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1. Introduction and statement of results. For positive non-square
D ≡ 0, 1 (mod 4) and positive even integer k, define a function Fk(D;x)
as follows: for x ∈ R, consider the set of polynomials aX2 + bX + c with
integer coefficients and discriminant D such that a < 0 < ax2 + bx+ c. For
each such polynomial, compute (ax2 +bx+c)k−1 and then add the resulting
values. That is, set

Fk(D;x) :=
∑

a,b,c∈Z, a<0,
b2−4ac=D

max(0, (ax2 + bx+ c)k−1)

(and note that Fk(D;x) can be defined similarly for square D using Bernoulli
polynomials, although we will not consider such D here). This function has
been studied thoroughly, and much is known about it. For example, as noted
in [8], one can show that if x is rational, then the sum defining Fk(D;x) is
a finite sum. Conversely, it is known [2, 8] that the sum has infinitely many
terms if x is not rational. Also, Zagier [8] proved that if k = 2 or 4 and D is
fixed, then Fk(D;x) is constant in x. Here, we will present additional iden-
tities which give information about relationships between values of Fk(D;x)
for various related values of x.

Let us begin with an example. We define an auxiliary function Fk(D, 2;x)
by

Fk(D, 2;x) := − 210Fk

(
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)
+ x10Fk

(
D;
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)
− 210Fk

(
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)
+ (x+ 1)10Fk
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)
− Fk(D; 2x) + (2x)10Fk
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.
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Since Fk(D;x) is constant for k = 2, 4, we will now choose k = 6, and also
set D = 5.

One can compute that for x = 3, we have F6(5; 3) = 2, since the two
polynomials [a, b, c] of interest here are

[−1, 5,−5] and [−1, 7,−11].

One also sees F6(5; 1/3) = 18242/6561, and

F6(5, 2; 3) := − 210F6(5; 3/2) + 310F6(5; 2/3)− 210F6(5; 2) + 410F6(5; 1/2)

− F6(5; 6) + 610F6(5; 1/6)− 410F6(5; 3/2) + 610F6(5; 2/3)

= 304644624.

Thus altogether we have
1742
691 (211 + 1)(310 − 1)− F6(5, 2; 3)

1742
691 (310 − 1) + F6(5; 3)− 310F6(5; 1/3)

=
254016000/691

−10584000/691
= −24.

We now go through the same computation using a different value of x. If we
choose x = 2/7, we obtain

F6(5; 2/7) =
743556578

282475249
,

F6(5; 7/2) =
391

128
,

F6(5, 2; 2/7) = −1458365017050

282475249
and thus

1742
691 (211 + 1)((2/7)10 − 1)− F6(5, 2; 2/7)

1742
691 ((2/7)10 − 1) + F6(5; 2/7)− (2/7)10F6(5; 7/2)

= −24.

From these two examples, one might wonder if

1742

691
(211 + 1)(x10 − 1)− F6(5, 2;x)

= −24

[
1742

691
(x10 − 1) + F6(5;x)− x10F6(5; 1/x)

]
for all real numbers x. In fact, this is true, and more generally we have

(1.1)
1742

691
σ11(n)(x10 − 1)− F6(5, n;x)

= τ(n)

[
1742

691
(x10 − 1) + F6(5;x)− x10F6(5; 1/x)

]
for all x ∈ R and n > 1. Here, Fk(D,n;x) is defined in Section 2.3 (and is
similar in shape to Fk(D, 2;x) defined above), σ11(n) =

∑
d|n d

11, and τ(n)
is a value of Ramanujan’s tau-function. A similar statement holds true for
other values of D as well.
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For other values of k, we are not always so lucky. For example, let us
consider the case where k = 12. For D = 5 and n = 2, one might hope that

1590572822

236364091
(223 + 1)(x22 − 1)− F12(5, 2;x)

= C

[
1590572822

236364091
(x22 − 1) + F12(5;x)− x22F12(5; 1/x)

]
for some constant C which does not depend on x. Unfortunately, this is not
the case, but we do have

1590572822

236364091
(223 + 1)(x22 − 1)− F12(5, 2;x) ≡ 0 (mod 72).

In order to explain these identities (and many others), we make use of
the connection between Fk(D;x) and the theory of modular forms. It is
known that

ζD(1− k)

2ζ(1− 2k)
(x2k−2 − 1) + Fk(D;x)− x2k−2Fk(D; 1/x)

is the “even” part of the period polynomial of a cusp form fk(D; z) of weight
2k (see Section 2.3). We make use of this fact to give the following theorem,
which implies the above claims for k = 6, since S12 has dimension 1 and is
spanned by the eigenform

∆(z) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.

Theorem 1.1. Suppose that k is a positive even integer, 0 < D ≡ 0, 1
(mod 4) is not a square, and n > 1 is an integer such that fk(D; z) is an
eigenform of the Hecke operator with eigenvalue λn. Then

ζD(1− k)

2ζ(1− 2k)
σ2k−1(n)(x2k−2 − 1)− Fk(D,n;x)

= λn

[
ζD(1− k)

2ζ(1− 2k)
(x2k−2 − 1) + Fk(D;x)− x2k−2Fk

(
D;

1

x

)]
.

While unfortunately fk(D; z) is not an eigenform in general, we can
use congruences to give results analogous to Theorem 1.1, as in the above
example with k = 12. The following theorems are derived from congruence
results of Serre and Tate from the theory of modular forms. They correspond
to the case where the appropriate Hecke eigenvalues vanish modulo some
value M (which simplifies the resulting formulae considerably). Note here
that one cannot ever expect these Hecke eigenvalues to be equal to 0, but
Theorem 1.3 asserts that they are almost always 0 modulo M .

Theorem 1.2. Suppose that k is a positive even integer and 0 < D ≡ 0, 1
(mod 4) is not a square. Let K and α be as described in Section 3.2, and let
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λ be a prime of K lying above 2. Set e ≥ 0 such that λe ‖α. Then there is a
non-negative integer c such that for every t ≥ 1 we have

Fk(D,n;x) ≡ ζD(1− k)

2ζ(1− 2k)
σ2k−1(n)(x2k−2 − 1) (mod λt−e)

for all real numbers x and positive integers n with at least c+ t distinct odd
prime factors.

Theorem 1.3. Suppose that k is a positive even integer, let K and α be
as described in Section 3.2, and let m ⊂ OK be an ideal of norm M which
is relatively prime to α. Then a positive proportion of the primes p ≡ −1
(mod M) have the property that

Fk(D, p;x) ≡ ζD(1− k)

2ζ(1− 2k)
σ2k−1(p)(x

2k−2 − 1) (mod M)

for all real numbers x and non-square 0 < D ≡ 0, 1 (mod 4). Furthermore,
for almost all positive integers n, we have

Fk(D,n;x) ≡ ζD(1− k)

2ζ(1− 2k)
σ2k−1(n)(x2k−2 − 1) (mod M)

for all real numbers x and non-square 0 < D ≡ 0, 1 (mod 4).

In Section 2, we will recall the necessary background material regarding
period polynomials, Hecke operators, and the connection between Fk(D;x)
and the theory of modular forms. In Section 3, we will prove Theorems 1.1,
1.2, and 1.3.

2. Preliminaries

2.1. Background on period polynomials and Hecke operators.
First we review the theory of periods, as described in [3]. Given a cusp form
f(z) =

∑
n≥0 a(n)qn (where q := e2πiz) of weight 2k on SL2(Z), we define

the period polynomial of f by

rf (x) :=

i∞�

0

f(z)(x− z)2k−2 dz

and also let r+f and r−f denote the even and odd parts of rf , respectively.

It is known that rf (X) is a polynomial of degree at most 2k − 2, and that
its coefficients are dictated by the critical values of the Hecke L-function
associated to f (see the last section of [1], or [9]).

Let V = V2k−2 be the set of polynomials of degree at most 2k − 2, and
define the slash operator by

P |γ = (cx+ d)2k−2P

(
ax+ b

cx+ d

)
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for γ =
(
a b
c d

)
and P ∈ V. One can check that rf (z) ∈W, where

W = W2k−2 := {P ∈ V : P |(1 + S) = P |(1 + U + U2) = 0}.

Here, S =
(
0 −1
1 0

)
and U =

(
1 −1
1 0

)
. We also set W+ and W− to be the

subspaces of even and odd polynomials. Finally, set W+
0 to be the subspace

of codimension 1 of W+ which does not contain the polynomial x2k−2 − 1.

It is known (due to Eichler and Shimura) that the maps

r+ : S2k →W+
0 , r− : S2k →W−

are isomorphisms.

We now wish to establish a relationship between the theory of Hecke
operators and period polynomials. We recall a result of Zagier, which gen-
eralizes a result of Manin and gives the action of Hecke operators on period
polynomials in a way which respects the Eichler–Shimura isomorphisms. Za-
gier proved [9] that if f is a cusp form of weight 2k on SL2(Z) and n is a
positive integer, then

rf |Tn(x) =
∑

(cx+ d)2k−2rf

(
ax+ b

cx+ d

)
,

where the sum is over matrices
(
a b
c d

)
of determinant n satisfying

(2.1)

a > |c|, b = 0 ⇒ −a/2 < c ≤ a/2,
d > |b|, c = 0 ⇒ −d/2 < b ≤ d/2,
bc ≤ 0.

Thus we define the Hecke operator T̃n for period polynomials by

rf (x)|T̃n :=
∑

(cx+ d)2k−2rf

(
ax+ b

cx+ d

)
=
∑

rf |M

where the sum is over matrices M =
(
a b
c d

)
of determinant n which satisfy

(2.1), and note that the result of Zagier may be written as rf |Tn = rf |T̃n for
all cusp forms f . One can also check that

(x2k−2 − 1)|T̃n = σ2k−1(n)(x2k−2 − 1).

2.2. Congruence results from the theory of modular forms.
When considering cusp forms f ∈ Sk, one might be interested in forms
which are eigenforms of the Hecke operator, i.e., which satisfy f |Tn = λnf
for some constant λn. While this is not always the case, it is known that
analogous statements can be made in many situations using congruences.

For example, it is known [5, 7] that the action of Hecke algebras on spaces
of modular forms modulo 2 is locally nilpotent, as stated in the following
lemma.
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Lemma 2.1. Suppose that f(z) ∈Mk∩Z[[q]]. Then there exists a positive
integer i such that

f(z)|Tp1 | · · · |Tpi ≡ 0 (mod 2)

for every collection of odd primes p1, . . . , pi.

Thus for a modular form f(z) ∈Mk ∩Z[[q]] which is not congruent to 0
modulo 2, we may define its degree of nilpotency to be the smallest such i,
i.e., there exist odd primes `1, . . . , `i−1 for which

f(z)|T`1 | · · · |T`i−1
6≡ 0 (mod 2),

and for every collection of odd primes p1, . . . , pi, we have

f(z)|Tp1 | · · · |Tpi ≡ 0 (mod 2).

More generally, one might ask about modular forms which do not have
integral coefficients (e.g., in the next section, we will consider modular forms
with coefficients in the ring of integers of a number field). We have the
following result, which also follows from the work of Tate [7].

Lemma 2.2. Let k be a positive even integer and suppose that K is a
number field containing the coefficients of all the weight k normalized eigen-
forms in Sk. Let λ be a prime of K lying above 2. Then there is an integer
c ≥ 0 such that for every f(z) ∈ Sk with coefficients in OK,λ and every t ≥ 1
we have

f(z)|Tp1 | · · · |Tpc+t ≡ 0 (mod λt)

for all odd primes p1, . . . , pc+t.

One might next ask whether one can give results with a different mod-
ulus. In order to do so, we state the following lemma of Serre [6], which he
proved in more generality using the theory of Galois representations and the
Chebotarev density theorem.

Lemma 2.3. Let A denote the subset of integer weight modular forms
in Mk whose Fourier coefficients are in OK , the ring of algebraic integers
in a number field K. If m ⊂ OK is an ideal of norm M , then a positive
proportion of the primes p ≡ −1 (mod M) have the property

f(z)|Tp ≡ 0 (mod m)

for every f(z) ∈ A.
Serre also proved the following amazing fact.

Lemma 2.4. Assume the notation in Lemma 2.3. If f(z) ∈ A has Fourier
expansion f(z) =

∑∞
n=0 a(n)qn, then there is a constant α > 0 such that

#{n ≤ X : a(n) 6≡ 0 (mod m)} = O(X/(logX)α).

If the modular form f in Lemma 2.4 is a Hecke eigenform, then this
implies that almost all of its Hecke eigenvalues are 0 modulo m.
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2.3. Zagier’s Fk(D;x) and its connection to the theory of mod-
ular forms. As before, for non-square D ≡ 0, 1 (mod 4), and positive even
integer k, we define

Fk(D;x) :=
∑

a,b,c∈Z, a<0
b2−4ac=D

max(0, (ax2 + bx+ c)k−1).

This function is related to cusp forms of weight 2k in the following way, as
described by Zagier in [8]: define the polynomial

Pk(D;x) :=
∑

b2−4ac=D
a>0>c

(ax2 + bx+ c)k−1.

Then one can easily see that

x2k−2Fk(D; 1/x)− Fk(D;x) = Pk(D;x).

For k > 2, we may also consider

fk(D; z) := CkD
k−1/2

∑
b2−4ac=D

1

(az2 + bz + c)k

(where Ck is a constant which is not important here), and it is easy to see
that fk(D; z) is a cusp form of weight 2k on SL2(Z). In [3], it was shown
that its even period function is given by

r+fk,D(x) =
ζD(1− k)

2ζ(1− 2k)
(x2k−2 − 1)− Pk(D;x).

This gives

Fk(D;x) =
ζD(1− k)

2ζ(1− 2k)
+
∞∑
n=1

ak,D(n)

n2k−1
cos(2πnx),

where we write fk(D; z) =
∑

n≥1 ak,D(n)qn. Additionally, we define

Fk(D,n;x) :=
∑

[Fk(D;x)|J − Fk(D;x)]|M = Pk(D;x)|T̃n,

where the sum is over matrices M =
(
a b
c d

)
of determinant n which satisfy

(2.1), and J :=
(
0 1
1 0

)
.

2.4. Examples for small k. In order to show that the above discussion
can be made explicit, and to give some easy (known) consequences of the
relationship between Fk(D; z) and the theory of modular forms, we consider
the cases where k = 2, 4, and 6. First consider the case where k = 2 or 4,
which is considered extensively in [8]. Since there are no cusp forms of weight
4 or 8, we have

0 = r+fk,D(x) =
ζD(1− k)

2ζ(1− 2k)
(x2k−2 − 1)− Pk(D;x),
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so

Pk(D;x) =
ζD(1− k)

2ζ(1− 2k)
(x2k−2 − 1) = x2k−2Fk(D; 1/x)− Fk(D;x).

It follows that the function F 0
k (D;x) := Fk(D;x)− ζD(1−k)

2ζ(1−2k) satisfies

x2k−2F 0
k (D; 1/x) = F 0

k (D;x),

F 0
k (D;x+ 1) = F 0

k (D;x),

F 0
k (D; 0) = 0,

and consequently F 0
k (D;x) = 0 for all rational x (and thus, by continuity, for

all x). That is, for k ∈ {2, 4}, we see that Fk(D;x) is the constant function

Fk(D;x) =
ζD(1− k)

2ζ(1− 2k)
.

We now consider Fk(D;x) where k = 6. Since the space of cusp forms of
weight 12 and level 1 is non-empty, F6(D;x) is no longer a constant function.
For example, when D = 5, one can compute that

P6(5;x) = 2x10 + 10x8 − 30x6 + 30x4 − 10x2 − 2,

r+f6,5(x) =
360

691
x10 − 10x8 + 30x6 − 30x4 + 10x2 − 360

691
.

Note here that since the relevant space of cusp forms S2k is one-dimensional
(and spanned by ∆(z)) it follows that f6(D; z) is a multiple of ∆(z), and
is an eigenform of the Hecke operator Tn for all n; therefore Theorem 1.1
applies whenever k = 6.

3. Proofs

3.1. Proof of Theorem 1.1. Since fk(D, z) is an eigenform of the
Hecke operator, we see that fk(D; z)|Tn = λnfk(D; z). Thus we have

r+fk,D|Tn(x) = r+λnfk,D(x), r+fk,D(x)|T̃n = λnr
+
fk,D

(x),

so

ζD(1− k)

2ζ(1− 2k)
σ2k−1(n)(x2k−2 − 1)− Fk(D,n;x)

= λn

[
ζD(1− k)

2ζ(1− 2k)
(x2k−2 − 1) + Fk(D;x)− x2k−2Fk

(
D;

1

x

)]
as desired.

3.2. Congruences for period polynomials of modular forms. One
must be a bit careful when applying the congruence results of Section 2.2;
they do not necessarily apply to the cusp forms fk(D; z). Here we consider
a basis of eigenforms for S2k in order to circumvent this issue.
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Fix a positive even integer k and a positive non-square integer D ≡ 0, 1
(mod 4). Set dk := dim(S2k) and let f1, . . . , fdk be a basis of eigenforms for
S2k which are normalized so that their corresponding even period polyno-
mials

r+f1(X), . . . , r+fdk
(X)

have coefficients in a number field K (where K is defined to be the smallest
number field which contains all of the coefficients of the weight 2k normalized
eigenforms of S2k). Note that such a choice exists by the Periods Theorem
of Manin [4]. Since these eigenforms give a basis for S2k, their even period
polynomials give a basis for W+

0 , so there exist constants c1, . . . , cdk such
that

r+fk,D(X) =

dk∑
i=1

cir
+
fi

(X).

Note that r+fk,D(X) ∈ Q[X], and hence ci ∈ K for all i.

Thus we may choose α ∈ OK so that

α(ciλi,nr
+
fi

(X)) ∈ OK [X]

for all i and n > 1 (where λi,n is the eigenvalue of fi with respect to the
Hecke operator Tn). It follows that for m coprime to α, and n > 1 such that

r+fi |T̃n ≡ 0 (mod m)

for all i, we have

r+fk,D |T̃n =

dk∑
i=1

cir
+
fi
|T̃n ≡ 0 (mod m).

3.3. Proof of Theorem 1.2. Fix a positive integer t and choose a
positive integer n with at least c + t distinct odd prime factors. Then by
Lemma 2.2 we have

αcir
+
fi

(X)|T̃n = αcir
+
fi|Tn(X) = αciλi,nr

+
fi

(X) ≡ 0 (mod λt)

for all i, and thus αr+fk,D(X)|T̃n ≡ 0 (mod λt). Finally, this gives

r+fk,D(X)|T̃n ≡ 0 (mod λt−e),(
ζD(1− k)

2ζ(1− 2k)
(X2k−2 − 1)− Pk(D;X)

)∣∣∣∣T̃n ≡ 0 (mod λt−e),

σ2k−1(n)
ζD(1− k)

2ζ(1− 2k)
(X2k−2 − 1) ≡ Fk(D,n;X) (mod λt−e)

as desired.
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3.4. Proof of Theorem 1.3. Note that for a positive proportion of
primes p ≡ −1 (mod M), we have

αcir
+
fi

(X)|T̃p = αcir
+
fi|Tp(X) = αciλi,pr

+
fi

(X) ≡ 0 (mod M)

for all i by Lemma 2.3, and thus αr+fk,D(X)|T̃p ≡ 0 (mod M). We deduce

that

r+fk,D(X)|T̃p ≡ 0 (mod M),(
ζD(1− k)

2ζ(1− 2k)
(X2k−2 − 1)− Pk(D;X)

) ∣∣∣∣ T̃p ≡ 0 (mod M),

σ2k−1(p)
ζD(1− k)

2ζ(1− 2k)
(X2k−2 − 1) ≡ Fk(D, p;X) (mod M).

This proves the first statement of Theorem 1.3. To see the second statement,
note that Lemma 2.4 says that almost all positive integers n satisfy λi,n for
all i. For such n, we have

σ2k−1(n)
ζD(1− k)

2ζ(1− 2k)
(X2k−2 − 1) ≡ Fk(D,n;X) (mod M)

by the same argument as above.
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