to 1 modulo 6 and
a2 + 3a+ 9 is a power of a prime number.

(B) E0 and E1 differ by a 3-isogeny.

Remark. This conjecture has to be modified because (B) does not imply
(A) in general. For example, let C be the isogeny class consisting of the two
elliptic curves 396C1 and 396C2 in Cremona’s table. Then E0 = 396C1 and
E1 = 396C2 differ by a 3-isogeny, but (A) is not true in this case.

In this paper, we prove the following theorem.
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Theorem 1.1. Let (A) and (B) be as in the Conjecture.

(i) (A) implies (B).
(ii) If N is square-free and 3 - N , then (B) implies (A).

2. Preliminaries

2.1. For i = 0, 1, let Ei be the Xi(N)-optimal curve of an isogeny class C
of elliptic curves of conductor N . Stein and Watkins [SW] conjectured that
E0 and E1 differ by a 3-isogeny if and only if there is an elliptic curve E ∈ C
parametrised by

c4 = (n+ 3)(n3 + 9n2 + 27n+ 3)

and

c6 = −(n6 + 18n5 + 135n4 + 504n3 + 891n2 + 486n− 27)

with the discriminant being n(n2 +9n+27), where n is an integer such that
no prime factors of n are congruent to 1 modulo 6 and n2 + 9n + 27 is a
power of a prime number.

Let E be an elliptic curve defined over Q with a rational torsion point
of order 3. As a minimal model for E, we can take

(1) E : y2 + axy + by = x3

with a, b ∈ Z, b > 0 such that neither q | a nor q3 | b for any prime number q.
The discriminant of E is

∆ = b3(a3 − 27b)

and T = {(0, 0), (0,−b),∞} is the torsion group of order 3. If we take b = 1
and put n = a−3 in (1), then we obtain the curve in (A) of the Conjecture.

There is an isogeny defined over Q of degree 3 from E to the quotient
curve E′ of E by T and the curve E′ is given by a model

E′ : y2 + axy + by = x3 − 5abx− a3b− 7b2

with discriminant

∆′ = b(a3 − 27b)3.

Hadano [Ha] obtained the following theorem.

Theorem 2.1 (Hadano). The quotient curve E′ of an elliptic curve E :
y2 +axy+by = x3 by T = {(0, 0), (0,−b),∞} has a rational point of order 3
if and only if b is a cubic number t3 with t > 0. Moreover the curve E′ is
given by

E′ : y2 + (a+ 6t)xy + (a2 + 3at+ 9t2)ty = x3.
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2.2. Let C be an isogeny class of elliptic curves defined over Q. For any
E ∈ C, we let EZ be the Néron model over Z and ωE a Néron differential
on E. Let π : E → E′ be an isogeny with E,E′ ∈ C. We say that π is étale if
the extension EZ → E′Z to Néron models is étale. Equivalently, π is étale if
ker π is an étale group scheme. So one can show that an isogeny π : E → E′

is étale when kerπ ' Z/lZ and E has good reduction at l for an odd prime l.
If π : E → E′ is an isogeny over Q, then π∗(ωE′) = nωE for some nonzero
integer n. The isogeny π is étale if and only if n = ±1.

Stevens [St] proved that in every isogeny class C of elliptic curves defined
over Q, there exists a unique curve Emin ∈ C such that for every E ∈ C,
there is an étale isogeny π : Emin → E. The curve Emin is called the minimal
curve in C. Stevens conjectured that Emin = E1 and Vatsal [Va] proved the
following theorem.

Theorem 2.2 (Vatsal). Suppose that the isogeny class C consists of
semi-stable curves. The étale isogeny π : Emin → E1 has degree a power
of two.

2.3. As representatives of the cusps of X0(N), we use the rational num-
bers x/d where d |N , d > 0 and (x, d) = 1 with x taken modulo (d,N/d).
We say that such a cusp x/d is of level d, and we know that the cusp is
defined over Q(ζm), where m = (d,N/d). Let (Pd) denote the divisor on
X0(N) defined as the sum of all the cusps of level d (each with multiplicity
one). Then (Pd) is invariant under Gal(Q̄/Q), and the Q-rational cuspidal
subgroup C(N) of J0(N) is generated by the divisor classes of all divisors
of the kind

φ((d,N/d))(P1)− (Pd),

as d runs through the positive divisors of N .

Let f be the newform associated with the elliptic curve E of conductorN ,
and for each positive d |N , let wd = ±1 be such that Wdf = wdf , where Wd

is the Atkin–Lehner involution. Let G be the product of those primes such
that wp = 1. Define a divisor Q supported on the cusps of X0(N) by

Q :=
∑

d|(N/G)

wd(PdG).

Let r =
∏
p|G(p2 − 1)

∏
p|(N/G)(p− 1), h = (r, 24), and n = r/h.

Dummigan [Du] proved the following theorem under an additional con-
dition, and later Byeon and Yhee [BY] proved it unconditionally.

Theorem 2.3 (Dummigan). Let E ∈ C be an elliptic curve defined over
Q of square-free conductor N with a rational point of order l - N . Then
E0 ∈ C has a rational point P of order l. Furthermore the image of P
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under the injective map from E0 to J0(N) induced by a parametrization
φ0 : X0(N)→ E0 is (2n/l)[Q].

Remark. Vatsal [Va] also proved that if there is an elliptic curve E ∈ C
of conductor N defined over Q with a rational point of order l such that
l2 - N , then E0 ∈ C has a rational point P of order l, without explicit
description of the point P .

2.4. For a prime p, X0(N) and its Jacobian J0(N) are also defined
over Qp. When p - N , J0(N) has good reduction modulo p. When p |N , the
special fibre J0(N)Fp in the Néron model J0(N) over Zp is the extension of
a finite étale group scheme ΦN, p by the connected component of identity
J0(N)0Fp

. The finite group ΦN, p is called the group of components of the

special fibre of the Néron model J0(N) over Zp.
Let M ≥ 1 be a positive integer and let p ≥ 5 be a prime such that

p - M . Consider the modular curve X0(Mp) over Qp. The model of the
reduction modulo p of X0(Mp) consists of two irreducible components C0

and C1, each a copy of the modular curve X0(N)Fp , glued together at the

supersingular points. For each supersingular point x, let e(x) = 1
2 |Aut(x)|.

A regular minimal model of X0(Mp) may be obtained by replacing each
supersingular point x with e(x) > 1 by a chain of e(x) − 1 copies of the
projective line P1. Label these additional components by C2, . . . , Cn. For
cusps of X0(Mp), we have Pd ∈ C0 and Pdp ∈ C1, where d |M .

Let L =
⊕n

i=0 Z[Ci] be the free abelian group generated by these com-
ponents. Let ι : L → L be the map defined by ι([Ci]) =

∑n
j=0(Ci · Cj)[Cj ].

Let deg : L → Z be the degree map. Then ΦMp, p = ker(deg)/im(ι). The
component group ΦMp, p contains a canonical cyclic subgroup generated by
the image (0) − (∞) in ΦMp, p of C0 − C1 ∈ L. The order of (0) − (∞) in
ΦMp, p is precisely computed in [Ed], [Ma, Appendix].

Theorem 2.4 (Mazur and Rapoport). Let N = Mp = q1 · · · qsp be a
positive square-free integer, where p ≥ 5 and qi are different prime integers.
Then the order of (0)− (∞) in ΦMp,p is

p− 1

α

s∏
i=1

(qi + 1),

where α = 2, 4, 6, or 12.

3. Proof of Theorem 1.1

Lemma 3.1. Let E : y2 + axy + by = x3 be an elliptic curve, where a, b
are integers such that (a, b) = 1. Let p - 3 be a prime number such that
p |∆ = b3(a3 − 27b).
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(i) If p | b, then wp = −1.
(ii) If p | a3 − 27b and p ≡ 1 (mod 3), then wp = −1.
(iii) If p | a3 − 27b and p ≡ −1 (mod 3), then wp = 1.

Proof. Since c4 := a(a3 − 24b), E has multiplicative reduction at p for
every prime factor p 6= 3 of ∆. For every prime factor p of b, E has a split
multiplicative reduction at p, so wp = −1. For every prime factor p ≡ −1
(mod 3) of a3 − 27b, E has a nonsplit multiplicative reduction at p, so
wp = 1, and for every prime factor p ≡ 1 (mod 3) of a3 − 27b, E has a split
multiplicative reduction at p, so wp = −1 because the slopes of the tangent
lines at the node (−a2/9, a3/27) ∈ E(Fp) are (−3a± a

√
−3)/6 when p 6= 2.

Similarly we can show that w2 = 1 if 2 | a3 − 27b.

Lemma 3.2. If E : y2+axy+y = x3 is an elliptic curve with discriminant
a3 − 27 = (a − 3)(a2 + 3a + 9), where a is an integer such that no prime
factors of a− 3 are congruent to 1 modulo 6 and a2 + 3a+ 9 is a power of a
prime number, then the conductor N of E is a square-free integer such that
3 - N except a = −6, −3, 0 and there is only one prime divisor p of N such
that wp = −1.

Proof. Suppose that E is as in the statement and a2 + 3a+ 9 is a power
of a prime number p.

If 3 | a, then a2 + 3a+ 9 must be a power of 3. So a = −6, −3, 0 and we
have the following table:

a E N wp

−6 27A4 27 = 33 w3 = −1

−3 54A3 54 = 2 · 33 w2 = 1, w3 = −1

0 27A3 27 = 33 w3 = −1

where 27A4, 54A3, 27A3 are in Cremona’s table.
If 3 - a, then 3 - a3 − 27 and for any prime divisor of N , E has multi-

plicative reduction. So the conductor N of E is a square-free integer such
that 3 - N . Suppose that a2 +3a+9 = pk. Then k is odd unless a = 5, p = 7
and a = −8, p = 7. So p ≡ 1 (mod 3). By Lemma 3.1, wp = −1 and wq = 1
for every q | a− 3.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. (i) First we assume that a 6= −6,−3, 0. Let E ∈ C
be an elliptic curve given by

E : y2 + axy + y = x3

with discriminant ∆ = a3 − 27 = (a − 3)(a2 + 3a + 9), where a is an
integer such that no prime factors of a− 3 are congruent to 1 modulo 6 and
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a2 + 3a+ 9 = pr is a power of a prime integer p. Let T = {(0, 0), (0,−1),∞}
be the torsion group of order 3 in E(Q).

By Theorem 2.1, the quotient curve E′ of E by T has a rational point
of order 3 and the equation of E′ is

E′ : y2 + (a+ 6)xy + (a2 + 3a+ 9)y = x3.

The discriminant of ∆′ of E′ is ∆′ = (a3− 27)3, and T ′ = {(0, 0), (0,−(a2 +
3a + 9),∞} is the torsion group of order 3 in E′(Q). Since E′ also has a
rational point of order 3, we have the following étale 3-isogenies of elliptic
curves:

E → E′ → E′′.

Since (a + 6)3 − (a − 3)3 = 33(a2 + 3a + 9), a2 + 3a + 9 cannot be a cube,
by the case n = 3 of Fermat’s Last Theorem. So E′′ has no rational points
of order 3. Since 4x3 + a2x + 2ax + 1 = 0 has no rational solutions, E has
no rational points of order 2 by the duplication formula.

Let C(E) denote the number of Q-isomorphism classes of elliptic curves
in the isogeny class C of E. For a prime p, let Cp(E) be the number of
Q-isomorphism classes of elliptic curves p-power isogenous to E. Then we
have the product formula

C(E) =
∏
p

Cp(E).

Kenku [Ke] proved that Y0(N)(Q) = H/Γ0(N)(Q) is empty except for
N ≤ 10, and N = 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 25, 27, 37, 43, 67,
and 163. This result implies that C3(E) ≤ 4. (For details, see the table in
the proof of Theorem 2 in [Ke].) If there is an étale 3-isogeny E′′′ → E with
E′′′ : y2+Axy+B3y = x3, then the discriminant ∆ = a3−33 of E should be
equal to u−12B3(A3−27B3)3 for some u ∈ Z>0, which is impossible because
a 6= 0. Since E′′ has no rational points of order 3, we have C3(E) = 3. So
Kenku’s result above implies that C2(E) ≤ 2 and Cp(E) = 1 for any prime
p 6= 2, 3, because 9, 18 and 27 are the only multiples of 9 on Kenku’s list.
Since E has no rational points of order 2, there is no 2-isogenous curve of E
and we have C2(E) = 1. By the above product formula we have C(E) = 3.
So the isogeny class C of E is

E
3−→ E′

3−→ E′′,

where each arrow denotes an étale 3-isogeny. Thus E is Emin in C.
By Theorem 2.2, E is E1 in C. By Theorem 2.3, E′′ cannot be E0 in C.

To prove (i), it is enough to show that E cannot be E0 in C. Suppose it is.
Let φ : X0(N)→ E be the modular parametrization and ψ : J0(N)→ E be

the induced homomorphism. Then the dual ψ̂ : E → J0(N) is injective. Let
E(Qp)/E

0(Qp), where E0(Qp) is the subgroup of points which have nonsin-
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gular reduction modulo p, and ΦN,p be the component groups of E and J0(N)
respectively. Let λ : E(Q) → E(Qp)/E

0(Qp) and λ′ : J0(N)(Q) → ΦN,p be
their canonical reduction maps. Then we have the following commutative
diagram:

(2)

E(Q)tors
λ //

ψ̂
��

E(Qp)/E
0(Qp)

ψ̂′

��
J0(N)(Q)tors

λ′ // ΦN,p

where ψ̂′ is the injective homomorphism induced by ψ̂.

By Lemma 3.2, the conductor N of E is a square-free integer such that
3 - N and there is only one prime divisor p of N such that wp = −1. Write
N = Mp, where M = q1 · · · qs and qi are different primes. Then qi | a − 3
and qi ≡ 2 (mod 3) for all i = 1, . . . , s.

By Theorem 2.3, if E is E0 in C, then E has a point P of order 3 such
that

ψ̂(P ) =
2(p− 1)

3h

s∏
i=1

(q2i − 1)[(PM )− (PN )]

in J0(N), where h = (r, 24) and r = (p − 1)
∏s
i=1(q

2
i − 1)(p − 1). We note

that 3 |h. Since PM ∈ C0 and PN ∈ C1, λ
′((PM )− (PN )) = (0)− (∞).

Theorem 2.4 and 3 -
∏s
i=1(qi − 1) imply that

λ′(ψ̂(P )) =
2(p− 1)

3h

s∏
i=1

(qi + 1)
s∏
i=1

(qi − 1)[(0)− (∞)]

is not trivial in ΦN,p. So P ∈ E has singular reduction modulo p. But the
points (0, 0) and (0,−1) in E have nonsingular reduction modulo p. Thus
E cannot be E0 in C.

Finally we assume that a = −6,−3, or 0. If a = −6 (E = 27A4) or a = 0
(E = 27A3), then E0 = 27A1 and E1 = 27A3 differ by a 3-isogeny in the
isogeny class C of E by [St, §7. Numerical evidence]. If a = −3 (E = 54A3),
then E0 = 54A1 and E1 = 54A3 differ by a 3-isogeny in the isogeny class C
of E by Cremona’s table. So we complete the proof of (i).

(ii) Suppose that E0 and E1 differ by a 3-isogeny and the conductor N of
these curves is a square-free integer such that 3 - N . By Theorem 2.2, there
is an étale 3-isogeny from E1 to E0. So E1 has a rational point of order 3,
and as a minimal model for E1 we can take

E1 : y2 + axy + by = x3

with a, b ∈ Z, b > 0. The discriminant of E1 is
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∆1 = b3(a3 − 27b)

and T1 = {(0, 0), (0,−b),∞} is the torsion group of order 3 in E1(Q).
By Theorem 2.3, E0 also has a rational point of order 3. By Theorem

2.1, b is a cubic number t3 with t > 0 and E0 is given by

E0 : y2 + (a+ 6t)xy + (a2 + 3at+ 9t2)ty = x3.

The discriminant of E0 is

∆0 = (a2 + 3at+ 9t2)3((a+ 6t)3 − 27(a2 + 3at+ 9t2)t) = t3(a3 − 27t3)3

and T0 = {(0, 0), (0,−(a2 + 3at+ 9t2)t),∞} is the torsion group of order 3
in E0(Q).

Consider again the commutative diagram (2). Let P = (0, 0) or (0,−(a2+
3at + 9t2)t) be the point of order 3 in E0 and p be a prime divisor of
a2 +3at+9t2. Write N = Mp1 · · · pup so that wq = 1 for every prime divisor
q |M , and wpi = −1 for every prime number pi. We note that wp = −1. By
Theorem 2.3,

ψ̂(P ) =
2n

3

∑
d|(N/M)

wd(PdM )

=
2n

3

∑
pi1 ···piv |(N/Mp)

(−1)v[(Ppi1 ···pivM )− (Pppi1 ···pivM )],

where the number of summands is 2u and if u ≥ 1, we have (−1)v = 1 for
half of them, and (−1)v = −1 for the other half. Since Ppi1 ···pivM ∈ C0 and
Pppi1 ···pivM ∈ C1 for any pi1 · · · piv , we have

λ′((Ppi1 ···pivM )− (Pppi1 ···pivM )) = (0)− (∞)

for any pi1 · · · piv . Thus λ′(ψ̂(P )) is trivial in ΦN,p if u ≥ 1. Since the point

P in E0 has singular reduction modulo p, λ′(ψ̂(P )) is nontrivial in ΦN,p. So
p is the only prime such that wp = −1.

By Lemma 3.1, the elliptic curve E1 in C is E1 : y2 + axy + y = x3 with
discriminant a3 − 27 = (a− 3)(a2 + 3a+ 9), where a is an integer such that
no prime factors of a− 3 are congruent to 1 modulo 6 and a2 + 3a+ 9 is a
power of p. This completes the proof of (ii).

Example. Consider the elliptic curve E : y2 − 20xy + y2 = x3 (8027a3
in Cremona’s table) of conductor 8027 = 23 ·349 and the quotient curve E′ :
y2−14xy+349y=x3 (8027a1 in Cremona’s table) by T ={(0, 0), (0,−1),∞}.
By Theorem 1.1 and its proof, we know that E0 = E′, E1 = E and they
differ by a 3-isogeny. Watkins [Wa] checked this example in another way.
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