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1. Introduction. There are many approximate identities coming from
the theory of modular forms. Probably the most known is the result that

the so-called Ramanujan constant eπ
√
163 differs from 744 + 6403203 by less

than 10−12.

The common point in most of these approximate identities, when ap-
pearing in number theory, is that they exploit a rapidly converging Fourier
expansion of a quantity with some arithmetical meaning. In the case of Ra-
manujan constant (which, by the way, is due to Hermite and does not ap-
pear in Ramanujan’s work, although there are some allied quantities in [14]),
what is employed is the Fourier expansions of the j-invariant and the in-
terpretation of special values of j as roots of the class equation (see [7]
for a self-contained explanation). The integral approximation of the Ra-
manujan constant corresponds to taking two terms in the Fourier expan-
sion.

We obtain here some approximate identities that are “exotic” in the sense
that they are not associated to the Euclidean harmonic analysis but to the
spectral resolution of the Laplace–Beltrami operator on Riemann surfaces
(spectral theory of automorphic forms). The arithmetical quantities to be
expanded here are series involving the number of representations as a sum of
two squares. In comparison with the approximations derived from classical
Fourier expansions, the role of positive integers is played by the discrete
spectrum. The continuous spectrum, when it exists, contributes as a finite
sum of integral terms.

To catch a glimpse of our approximate identities, we mention here two
examples.
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Consider the series (that can be seen as a special value of the L-function
associated to a shifted convolution) and the integral given by

S =
∞∑
n=0

(3 + (−1)n)
r(n)r(n+ 4)

2(n+ 4)2
and I =

∞�

−∞

1/4 + t2

cosh(πt)
|f(t)|2 dt,

where r(n) = #
{

(a, b) ∈ Z2 : a2 + b2 = n
}

and f(t) = ζ(s)L(s, χ)/ζ(2s),
s = 1/2 + it, with L(s, χ) the Dirichlet L-function for the non-principal
character χ modulo 4 (note that f is easily related to the Epstein zeta
function for x2 + y2). There are efficient numerical methods to approximate
f(t) (see for instance [5]) and I. Using several millions of terms in S one
can check that

S − 3

I
= 3.141592 . . . .

We shall prove that this number is not π but exceeds π by an amount less
than 4 · 10−14. This accuracy is related to the size of the third eigenvalue of
the Laplace–Beltrami operator on PSL2(Z)\H and to a special value of the
corresponding eigenfunction. In fact this is a two-sided relation: the value
of π − (S − 3)/I gives an approximation for a certain expression involving
these spectral quantities.

Our second example is the series

S =

∞∑
n=1

r(n)r(3n+ 2)
√
n e−(log(n)/4)

2
.

It turns out that S is very close to 72e9
√
π. In fact we shall prove that the

relative error is not zero but is less than 3 · 10−7. This figure is related to
the size of the first non-trivial eigenvalue of the Laplace–Beltrami operator
on the simplest Shimura curve, X(6, 1) in the notation of [1], the one corre-
sponding to a quaternion algebra with smallest discriminant. By an instance
of Jacquet–Langlands correspondence that is explicit in this case (see [3],
[15] and [11]), and is the same as the smallest eigenvalue for Γ0(6)\H.

2. Some auxiliary results. We start by giving a brief overview of
the spectral theory of automorphic forms to fix some notation. For more
details, see [12]. We consider the Poincaré half-plane, i.e., the upper complex
half-plane, H, endowed with the metric ds = y−2(dx2 + dy2). The induced
distance ρ is given implicitly by cosh ρ(z, w) = 1 + 2u(z, w), where

u(z, w) =
|z − w|2

4=z=w
.

The usual group action of G = SL2(R) on H gives rise to all the direct
isometries of the Poincaré half-plane. This action is not faithful, so we will
often think of G as PSL2(R) = SL2(R)/{±I}. We also consider Fuchsian
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groups F that we assume to be of the first kind, i.e., discrete subgroups of
G having the extended real line as limit set.

We can associate with every cusp a (point at the infinity) of a Fuch-
sian group F a scaling matrix. This is an element σa of G such that σa∞
= a and σaFaσ

−1
a is generated by the unit translation, where Fa =

{g ∈ F : ga = a}.
Given a function k : [0,∞) → C, and a Fuchsian group F acting on H,

we define the automorphic kernel

K(z, w) =
∑
g∈F

k(u(gz, w)).

Under suitable regularity and decay conditions on k (as in [12, (1.63)]), which
we implicitly assume along this paper, the previous definition makes sense
and the spectral resolution of the Laplace–Beltrami operator∆ = y2(∂2x+∂2y)
gives the spectral expansion of automorphic kernels

K(z, w) =

∞∑
j=0

h(tj)uj(z)uj(w)(2.1)

+
1

4π

∑
a

∞�

−∞
h(t)Ea(z, 1/2 + it)Ea(w, 1/2 + it) dt,

where h is the Selberg transform of the function k,

h(t) =

∞�

0

∞�

−∞
k

(
x2 + (y − 1)2

4y

)
y−3/2+it dx dy;

uj(z) are the normalized Maass cusp forms with ordered eigenvalues λj =
−(1/4 + t2j ) completed with the constant function u0; and Ea(z, s) are the
Eisenstein series associated with the cusps a of F . These series are defined
for s ∈ C with <s > 1 as the analytic continuation of

Ea(z, s) =
∑

g∈Fa\F

(=σ−1a gz)s.

If F has no cusps (in this case F is said to be co-compact), the last term in
the spectral expansion does not appear (it is an empty sum). Typically,
the main term in (2.1) comes from the constant eigenfunction u0(z) =
|F\H|−1/2, where |F\H| is the area of the fundamental domain of F . Note
that the eigenfunctions uj and the eigenpackets Ea depend strongly on F ;
consequently, so does (2.1).

In the rest of the section, we focus on the Selberg transform. It is a kind
of hyperbolic analogue of the Fourier transform. Firstly, we state two general
results.

Lemma 2.1. We have h(i/2) = 4π
	∞
0 k(x) dx.
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Proof. The result follows from the equalities

h(i/2) =
�

H

k(u(i, z)) dµ(z) = 4

∞�

0

π�

0

k(u) du dϕ = 4π

∞�

0

k(u) du,

where we have employed hyperbolic polar coordinates (u, ϕ) (see [12, §1.3]).

Given two functions k1 and k2, we define their hyperbolic convolution,
k1 ∗ k2, as

(k1 ∗ k2)(u(z, w)) =
�

H

k1(u(z, v))k2(u(v, w)) dµ(v).

Note that the integral depends only on u(z, w) because z 7→ gz, w 7→ gw
with g ∈ G leaves it invariant.

Lemma 2.2. If h1 and h2 are the Selberg transforms of k1 and k2, then
their product h1h2 is the Selberg transform of k1 ∗ k2.

Proof. A basic result (the Fundamental Lemma 5.1 in [10]) asserts that
for any eigenfunction φ(z) of the Laplace–Beltrami operator, we have�

H

k(u(z, w))φ(z) dµ(z) = h(t)φ(w).

The proof reduces to a double application of this formula for φ(z) = (=z)s:
�

H

(k1 ∗ k2)(u(z, i)) dµ(z)

=
�

H

k2(u(v, i))
( �

H

k1(u(z, v))(=z)1/2+it dµ(z)
)
dµ(v)

=
�

H

k2(u(v, i))(h1(t) · (=v)1/2+it) dµ(v) = h1(t)h2(t).

Of course we implicitly assume that the regularity of k1 and k2 ensures the
convergence of the integrals.

To get accurate approximate identities from (2.1), we are specially inter-
ested in rapidly decreasing Selberg transforms. Due to the involved formula
defining this transform, it is not easy to find examples giving explicit results.

Lemma 2.3. Let µ ∈ C be a constant with <µ > 1. Then the Selberg
transform of k(u) = (u+ 1)−µ is

h(t) =
4π

Γ 2(µ)
Γ (µ− 1/2 + it)Γ (µ− 1/2− it).

In particular,

h(t) =
4π2

(µ− 1)!2 cosh(πt)

µ−1∏
n=1

((n− 1/2)2 + t2) if µ ∈ Z, µ > 1,
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and

h(t) =
(µ− 3/2)!242µ−1πt

(2µ− 2)!2 sinh(πt)

µ−3/2∏
n=1

(n2 + t2) if µ− 1/2 ∈ Z, µ > 1.

Proof. By the definition of the Selberg transform and the change of
variables x 7→ (y + 1)

√
x we have

h(t) = 2

∞�

0

∞�

0

(
x2 + (y − 1)2

4y
+ 1

)−µ
y−3/2+it dx dy

= 4µ
∞�

0

yµ−3/2+it

(1 + y)2µ−1

∞�

0

x−1/2

(1 + x)µ
dx dy

= 4µB(1/2, µ− 1/2)B(µ− 1/2 + it, µ− 1/2− it),
where B is the classical Beta function that admits the integral representation

B(z1, z2) =

∞�

0

uz2−1

(1 + u)z1+z2
du

and satisfies Γ (z1)Γ (z2) = Γ (z1+z2)B(z1, z2). Using this relationship as well
as the duplication formula for the Gamma function we obtain the result.

The well-known formulas

|Γ (1/2 + it)|2 =
π

cosh(πt)
, |Γ (1 + it)|2 =

πt

sinh(πt)
,

Γ (n+ 1/2) =
(2n− 1)!

2n−1(n− 1)!

√
π

give the particular expressions for µ integral and half-integral.

Lemma 2.4. The Selberg transform of k(u) = e−µu, with µ > 0, is
4eµ/2

√
π/µKit(µ/2), where Kν(z) is the modified Bessel function of the

second kind.

Proof. Manipulating the definition shows that

h(t) =

∞�

0

e−µ(y−1)
2/4y

( ∞�
−∞

e−µx
2/4y dx

)
y−3/2+it dy

= (4πeµ)1/2µ−1/2
∞�

0

e
µ
4
(y+1/y)y−1+it dy

and, by the integral representation (see [9, §8])

Kν(z) =
1

2

∞�

0

e−
z
2
(t+1/t)t−ν−1 dt,

the result follows.
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Lemma 2.5. For α, β > 0, the Selberg transform of

k(u) =

√
αβ

4
√

(α+ β)2 + 4αβu
e−
√

(α+β)2+4αβu

is Kit(α)Kit(β).

Proof. For µ > 0, let us define kµ(u) =
√
µ/(8π) e−µ(1+2u). Using the

previous lemma, the Selberg transform of this function is Kit(µ). So, ac-
cording to Lemma 2.2, we just have to prove that (kα ∗ kβ)(u) = k(u). As
both sides are SL2(R) point-pair invariant, we can restrict ourselves to the
points z = i and w = λi for some λ > 0. Then u(z, w) = (λ − 1)2/4λ, and
we have

(kα ∗ kβ)(u(w, z))

=

√
αβ

8πeα+β

∞�

0

( ∞�
−∞

e−(α/λ+β)x
2/2y dx

)
e−(α(y−λ)

2/λ+β(y−1)2)/2yy−2 dy

=

√
2παβ

8π
√
α/λ+ β

∞�

0

e−(α/λ+β)y/2−(β+αλ)/2yy−3/2 dy

=

√
αβ

4
√

(α/λ+ β)(β + αλ)
e
√

(α/λ+β)(β+αλ).

The last integral can be expressed as K1/2(z), which is the elementary func-

tion e−z
√
π/2z (see for instance [9, §8]).

Lemma 2.6. The Selberg transform of k(u) = u−2((1+2/u) log(1+u)−2),
with k(0) defined by continuity as k(0) = 1/6, is

h(t) = 2π3
(

1/4 + t2

cosh(πt)

)2

.

Note that k(u) is the derivative of u−2(u− (1 + u) log(1 + u)).

Proof of Lemma 2.6. By Lemmas 2.2 and 2.3, the Selberg transform of
(u+ 1)−2 ∗ (u+ 1)−2 is exactly 8πh(t). Then it is enough to check

(2.2) 8πk(u(z, w)) =
�

H

(u(z, v) + 1)−2(u(v, w) + 1)−2 dµ(v).

As in the previous proof, we can restrict ourselves to z = i and w = (2c+1)i,
with c > −1/2. With this choice, u(z, w) = c2/(2c+ 1)2 and

k(u(z, w)) =
(2c+ 1)2

c4

(
c2 + 4c+ 2

c2
log

(c+ 1)2

2c+ 1
− 2

)
.

On the other hand, the integral in (2.2) is
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I = 256(2c+ 1)2
∞�

0

y2J(y + 1, y + 2c+ 1) dy,

where

J(A,B) =

∞�

−∞

dx

(x2 +A2)2(x2 +B2)2
=
π

2

A2 + 3AB +B2

A3B3(A+B)3
.

The change of variables y 7→ y − c− 1 gives

I = 16π(2c+ 1)2
∞�

c+1

(5y2 − c2)(y − c− 1)2

y3(y2 − c2)3
dy.

Evaluating this rational integral, we obtain the same expression as that for
8πk(u(z, w)), and (2.2) is proved.

3. The non-compact case. The most conspicuous examples of Fuch-
sian groups are the full modular group, Γ = PSL2(Z), and the congruence

modular group Γ0(N). It will be convenient here to consider also Γ̃ , defined
as the subgroup of Γ such that a11 + a22 and a12 + a21 are both even. It is
easy to see that actually Γ̃ is a conjugate of Γ0(2), namely

Γ̃ =

(
0 −1

1 1

)−1
Γ0(2)

(
0 −1

1 1

)
/{±Id}.

A special feature of Γ and Γ̃ is that the automorphic kernels have a
rather direct arithmetic interpretation and (2.1) provides a kind of Fourier
expansion for these arithmetical quantities.

Proposition 3.1. We have the spectral expansions

(a)

∞∑
n=0

r(n)r(n+ 1)k(n)

= 8

∞�

0

k(x) dx+ 2

∞∑
j=1

h(t̃j)|uj(i)|2 +
4

π

∞�

−∞
h(t)

∣∣∣∣ f(t)

1 + 21/2+it

∣∣∣∣2 dt,
(b)

∞∑
n=0

(3 + (−1)n)r(n)r(n+ 4)k(n/4)

= 96

∞�

0

k(x) dx+ 8

∞∑
j=1

h(tj)|uj(i)|2 +
8

π

∞�

−∞
h(t)|f(t)|2 dt,

where h is the Selberg transform of k, f(t) = ζ(s)L(s, χ)/ζ(2s) with s =

1/2 + it, and 1/4 + t̃2j and 1/4 + t2j are the non-trivial eigenvalues for Γ̃\H
and Γ\H, respectively.

For the proof we need two summation formulas (cf. [12, §12]) and an

explicit description of the Eisenstein series for Γ and Γ̃ .
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Lemma 3.2. We have the identities

(a) 2
∑
γ∈Γ̃

k(u(γi, i)) =

∞∑
n=0

r(n)r(n+ 1)k(n),

(b) 8
∑
γ∈Γ

k(u(γi, i)) =
∞∑
n=0

(3 + (−1)n)r(n)r(n+ 4)k(n/4).

Lemma 3.3. Let E be the Eisenstein series of Γ and Ea, Eb the ones

corresponding to the cusps a =∞ and b = 1 of Γ̃ . Then

(3.1) E(i, s) = (2s + 1)Ea(i, s) = (2s + 1)Eb(i, s) =
2ζ(s)L(s, χ)

ζ(2s)
,

where χ is the non-principal character modulo 4.

Proof of Lemma 3.2. Let γ = (aij) ∈ G. Then

(3.2)

{
4u(γi, i) = (a11 − a22)2 + (a12 + a21)

2,

4u(γi, i) + 4 = (a11 + a22)
2 + (a12 − a21)2.

If γ ∈ Γ̃ these quantities are multiples of 4, say 4n and 4n + 4, and
recalling that r(n) = r(4n) we derive (a).

For γ ∈ Γ , if n = 4u(γi, i) satisfies n ≡ 1 (mod 4) then the squares
in each equation of (3.2) have different parity, and a choice of the parity
of the squares in the first equation forces a fixed ordering in the second,
contributing 1

2r(n)r(n + 4) to the total number of solutions. If n ≡ 0, 2
(mod 4) then they have the same parity and we obtain r(n)r(n+4) solutions.
Hence

2
∑
γ∈Γ

k(u(γi, i)) =
1

2

∞∑
n≡1 (4)

r(n)r(n+ 4)k(n/4) +
∞∑

n 6≡1 (4)

r(n)r(n+ 4)k(n/4).

Noting that r(n) = 0 for n ≡ 3 (mod 4), we get (b).

Proof of Lemma 3.3. Taking z = i in the definition of the Eisenstein
series yields

E(i, s) =
∑

γ∈Γ∞\Γ

(=i)s

|jσ−1
∞ γ(i)|2s

=
1

2

∞∑
c,d=−∞
(c,d)=1

1

(c2 + d2)s
=

1

2ζ(2s)

∞∑
n=1

r(n)

ns
,

where r(n), the number of representations of n as sum of two squares, sat-
isfies 1

4r(n) = 1 ∗ χ(n), and this gives the equality between the extremes

of (3.1) that is classical. In the case of the group Γ̃ , the scaling matrices are

σa =

(√
2 0

0 1/
√

2

)
, σb =

(
1 0

1 1

)
;
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they give rise to the same conjugate groups:

σ−1a Γ̃ σa =

{(
∗ ∗

2n m

)
∈ Γ

}
= σ−1b Γ̃ σb.

Therefore

Ea(i, s) =
∑

g∈Γ̃a\Γ̃

(=σ−1a gi)s =
∑

γ∈Γ∞\σ−1
a Γ̃ σa

(=γσ−1a i)s

=
1

2s+1

∑
m,n∈Z

(m,n)=1, 2 -m−n

1

(m2 + n2)s
,

and the same result is obtained for the corresponding series associated to
the cusp b of Γ̃ using similar arguments. Further

2(2s + 1)Ea(i, s)

=

∞∑
m,n=−∞

(m,n)=1, 2 -m−n

1

(m2 + n2)s
+

∞∑
m,n=−∞

(m,n)=1, 2|m−n

1

(m2 + n2)s
= 2E(i, s),

and we obtain the expected result.

Proof of Proposition 3.1. Substitute the previous lemmas into the spec-
tral expansion of automorphic kernels (2.1). The contribution of the triv-
ial eigenvalue is evaluated using Lemma 2.1, and taking into account that
|Γ\H| = π/3 and |Γ̃\H| = π.

Taking k(u) = (u + 1)−m in Proposition 3.1, with m an integer greater
than 1, we obtain approximations of π whose accuracy depends on spectral
quantities. Consider

sm =
∞∑
n=0

(3 + (−1)n)
r(n)r(n+ 4)

2(n+ 4)m
and s̃m =

∞∑
n=0

r(n)r(n+ 1)

(n+ 1)m
.

Consider also the integrals

γm =

∞�

−∞
gm(t)|f(t)|2 dt and γ̃m =

∞�

−∞
gm(t)

∣∣∣∣ f(t)

1 + 21/2+it

∣∣∣∣2 dt,
where

gm(t) = sech(πt)

m−1∏
j=1

((j − 1/2)2 + t2),

and f(t) is as in Proposition 3.1. We define

em = (m−1)!2
22m−4(m−1)sm − 3

(m− 1)γm
−π, ẽm = (m−1)!2

(m−1)s̃m − 8

16(m− 1)γ̃m
−π.
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We show that these errors when approximating π can be theoretically es-
timated thanks to a recurrence formula involving a certain eigenvalue (and
implicitly the symmetries of the Maass forms).

Theorem 3.4. For any integer m > 1,

0 < em <
γm+1

((m− 1/2)2 + t23)γm
em+1,

where λ3 = 1/4 + t23, with t3 = 13.77975 . . . , is the third non-trivial eigen-
value in Γ\H.

Proof. Using Proposition 3.1(a), with km(u) = 4−m(u + 1)−m, and re-
calling Lemmas 2.3 and 2.1, we have

sm =
48

4m(m− 1)
+ 4

∞∑
j=1

hm(tj)|uj(i)|2 +
4π

4m−1(m− 1)!2

∞�

−∞
gm(t)|f(t)|2 dt,

where we have used the fact that the area of the fundamental domain of Γ
is π/3. We have got an expression for the error term

(3.3) em =
4m−2(m− 1)sm − 3

(m− 1)γm
(m− 1)!2 − π =

π2

γm

∞∑
j=1

gm(tj)|uj(i)|2,

which is positive because uj(i) 6= 0 infinitely often (in fact it is known that
the set of these values is unbounded [12, §13.2]). Hence, using gm+1(t) =
((m− 1/2)2 + t2)gm(t), we see that

em
em+1

=
γm+1

∑∞
j=1 gm(tj)|uj(i)|2

γm
∑∞

j=1 gm+1(tj)|uj(i)|2
≤ γm+1/γm

(m− 1/2)2 + t23
,

where we have taken into account that u1 and u2 are odd eigenfunctions so
that uj(i) = 0, while λ3 = 1/4 + t23 with t3 = 13.77975 . . . corresponds to
an even eigenfunction [4].

Theorem 3.5. For any integer m > 1,

0 < ẽm <
γ̃m+1

((m− 1/2)2 + t̃21)γ̃m
ẽm+1,

where λ̃1 = 1/4+ t̃21, with t̃1 = 8.92287 . . . , is the smallest non-trivial eigen-

value in Γ̃\H.

Proof. The proof is similar to that of Theorem 3.4, but in this case
km(u) = (u+ 1)−m and the area of the fundamental domain of Γ̃ is π. This
gives

s̃m =
8

m− 1
+ 2

∞∑
j=1

hm(t̃j)|uj(i)|2 +
16π

(m− 1)!2

∞�

−∞
gm(t)

∣∣∣∣ f(t)

1 + 21/2+it

∣∣∣∣2 dt
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and we obtain

ẽm =
π2

2γ̃m

∞∑
j=1

gm(t̃j)|uj(i)|2 > 0,
ẽm
ẽm+1

≤ γ̃m+1/γ̃m

(m− 1/2)2 + t̃21

proceeding as in the previous case.

Numerical analysis and examples in the non-compact case. If
we think of uj(z) as essentially bounded [12, §13] in terms of the eigenvalue,
then at first glance one can expect em to be comparable to gm(t1)/γm, but
numerical calculations show a better approximation and a substantial dif-
ference between em and ẽm. For instance, the values for m = 3, 4, truncated
to four decimal digits, are

e3 = 2.0086 · 10−12, ẽ3 = 7.2745 · 10−7,

e4 = 4.9016 · 10−11, ẽ4 = 6.7890 · 10−6.

The explanation is that, as mentioned in the proof of Theorem 3.4, the first
and the second non-trivial eigenvalues correspond in Γ to odd eigenfunctions
so that u1(i) = u2(i) = 0, while λ3 = 1/4 + t23 with t3 = 13.77975 . . .

comes from an even eigenfunction [4]. On the other hand, for Γ̃\H the first

non-trivial eigenvalue λ̃1 corresponds to an even eigenfunction (see [8]). The
large size of the quotient cosh(πt3)/cosh(πt̃1) = 4.23 · 106 explains why the
approximations of π are about 6 orders of magnitude worse.

Note also that gm is increasing in m. Then we expect s2 to give the best
example to approximate π because for m = 2 we have the quickest decay of
the spectral expansion. In principle the half-integral case s3/2 would be even
better, but actually it gives an approximate formula not involving π. In both
cases, the convergence of the series is very slow and a direct computation is
unfeasible to control the error term. With the previous analysis, a result in
this direction can be deduced.

Proposition 3.6. Let em and sm be as above. Then

0 < e2 < 3.62 · 10−14, 0 < s3/2 − 12− 8

∞�

−∞

t|f(t)|2

sinh(πt)
dt < 1.55 · 10−15.

Proof. The integrals γ2 and γ3 are quickly convergent and with numerical
calculations we have γ2 = 0.23223 . . . and γ3 = 0.80239 . . . . More extensive
calculations give the value of e3 mentioned before, and substituting these
data in Theorem 3.4 with m = 2, we get the first part of the result.

For the second, note that Proposition 3.1(b) with k(u) = (u + 1)−3/2

reads

16s3/2 = 192 + 128π
∞∑
j=1

tj
sinh(πtj)

|uj(i)|2 + 128

∞�

−∞

t|f(t)|2

sinh(πt)
dt.
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The function g(t) = t−1(1/4 + t2)(9/4 + t2) tanh(πt) is increasing for
t > t3 = 13.77975 and u1(i) = u2(i) = 0. Hence

0 < s3/2 − 12− 8

∞�

−∞

t|f(t)|2

sinh(πt)
dt <

8π

g(t3)

∞∑
j=3

(1/4 + t2j )(9/4 + t2j )

cosh(πtj)
|uj(i)|2.

The last sum equals γ3e3/π
2 by (3.3). Substituting the numerical values of

the quantities involved, we get the result.

Theorems 3.4 and 3.5 also extend to the non-converging case m = 1
upon redefining e1 = s1/4γ1 and ẽ1 = s̃1/16γ̃1 where

s1 =
∞∑
n=0

(3 + (−1)n)r(n)r(n+ 4)− 24

2(n+ 4)
, s̃1 =

∞∑
n=0

r(n)r(n+ 1)− 8

n+ 1
,

which can be proved to converge.

We can use the same ideas with other kernels, for example,
∞∑
n=0

r(n)r(n+ 1)
e1−
√
n+1

√
n+ 1

.

The Selberg transform of k(u) = e1−
√
u+1/
√
u+ 1 is h(t) = 8eK2

it(1/2) by
Lemma 2.5 with α = β = 1/2. Now, denoting the previous sum by S, we
get

S = 64e

∞�

0

k(x) dx+ 16e

∞∑
j=1

h(t̃j)|uj(i)|2 +
32e

π

∞�

−∞
K2
it(1/2)

∣∣∣∣ f(t)

1+ 21/2+it

∣∣∣∣2 dt.
Let I be the last integral. With some chiliads of terms in S and approxi-
mating I, one obtains

S − 16

32I
= 0.8652559794526 . . . ,

which differs from e/π by less than 2.04 · 10−11.

It is also possible to prove approximate formulas associated to general
congruence modular groups, but they have a less direct arithmetical inter-
pretation.

Since the pioneering works of H. Maass and A. Selberg, there are many
examples showing the influence of the eigenvalues associated to PSL2(Z)
or to congruence modular groups on some arithmetic quantities. A neat
example [12, Th. 12.3], motivating some of our results, is the error term in
the asymptotic formula ∑

n≤x
r(n)r(n+ 1) ∼ 8x.

The novelty in this paper is to consider convergent series that approximate



Exotic approximate identities and Maass forms 39

known constants in an extended setting that also covers co-compact ex-
amples.

4. The compact case. Let H be the indefinite quaternion algebra(A,B
Q
)

such that A and B are squarefree and A > 0. Then there is an

embedding of H into M2(R), given by

Φ(λ1 + λ2i+ λ3j + λ4k) =

(
λ1 + λ2

√
A λ3 + λ4

√
A

B(λ3 − λ4
√
A) λ1 − λ2

√
A

)
.

By Th. 5.2.13 of [13], given an order O ⊂ H, the image under Φ of the
elements of norm one in O is a Fuchsian group of the first kind. Moreover,
it is co-compact if H is a division algebra.

The spectrum of these groups coincides, under certain conditions, with
the point spectrum of Γ0(N) with N depending on the discriminant and on
the levels of the order [3], [11]. On the other hand, the Selberg trace formula
proves that the eigenvalues for Γ0(N) cluster at the conjectural bottom of
the spectrum 1/4 when N grows [12, (11.18)]. Therefore, to get approximate
formulas as before, it is advantageous to consider small discriminants and
levels.

Following [1] (see specially Proposition 1.60), we consider the orders

Z
[
1, i, j,

1

2
(1 + i+ j + k)

]
⊂
(
p,−1

Q

)
,

Z
[
1, i,

1

2
(1 + j),

1

2
(i+ k)

]
⊂
(

2, q

Q

)
,

with p ≡ 3 (mod 4) and q ≡ 5 (mod 8) prime numbers, that correspond to
the Shimura curves X(2p, 1) and X(2q, 1) in the notation of [1].

A calculation proves that the corresponding co-compact groups under
the embedding Φ are, respectively,

Gp =

{
1

2

(
a+ b

√
p c+ d

√
p

−c+ d
√
p a− b√p

)
∈ SL2(R) :

a, b, c, d ∈ Z with the same parity

}/
{±Id}

and

G2,q =

{
1

2

(
a+ b

√
2 c+ d

√
2

q(c− d
√

2) a− b
√

2

)
∈ SL2(R) :

a, b, c, d ∈ Z; a ≡ c, b ≡ d (mod 2)

}/
{±Id}.

The spectral expansions resemble that of Γ but are neater because the
integrals associated to the continuous spectrum do not appear.
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Proposition 4.1. For p ≡ 3 (mod 4) and q ≡ 5 (mod 8) prime num-
bers, the following spectral expansions hold:

∞∑
n=0

r(n)r(pn+ 2)k(pn/2) =
24

p− 1

∞�

0

k(x) dx+ 2

∞∑
j=1

h(tj)|uj(i)|2,

∞∑
n=0

r2,q(n)r1,2q(n+ 4)k(n/4) =
24

q − 1

∞�

0

k(x) dx+ 2
∞∑
j=1

h(tj)|uj(i/
√
q)|2,

where h is the Selberg transform of k, and rs,t(n) denotes the number of
pairs (a, b) ∈ Z2 such that n = sa2 + tb2.

For the proof we again need an arithmetic expression for automorphic
kernels.

Lemma 4.2. For p and q as above, we have

2
∑
γ∈Gp

k(u(γi, i)) =

∞∑
n=0

r(n)r(pn+ 2)k(pn/2),

2
∑

γ∈G2,q

k
(
u(γ(i/

√
q), i/

√
q)
)

=

∞∑
n=0

r2,q(n)r1,2q(n+ 4)k(n/4).

Proof. Note first that for γ ∈ Gp, 4u(γi, i) = p(b2 + d2). In addition,
γ ∈ SL2(R) implies p(b2 + d2) + 4 = a2 + c2. Since a, b, c, d have the same
parity, 2 | b2 + d2. Moreover, this condition determines Gp up to the identi-
fication ±γ. Hence

2
∑
γ∈Gp

k(u(γi, i)) =
∞∑
n=0

r(2n)r(2pn+ 4)k(pn/2),

and, noting that r(n) = r(2n), the proof of the first equality is concluded.

For the second, given n, note that the numbers of solutions (a, b, c, d)
∈ Z4 of {

n = 2b2 + qc2,

n+ 4 = a2 + 2qd2

is r2,q(n)r1,2q(n+ 4). It is clear that a and c have the same parity, and this
implies that so do b and d. Then (a, b, c, d) gives rise to an element γ ∈ G2,q

with 4u(γ(i/
√
q), i/

√
q) = 2b2+qc2. Conversely, γ ∈ G2,q gives two solutions

±(a, b, c, d) of the previous equations with n = 4u(γ(i/
√
q), i/

√
q).

Proof of Proposition 4.1. Use the previous lemma in the spectral expan-
sion (2.1). Note that, according to [3, (2.1)], the area of the fundamental
domain is |Gp\H| = (p − 1)π/3 in the first case and |G2,q\H| = (q − 1)π/3
in the second.
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Numerical analysis and examples in the compact case. We illus-
trate Proposition 4.1 with an explicit example (mentioned in the introduc-
tion) in which numerical and theoretical arguments are combined to control
the precision of the approximation. The underlying group is G3, which is
optimal in the sense that it has the largest spectral gap among the possible
choices of p.

Proposition 4.3. Consider

(4.1) S =

∞∑
n=1

r(n)r(3n+ 2)
√
n e−(log(n)/4)

2
.

Then

1.29 · 10−7 < 1− S

72e9
√
π
< 3 · 10−7.

For the proof we shall employ an explicit upper bound for the hyper-
bolic circle problem (the spectral analysis gives asymptotic formulas but
not explicit error terms [12, §12]).

Lemma 4.4. Let ρ be the distance on Poincaré’s upper half-plane. Then

#{γ ∈ G3 : ρ(γi, i) < R} ≤ 3(2 +
√

3) coshR.

Proof. Let D be the fundamental domain of G3\H. By Theorem 5.46
of [1], D is the polygon with vertices

v1 =
−
√

3 + i

2
, v2 =

−1 + i

1 +
√

3
, v3 = (2−

√
3)i,

v4 =
1 + i

1 +
√

3
, v5 =

√
3 + i

2
, v6 = i.

The distance from v6 to any other vertex is at most cosh−1 2. Hence,
D ⊂ B(i, cosh−1 2), where B(z0, r) = {z ∈ H : ρ(z, z0) ≤ r}. Let A =
{γ ∈ G3 : ρ(γi, i) < R}. Then⋃

γ∈A
γD ⊂ B(i, R+ cosh−1 2).

By the definition of fundamental domain, the interiors of the sets on the left
hand side are disjoint. Hence

#A ≤ |B(i, R+ cosh−1 2)|
|D|

= 3(2 coshR+
√

3 sinhR− 1),

where we have used the formula for the area of the hyperbolic circle [12, §1.1]
and the fact that |D| = 2π/3.

Proof of Proposition 4.3. We split the sum as

S =
∑
n<N

+
∑
n≥N

= S1 + S2 with N = 2.2 · 1012.
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An extensive numerical computation shows that

(4.2) 2 · 10−7 < 1− S1
72e9
√
π
< 3 · 10−7.

For S2 we notice that Lemma 4.2 with coshR = 1 + 3X and Lemma 4.4
imply ∑

n≤X
r(n)r(3n+ 2) ≤ 18(2 +

√
3)X − 6(1 +

√
3).

Subdividing into dyadic intervals yields

S2 ≤
∑

M=2jN

√
Me−(logM)2/16

∑
n≤2M

r(n)r(3n+ 2)

≤ 36(2 +
√

3)
∑

M=2jN

M3/2e−(logM)2/16.

We extract the terms corresponding to j = 0, 1, and bound the rest with an
integral:

S2 ≤ 36(2+
√

3)

(
3.8977 · 10−4 +9.1185 · 10−5 +

1

log 2

∞�

log 2N

e 3x/2−x
2/16 dx

)
≤ 6.4619 · 10−2 +

36(2 +
√

3)

log 2

8

log 2N − 12

∞�

log 2N

x− 12

8
e3x/2−x

2/16 dx.

This gives

0 <
S2

72e9
√
π
< 7.0479 · 10−8.

The result follows from these inequalities and (4.2).

Choosing suitable kernels, it is possible to get rather cheaply upper
bounds for the first non-trivial eigenvalue in Gp with uj(i) 6= 0. For in-
stance, choosing the kernel

k(u) =
0.7676

(u+ 1)3/2
− 1.6153

(u+ 1)2
+

0.6550

(u+ 1)5/2

in Proposition 4.1, with p = 3, the left hand side and the integral term
cancel; and the Selberg transform, after Lemma 2.3, is positive for t > 3.377.
Hence, the first eigenvalue in G3 with uj(i) 6= 0 is less than 3.377. The actual
value is about 2.592.

5. Applying Hecke operators. In analogy with the classical the-
ory [13] one can introduce the Hecke operators [12, §8.5]

Tmf(z) =
1√
m

∑
γ∈Γ\Γm

f(γz)

acting on (non-holomorphic) functions f ∈L2(Γ\H), where Γm are the inte-
gral matrices having determinantm. Note that they clearly commute with∆.
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These operators are self-adjoint and the eigenfunctions {uj(z)}∞j=0 can be
chosen to be also eigenfunctions of Tm with eigenvalues that we denote
{λj(m)}∞j=0. In Γ0(N), the theory is identical for gcd(N,m) = 1 and there
is an Atkin–Lehner theory to cover the rest of the cases.

Hecke operators are also defined in the same way in co-compact groups
corresponding to indefinite quaternion algebras over Q (see [2], [13, §5.3]),
where now the summation runs over γ ∈ R(1)\R(m) and R(k) means the
image under the embedding in M2(R) of the elements of norm k of an
order R.

When we apply Tm to an automorphic kernel with respect to the full
modular group Γ , the sum unfolds as

Tm

(∑
γ∈Γ

k(γ(·), w)
)

(z) =
1√
m

∑
γ∈Γm

k(γz, w).

Then, formally, the application of the Hecke operator corresponds to consi-
dering, in the automorphic kernel, integral matrices of determinant m in-
stead of 1.

On the other hand, the action of Tm on (2.1) is

(5.1)
∞∑
j=0

λj(m)h(tj)uj(z)uj(w)

+
1

4π

∞�

−∞
ηt(m)h(t)E(z, 1/2 + it)E(w, 1/2 + it) dt,

where ηt(m) is the divisor-like function
∑

ab=m(a/b)it (see [12]).

Similar formulas apply in the case associated to quaternion algebras
when m is coprime to the discriminant of the algebra and to the level of the
order (of course the integral corresponding to the continuous spectrum does
not appear).

We focus here on the roup Γ and on the order R=Z
[
1, i, j, 12(1+i+j+k)

]
that was employed to define Gp. In this latter case, we write the automorphic
kernel in terms of the correlation of r(n) with itself in arithmetic progres-
sions.

Lemma 5.1. With Γm as above, we have

8
∑
γ∈Γm

k(u(γi, i)) =
∞∑
n=0

(3 + (−1)n)r(n)r(n+ 4m)k

(
n

4m

)
.

And for the order R = Z
[
1, i, j, 12(1 + i+ j + k)

]
,

2
∑

γ∈R(m)

k(u(γi, i)) =

∞∑
n=0

r(n)r(pn+ 2m)k

(
pn

2m

)
,
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where, as above, p ≡ 3 (mod 4) is prime and R(m) denotes the image of the
elements of norm m.

Proof. For γ ∈ (aij) with determinant m,{
4mu(γi, i) = (a11 − a22)2 + (a12 + a21)

2,

4mu(γi, i) + 4m = (a11 + a22)
2 + (a12 − a21)2,

Using this, the first formula of the lemma follows by modifying appropriately
the proof of Lemma 3.2.

In the same way, the second formula follows as in the proof of Lemma 4.2
by noting that 4u(γi, i) = p(b2 + d2)/m for γ ∈ R(m) and p(b2 + d2) + 4m
= a2 + c2.

We have |Γ\Γm| = σ(m), the sum of divisors of m. Analogously, if m
and 2p are relatively prime (see p. 217 of [13]) then |R(1)\R(m)| = σ(m).
Therefore if the Selberg transform of k decays quickly we expect (cf. Propo-
sitions 3.1 and 4.1)

(5.2)
∞∑
n=0

(3 + (−1)n)r(n)r(n+ 4m)k

(
n

4m

)

≈ 96σ(m)

∞�

0

k(x) dx+
8
√
m

π

∞�

−∞
ηt(m)h(t)|f(t)|2 dt

and

(5.3)

∞∑
n=0

r(n)r(pn+ 2m)k

(
pn

2m

)
≈ 24σ(m)

p− 1

∞�

0

k(x) dx for 2 -m, p -m.

For instance, consider

S =

∞∑
n=0

(3 + (−1)n)r(n)r(n+ 2012)
20123

(n+ 2012)3
,

I =

∞�

−∞

cos(t log 503)

cosh(πt)

(
1

4
+ t2

)(
9

4
+ t2

)
|f(t)|2 dt.

Then by (5.2) and Lemma 2.3 with m = 503 and k(u) = (u+ 1)−3, we infer

S ≈ 24192 + 16π
√

503 I.

The actual numerical values give

S − 24192

16I
= 70.45857658 . . . ,

which coincides wih π
√

503 in all the displayed digits. In fact the actual
error seems to be comparable to 10−12.
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Despite the accuracy achieved in this example, the formulas (5.2)
and (5.3) are not expected to be uniform in m because of the wild be-
havior of λj(m) on the number of divisors of m. See [6] for an analysis of
the uniformity in a close context.

It is interesting to note that the multiplicative properties of Hecke eigen-
values can be observed numerically and employed to improve approxima-
tions. Consider for instance

Sm =
∞∑
n=0

r(n)r(7n+ 2m)g(7n/2m)

where g is the function k in Lemma 2.6. According to (5.3), it should ap-
proximate 2σ(m) but the approximation is poor because of the existence of
small eigenvalues at the bottom of the spectrum. In fact we have

S1 − 2 = 0.047039, S3 − 8 = −0.109461, S9 − 26 = 0.119267.

The spectral expansion (5.1) and Lemma 5.1 suggest that

Sm ≈ 2σ(m) + 2
√
mλ1(m)h(t1)|u1(i)|2

with h as in Lemma 2.6 is a better approximation. On the other hand, the
multiplicative properties of Hecke eigenvalues [12, §8.5] ensure (λj(3))2 =
1 + λj(9) that translates into (8 − S3)2 ≈ 3(2 − S1)2 + (26 − S9)(2 − S1).
Hence, we expect the improved approximation

S3 +
√

3(2− S1)2 + (26− S9)(2− S1) ≈ 8.

In fact the left hand side is 8.001211, improving the previous approximation
S3 ≈ 8 by two orders of magnitude.
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Politècnica de Catalunya. The first named author thanks J. Jiménez for
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