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1. Introduction. The results in this article are inspired by two related
questions:

(1) What exponents can occur for class groups of number fields?
(2) What exponents can occur for Tate–Shafarevich groups of abelian

varieties?

In particular, we consider the 2-power part of class groups of imaginary
quadratic fields and the 2-power part of the Tate–Shafarevich groups of
quadratic twists of the elliptic curve E1 : y2 = x3 − x; these are the curves
that play a role in the classical congruent number problem.

In either case, it is known that the size of the 2-power parts of the
groups can be made arbitrarily large by making the 2-torsion subgroups
arbitrarily large. For class groups, these results come from Gauss’s genus
theory (see [Lem00, 2.2]) and for Tate–Shafarevich groups from an analogous
construction (see [Kra83]).

We limit ourselves to imaginary quadratic fields Q(
√
−p), and quadratic

twists Ep : y2 = x3− p2x, where in either case p is a prime. It is known that
there are infinitely many primes p such that the group of classes of fractional
ideals modulo principal ideals, Cl(Q(

√
−p)), contains elements of order 2,

4, or 8. Existing results establish a similar fact for the Tate–Shafarevich
group X(Ep) of Ep, namely that there are infinitely many primes p such
that X(Ep)[2] ' (Z/2)2, and, if one assumes that elliptic curves of rank 2
are extremely rare, that one has Z/4 ↪→X(Ep) for infinitely many p. The
proofs in either case consist in observing that the answer to either question
is governed by the splitting of p in some fixed number field. The Chebotarev
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Density Theorem then guarantees the existence of infinitely many p with
the desired property.

Our results provide a characterization of the primes for which the rel-
evant groups are one step bigger. Unfortunately, the results do not seem
to correspond to a splitting condition in some fixed extension anymore, so
an infinite number of primes satisfying the criterion is not guaranteed. We
introduce some notation to formulate our results precisely.

It follows from genus theory that for p ≡ 3 (mod 4), the class number
of Q(

√
−p) is odd. For p ≡ 1 (mod 4), we write h(−4p) = # Cl(Z[

√
−p]),

which is equal to the class number of Q(
√
−p). In this case genus theory

also guarantees that Cl(Z[
√
−p])/2 Cl(Z[

√
−p]) ' Z/2, so the 2-power part

of Cl(Z[
√
−p]) is cyclic.

Question A. Given e ≥ 0, how can we characterize the primes p such
that 2e |h(−4p)?

Note that 2 is ramified in Q(
√
−p) if p ≡ 1 (mod 4), so there is an ideal

t ⊂ Z[
√
−p] such that t2 = 2Z[

√
−p]. Since Z[

√
−p] does not contain an

element of norm 2, we find that [t] ∈ Cl(Z(
√
−p)) is of order 2. Answers to

Question A can therefore take the form of descriptions of the sets

V (e) = {p prime : p ≡ 1 (mod 4) and 2e |h(−4p)},
= {p prime : p ≡ 1 (mod 4) and [t] ∈ 2e−1 Cl(Q(

√
−p))}.

Classical results together with Barrucand–Cohn (see [BC69]) establish (see
Section 4 for notation)

V (1) = {p prime : p ≡ 1 (mod 4)},(1.1a)

V (2) = {p prime : p ≡ 1 (mod 8)},(1.1b)

V (3) =

{
p prime : p ≡ 1 (mod 8) and

(
1 + i

p

)
= 1

}
.(1.1c)

The set V (3) consists exactly of the primes that completely split in K1 =
Q(
√

1 + i) = Q(α), where α4 − 2α2 + 2 = 0. Let δp ∈ K1 be an algebraic
integer satisfying

NormK1/Q(i)(δp) = p

and let pp be a prime of K1 above p such that δp /∈ pp. We will check that the

quadratic symbol
(αδp

pp

)
does not depend on the actual choices of δp and pp.

We prove

Theorem A.

(1.1d) V (4) =

{
p prime : p ≡ 1 (mod 8) and

(
1 + i

p

)
=

(
αδp
pp

)
= 1

}
.
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In [Ste93, Theorem 2], which provides references for (1.1a), (1.1b), (1.1c),
there is a different criterion for membership of V (4), in terms of the 2-adic
logarithm of the fundamental unit of Q(

√
p).

For X(Ep) we proceed in a way similar to Question A. For an abelian
group G we write G[2∞] for its 2-primary subgroup.

Question B. Given e ≥ 0, how can we characterize the primes p such
that X(Ep)[2

∞] contains an element of order 2e?

In classical terminology, a positive integer n is called congruent if En(Q)
has positive rank. In order to avoid confusion with other uses of the word,
we italicize it whenever used with this meaning.

It is already known (see Section 6) that if n = p is a prime with p 6≡ 1
(mod 8) then X(Ep)[2

∞] is trivial. Therefore, we concentrate on the case
p ≡ 1 (mod 8). Then either p is congruent or X(Ep)[2] ' (Z/2)2. In fact,
we can write down three principal homogeneous spaces of Ep, given by

(1.2)

Cp,1 : y2 = p(x4 − 6x2 + 1) = p(x2 + 2x− 1)(x2 − 2x− 1),

Cp,2 : y2 = p(x4 + 4) = p(x2 + 2x+ 2)(x2 − 2x+ 2),

Cp,3 : y2 = p(x4 + 1),

which have points everywhere locally. They represent possibly trivial classes
ξ1, ξ2, ξ3 ∈X(Ep)[2] which generate the group and satisfy ξ1 + ξ2 = ξ3. To
test the triviality of ξi, we are led to considering

W (e) = {p prime : p ≡ 1 (mod 8) and ξi ∈ 2e−1X(Ep)}.

The Cassels–Tate pairing [Cas62] implies that if there exists an e ≥ 1 such
that ξi /∈ 2eX(Ep) (i.e., ξi is not totally 2-divisible) then X(Ep)[2] '
(Z/2)2. In that case no Cp,i has a rational point and p is not congruent.
It also implies that the definition of W (e) does not depend on which ξi is
chosen.

For Question A, we know that [t] is non-trivial, so divisibility of this class
directly yields results on h(−4p). We do not have a corresponding guarantee
for Question B. For instance, if all ξi are trivial, as happens for p = 41, then
p ∈ W (e) for all e but X(Ep)[2

∞] = 0. On the other hand, if we establish
that p ∈ W (e) and p /∈ W (e + 1) then it does follow that ξi is non-trivial
and we can conclude that 2e divides the exponent of X(Ep).

Results attributed to A. Genocchi and L. Bastien (see [Dic20, Chap-
ter XVI] and [Tun83]) essentially establish

W (1) = {p prime : p ≡ 1 (mod 8)},(1.3a)

W (2) =

{
p prime : p ≡ 1 (mod 8) and

(
1 + i

p

)
= 1

}
.(1.3b)
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In the statement below, we use the same δp, pp as in Theorem A. Further-
more, let ζ be a primitive eighth root of unity. For p ≡ 1 (mod 8), we have
that ζ ∈ Qp. We prove

Theorem B.

(1.3c) W (3) =

{
p prime : p ≡ 1 (mod 8) and

(
1 + i

p

)
=

(
ζαδp
pp

)
= 1

}
.

While the criteria in Theorems A and B do not immediately guarantee
that there are infinitely many primes satisfying them, the fact that the
descriptions do not completely agree allows us to conclude:

Corollary 1.1. At least one of W (3) and V (4) is infinite.

Proof. Note that W (2) = V (3) contains infinitely many primes p satis-

fying p ≡ 9 (mod 16). For these primes we have
( ζ
p

)
= −1, which is exactly

the symbol by which the descriptions of V (4) and W (3) differ. Therefore we
have either p ∈ V (4) or p ∈ W (3). It follows that at least one set must be
infinite.

In Section 2 we derive some more results along these lines. Here let us
conclude with noting that the criteria for W (3) and V (4) are easy to test
computationally for individual primes.

Remark 1.2. It is easy to compute with a computer algebra system that
10200 + 16737 is the first prime beyond 10200 such that p ∈ V (3) = W (2)
but p /∈ V (4),W (3), and that q = 10200 + 28729 is the first such prime with
q ∈ V (4) but q /∈W (3). In particular neither prime is congruent.

2. Implications. Just from equations (1.3a) and (1.3b) it follows that
there are infinitely many primes p ∈W (1)\W (2). Hence there are infinitely
many primes p with (Z/2Z)2 ↪→X(Ep).

Note that elliptic curves of rank bigger than 1 seem very rare, so one
would expect that for most p ∈ W (2) it is still the case that at least one ξi
is non-trivial. Indeed, the discussion in [RS02, Section 7] suggests that the
following is plausible.

Assumption 2.1 (Goldfeld for primes). The primes p for which Ep(Q)
has rank at least 2 have asymptotic density 0 in the set of all primes.

With this assumption, equation (1.3b) would imply that there are in-
finitely many p for which Z/4 ↪→X(Ep). If in addition we assume that only
the trivial element in X(Ep) is totally divisible, then [DD10, Corollary 4.20]
implies that the parity conjecture holds for Ep. This would exclude the pos-
sibility that Ep(Q) has rank 1 for p ≡ 1 (mod 8) and we deduce that for
infinitely many p we have (Z/4)2 ↪→X(Ep).
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Numerical data suggest that V (4) has asymptotic density 1/2 in V (3).
Indeed, it has been conjectured [CL83, CL84] that such a density exists, but
to our knowledge this conjecture is still open. Comparison of our descriptions
of V (4) and W (3) shows that W (3) would have an asymptotic density if and
only if V (4) has one. At least one would expect that V (4) and W (3) are
both infinite. We can combine Theorems A and B to prove half of that.

Corollary 2.2. At least one of the following statements is true:

(a) There are infinitely many primes p such that (Z/4)2 ↪→X(Ep).
(b) There are infinitely many primes p such that 16 |h(−4p).

Proof. The first statement holds for primes p ∈W (2) \W (3), while the
second statement holds for primes p ∈ V (4). The intersections of V (4) and
W (3) with p ≡ 1 (mod 16) coincide. If V (4) were finite then there would be
only finitely many primes in W (3) that satisfy p ≡ 1 (mod 16). Since W (2)
contains infinitely many such primes, the corollary follows.

Again, using Assumption 2.1 we can obtain a stronger, conditional result.

Corollary 2.3. Under Assumption 2.1, at least one of the following
statements is true:

(a) There are infinitely many primes p such that Z/8 ↪→X(Ep).
(b) There are infinitely many primes p such that 16 |h(−4p).

Proof. The first statement follows if W (3) contains a set of positive
asymptotic density in the primes and the second follows if V (4) is infinite.
When restricted to primes p ≡ 9 (mod 16), the two sets are complementary
in V (3) = W (2). Hence if V (4) contains only finitely many primes congruent
to 9 modulo 16, then W (3) does contain a positive density set. The corollary
follows.

3. Some related modular results. Observations going back to Gauss
(see [Dic23, Chapter VI]) link class numbers to coefficients of modular forms
of weight 3/2, in particular the cube of the classical Jacobi Θ-series. We write

∞∑
n=0

r(n)qn = Θ(q)3 =
( ∞∑
n=−∞

qn
2
)3
.

The class number relation relevant for our problem is that for primes p ≡ 1
(mod 4) we have

h(−4p) =
r(p)

12
.

The other coefficients relate to class groups as well. For any particular p
one can use this relation, or other methods, to compute h(−4p) and hence
decide for which e one has p ∈ V (e), at least in principle.
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For the congruent number problem, Tunnell [Tun83] identified a specific
modular form ∑

anq
n ∈ S3/2(Γ̃0(128))

such that for odd n, an 6= 0 implies that n is not congruent. He also gives
another form for even n. His result relies on Waldspurger’s work on the
Shimura correspondence and the part of the Birch–Swinnerton-Dyer con-
jecture (BSD) proved by Coates–Wiles. Tunnell also observes that the full
BSD-conjecture implies that for non-congruent primes p we have

#X(Ep) = 1
4a

2
p.

Further, Rubin’s work [Rub87] imposes severe restrictions on the values
that #X(Ep)/a

2
p can take, but it does not provide any information on

ord2(#X(Ep)/a
2
p). Therefore, even though the analytic approach does pro-

vide means to prove that numbers are not congruent, it requires unproven
parts of BSD to provide any results for Question B.

It is also worth noting that for neither question would analytic ap-
proaches be feasible to answer questions for primes in the range of Re-
mark 1.2. This is not too surprising, since the analytic approaches would
find the integers h(−4p) (unconditionally) and #X(Ep) (conditionally),
whereas Theorems A and B only provide information on the valuation at 2
of those integers.

4. Preliminaries. When K is a number field, we write OK for its ring
of integers and O×K for its group of units. We write Cl(K) = Cl(OK) for its
ideal class group. When S is a finite set of places of K, we write OK,S for
the ring of S-integers.

If p ⊂ OK is a prime ideal, we write(
·
p

)
: OK/p→ {0,±1}

for the associated quadratic character on the residue field, extended by set-
ting

(
0
p

)
= 0. When p is a principal ideal generated by π ∈ OK , we write( ·

π

)
=
( ·
p

)
. For an element α ∈ OK we write

(
α
p

)
for the quadratic char-

acter of the natural image of α in OK/p. When p is completely split over
a rational prime p, we denote

(
α
p

)
=
(
α
p

)
if the value of the symbol is the

same for all p dividing pOK . In this case the symbol can be computed by
taking any element α′ ∈ Fp that is a root of the minimal polynomial of α

modulo p and computing the Legendre symbol
(
α′

p

)
.

In what follows we need a variety of number fields. We fix notation and
names for these fields. Let p be a rational prime. We consider the following
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extensions:

H2 = Q(
√

1 + i,
√
p)

K1 = Q(
√

1 + i) H1 = Q(i,
√
p) L1

K0 = Q(i) H0 = Q(
√
−p) L0 = Q(

√
p)

Q

If p 6= 2 then L1 can be described as the unique quartic subfield of H2 that
contains

√
p(1 + i).

The choice p = 2 plays a special role. We fix separate names Mi for
Hi and N0 for L0. Note that M2 is Galois over Q and that it contains two
conjugate subfields isomorphic to K1. We identify K1 with one of them. We
write N1 for one of the non-normal quartic subfields containing N0.

We will conduct some involved computations in M2 and its subfields.
Some of these computations depend on the conjugates chosen. To avoid
confusion, we fix a generator β for M2, satisfying the relation

β8 − 4β7 + 12β6 − 20β5 + 24β4 − 20β3 + 12β2 − 4β + 1 = 0.

We write

β′ := 1
7(β7 + 2β6 + 3β5 + 5β4 + 5β3 + 3β2 + 2β + 1),

α := −9β′ + 7β6 − 9β5 + 25β4 − 14β3 + 19β2 − 4β + 2,

ζ := −11β′ + 9β6 − 12β5 + 33β4 − 18β3 + 23β2 − 5β + 3,

i := ζ2 = α2 − 1,

ε := −8β′ + 6β6 − 7β5 + 19β4 − 7β3 + 10β2,

η := ε3 + ε2 − ε = ζβ2,
√

2 := ε2 − 1,

which fixes embeddings of K1 = Q(α) and N1 = Q(ε) into M2. Note that
Aut(M2/Q) = D4, the dihedral group of order 8. We denote by σ the in-
volution of M2 that leaves N1 fixed and by τ the involution that leaves K1

fixed. Then 〈σ, τ〉 = Aut(M2/Q), and we write ρ = (στ)2 for the central
involution of Aut(M2/Q) which leaves M1 fixed. The unit groups of the
rings of integers of these fields are O×K1

= 〈i, α + 1〉, O×N1
= 〈−1, ε, η〉 and

O×M2
= 〈ζ, α+ 1, ε, β〉.
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We will find use for the following elementary lemmas which have un-
doubtedly been stated and proved many times, but for which we were unable
to locate a reference.

Lemma 4.1. Let p ≡ 1 (mod 8) be a prime and suppose that x, y,D ∈ Z
with p - D and

x2 −Dy2 = p.

Then for γ2 ≡ D (mod p) we have either x+ γy ≡ 0 (mod p) or(
γ(x+ γy)

p

)
= 1

Proof. We thank Soroosh Yazdani for pointing out the following proof.
Note that x2 −Dy2 ≡ (x + γy)(x − γy) ≡ 0 (mod p), so either x + γy ≡ 0
(mod p) or x− γy ≡ 0 (mod p). The lemma holds in the former case, so we
assume the latter. Then

x(x+ γy) ≡ γy(x+ γy) (mod p) and 2x ≡ (x+ γy) (mod p).

It follows that (
2γy(x+ γy)

p

)
= 1.

We are left with establishing that
(2y
p

)
= 1. For any prime q dividing y we

have x2 ≡ p (mod q), so
(p
q

)
= 1. Since p ≡ 1 (mod 8), quadratic reciprocity

gives us
( q
p

)
= 1 and

(−1
p

)
=
(
2
p

)
= 1, so 2y is a product of squares modulo

p and therefore a square modulo p itself.

Lemma 4.2. Let π∈Z[i] be a prime element satisfying π≡1 (mod 2Z[i]),
NormZ[i]/Z(π) ≡ 1 (mod 8) and

(
1+i
π

)
= 1. Suppose that x, y,D ∈ Z[i] with

π - D and x2−Dy2 = π. Then for γ2 ≡ D (mod p) we have either x+γy ≡ 0
(mod π) or (

γ(x+ γy)

π

)
= 1.

Proof. Note that quadratic reciprocity for Z[i] (established by Gauss
and Dirichlet [Lem00, Proposition 5.1]) says that if π, λ ∈ Z[i] are distinct
prime elements satisfying π, λ ≡ 1 (mod 2Z[i]) then

(
λ
π

)
=
(
π
λ

)
. We can

write y = ia(1 + i)bλe11 · · ·λe2r , where λ1, . . . , λr ∈ Z[i] are prime elements
satisfying λj ≡ 1 (mod 2Z[i]) (we can ensure this by multiplying by i if

necessary). It follows that
(λj
π

)
=
(
π
λj

)
. The conditions in the lemma ensure

that
(
i
π

)
=
(
1+i
π

)
= 1. This establishes the required ingredients to complete

the proof in the same way as for Lemma 4.1.
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5. Class groups as local-global obstructions. There are various
ways to prove (1.1b) and (1.1c). The proofs we give here are based on norm-
form equations and are in the spirit of Gauss’s treatment of genus theory.
The lack of reference should not be construed as a claim to priority, but
rather as evidence that it is hard to find a reference for such elementary
facts. These methods have the great benefit that the techniques readily
apply over extensions of the base ring as well. Doing so appears to provide
a novel ingredient and allows us to prove something about V (4). First we
introduce some terminology and an elementary lemma that links solutions
to norm-form equations to divisibility in class groups.

Let R be a principal ideal domain of characteristic different from 2 and
let k be its field of fractions. Suppose d ∈ R is a non-square. Let L = k(

√
d)

and let OL ⊂ L be the integral closure of R in L. We write Cl(OL) for the
ideal class group of OL.

Definition 5.1. We say that a pair (x, y) ∈ k×k is
√
d-primitive if the

principal fractional ideal (x+y
√
d)OL is integral and is not contained in the

extension of any proper ideal from R to OL, i.e. for all a ∈ R we have

(x+ y
√
d)OL ⊂ aOL if and only if a is a unit in R.

The definition ensures that for a
√
d-primitive pair (x, y), the principal

ideal (x + y
√
d)OL is not divisible by any prime ideals that are inert for

OL/R, and that if a split prime q divides (x+ y
√
d)OL then the conjugate

prime does not. This means that we can read off the exponents in the ideal
factorization of (x+y

√
d)OL from its norm (x2−dy2)R. Since R is a principal

ideal domain, this corresponds to the factorization of x2−dy2 as an element
of R.

Remark 5.2. If {1,
√
d} forms an R-basis of OL then a pair (x, y) is√

d-primitive if and only if x, y ∈ R and xR + yR = R. In particular, if
R = Z and d is squarefree and d ≡ 3 (mod 4) then (x, y) is

√
d-primitive

if and only if x, y ∈ Z with gcd(x, y) = 1, which is the usual meaning of
primitive.

Lemma 5.3. Let R be a principal ideal domain of characteristic different
from 2 and with field of fractions k. Let L = k(

√
d) be a quadratic extension

of k and let OL be the integral closure of R in L. Let p ⊂ OL be a prime
ideal with norm pR. We have

[p] ∈ nCl(OL)

if and only if there is a unit u ∈ R× such that the equation

x2 − dy2 = upzn

has a solution x, y, z ∈ k with (x, y) a
√
d-primitive pair.
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Proof. First suppose we have a solution with (x, y) a
√
d-primitive pair.

We denote the ideal factorization of the principal ideal generated by x+y
√
d

by

(5.1) (x+ y
√
d)OL = pe0

r∏
i=1

qeii .

The primitivity condition guarantees that none of the p and qi are extensions
of ideals in R, so each is either split or ramified. That means that Norm(qi) =
qiR for some prime element qi. Furthermore, note that if qi and qj have the
same norm, then qiqj = qiOL, which would contradict the primitivity of x, y.

Taking norms of both sides of (5.1) we find for some unit u ∈ R× that

x2 − dy2 = upe0
r∏
i=1

qeii = upzn.

Unique factorization gives e0 ≡ 1 (mod n) and ei ≡ 0 (mod n) for i =
1, . . . , r. Since the left hand side of (5.1) is a principal ideal, we get the
following identity in Cl(OL):

0 = [pe0qe11 · · · q
er
r ] = [p] + [pe0−1qe11 · · · q

er
r ] = [p] + n[a],

where a = p(e0−1)/nq
e1/n
1 · · · qer/nr . This establishes one direction of the proof.

For the converse, let a ⊂ OL be an ideal such that [p] = −n[a]. This uses
the fact that OL is a Dedekind domain, so all ideal classes are represented
by integral ideals. In fact, we can represent all ideal classes while avoiding a
finite set of primes, so we can assume that NormL/k(a) is not divisible by p.
Note that inert ideals are principal and that conjugate primes represent
inverse classes, so without loss of generality we have a = qe11 · · · qerr , where
the qi are split or ramified prime ideals and have distinct norms. Then pan

is principal, so pan = (x+y
√
d)OL, where our assumptions on a ensure that

(x, y) is a primitive pair. By picking z ∈ R such that zR = N(a), we obtain
a solution as desired.

Proof of (1.1b). We apply Lemma 5.3 with k = Q, L = H0 = Q(
√
−p)

and p = t the ramified prime ideal of OL over 2. We have already estab-
lished that the class of t has order 2. We see that p ∈ V (2) if and only if the
equation

(5.2) x2 + py2 = 2z2

has a solution such that (x, y) is
√
−p-primitive. A priori, we also need to

consider the equation x2 + py2 = −2z2 but that obviously does not have
primitive solutions.

Since equation (5.2) is homogeneous, any non-zero solution is propor-
tional to a

√
−p-primitive solution. Furthermore, the Hasse–Minkowski the-
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orem guarantees that this equation has a solution if and only if it has solu-
tions everywhere locally.

For solvability at p one needs the fact that 2 is a square modulo p, and
for solvability at 2 the fact that p is a square modulo 4. These conditions
are met if and only if p ≡ 1 (mod 8).

Proof of (1.1c). Lemma 5.3 gives p ∈ V (3) if and only if there are
x, y, z ∈ Z with gcd(x, y, z) = 1 such that

x2 + py2 = 2z4.

We observe that this implies that x, y are both odd and rewrite this as

−py2 = (x−
√

2 z2)(x+
√

2 z2).

Let N0 = Q(
√

2). We write τ for conjugation of N0/Q, so for α = u+ v
√

2,
we have τα = u− v

√
2.

Since obviously V (3) ⊂ V (2), we can assume that p ≡ 1 (mod 8) by
(1.1b). Hence p is split in N0. Furthermore, since ON0 is a principal ideal
domain and the fundamental unit ε = 1 +

√
2 has norm −1, we have an

element π ∈ ON0 such that π τπ = −p. Primitivity implies that there is a
γ ∈ ON0 with γ /∈

√
2ON0 such that{

(x− z2
√

2) = ±πγ2,
(x+ z2

√
2) = ± τπ τγ2.

From this equation we derive that

(5.3) ±2
√

2 z2 = τπ τγ2 − πγ2.
Local solvability at 2 forces the sign choice. Local solvability at πOL implies
that

(5.4)

(√
2 τπ

πOL

)
= 1.

Conversely, if we write γ = s+t
√

2 and collect coefficients with respect to
√

2
in (5.3) then we get a conic in s, t, z with solutions everywhere locally and
hence globally. With some further standard calculations we can also check
that we can find a point satisfying the appropriate primitivity conditions.

In order to simplify the symbol above, note that Lemma 4.1 implies that(√2(1+√2)τπ
π

)
= 1. Furthermore, with the right choice of conjugates, one has

(1 +
√

2)(1 + i) = (ζ3 − 1)2. Together this yields

(5.5)

(√
2 τπ

πOL

)
=

(
1 +
√

2

p

)
=

(
1 + i

p

)
,

where the fact that p ≡ 1 (mod 8) guarantees that the symbol is independent
of choice of conjugate.
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Note that in the above two arguments, we obtained a criterion for p ∈
V (e) for e = 2, 3 by reducing the condition in Lemma 5.3 to the existence
of a rational point on some conic, which is entirely determined by local
conditions. We can handle the two cases above with p as a parameter because
the extensions involved in deriving the relevant conics are independent of p.
For higher e this does not seem to be the case anymore and this approach
does not seem to have much benefit over computing Cl(Q(

√
−p)) directly.

The following corollary to a classical result by Dirichlet (1842) allows us
to link the class groups of H0 = Q(

√
−p) and H1 = Q(

√
p, i). We can then

consider H1 as a quadratic extension of K0 = Q(i), whose ring of integers is
a principal ideal domain. This allows us to apply Lemma 5.3 to obtain an
alternative proof for (1.1c) and derive a new criterion for p ∈ V (4).

Proposition 5.4 ([Coh78, Corollary 19.8c]). Let p > 0 be a prime, let
h′ = # Cl(Q(

√
p)), let h0 = # Cl(Q(

√
−p)) and let h1 = # Cl(Q(i,

√
−p)).

Then

h1 =

{ 1
2h0h

′ if p ≡ 1 (mod 4),

h0h
′ if p ≡ 3 (mod 4) or p = 2.

For a prime satisfying p ≡ 1 (mod 8) we observe that h′ is odd by Gauss’s
genus theory. Note that 2 ramifies in K0 = Q(i) and splits in L0 = Q(

√
p).

That means that H1 has two primes t1, t2 over 2, each of ramification index 2.
Furthermore, since h′ is odd, we see that [t21] and [t22] have odd order in the
class group.

Extension of ideals from OH0 to OH1 gives a homomorphism

Cl(H0)[2
∞]→ Cl(H1)[2

∞]

and it is easy to check that the kernel is of order 2. In view of Proposition 5.4
this means that the map is surjective and thence that Cl(H1)[2

∞] is cyclic.
The last fact also follows from applying genus theory to the relative extension
H1/L0.

Lemma 5.5. Let p ≡ 1 (mod 8) be a rational prime and let e ≥ 2. We
have p ∈ V (e) if and only if the equation

(5.6) x2 + py2 = (1 + i)z2
e−2

has a solution x, y, z ∈ Q(i) with

(x− iy)Z[i] + 2yZ[i] = Z[i].

Proof. Lemma 5.3 with (L,R, p, d, p) taken to be (H1,Z[i], t1, p, 1 + i)
(a shift in symbols used seems unavoidable here) links the equation in the
lemma to the question whether [t1] ∈ 2e−2 Cl(H1) and hence whether p ∈
V (e). For x ∈ Q(i) we write σx for its conjugate over Q. Note that if (x, y)
gives rise to a solution then (σx, σy), (ix, iy), (σ(ix), σ(iy)) give rise to solutions
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to x2 + py2 = u(1 + i)z2
e−2

where u = i,−1,−i. Therefore, the choice of the
unit u in Lemma 5.3 does not affect solvability of the equation.

Note that
{

1, 12(
√
−p + i)

}
is a Z[i]-basis of OH1 . Therefore, (x, y) is a√

−p-primitive pair in Z[i] if

x+ y
√
−p = u+ v

√
−p+ i

2
,

with u, v ∈ Z[i] and gcd(u, v) = 1. That corresponds to the condition given
in the lemma.

Alternative proof of (1.1c). Since V (3) ⊂ V (2), we can assume that
p ∈ V (2) and hence that p ≡ 1 (mod 8). Lemma 5.5 implies that a necessary
condition for p ∈ V (3) is that (

i+ 1

p

)
= 1

for both choices of i, because otherwise the conic given by (5.6) does not
even have local points at a place above p. However, note that(

1 + i

p

)(
1− i
p

)
=

(
2

p

)
= 1

because p ≡ 1 (mod 8). Hence, the symbol does not depend on the choice of i.
Furthermore, we can check that at (1+ i)Z[i] there is no local obstruction to
primitive solutions. The Hasse–Minkowski theorem once again guarantees
the existence of rational solutions, and the homogeneity of the equation
allows us to derive primitive solutions from that. Therefore, the condition
is also sufficient.

Proof of Theorem A. Let us assume that p ∈ V (3). By Lemma 5.5 we
deduce that p ∈ V (4) if and only if we have a solution x, y, z ∈ Q(i) to

−py2 = x2 − (1 + i)z4

satisfying the additional conditions stated. We adopt the notation from Sec-
tion 4 and factor this equation over K1 to obtain{

x+ z2α = δξ21 ,

x− z2α = ρδ ρξ21 ,

for some δ representing a class in K×1 /(K
×2
1 ) such that NK1/K0

(δ) ∈ −pK×20 .
Our primitivity condition together with the fact that 2 is completely ramified
in K1 implies that δ can be represented by an algebraic integer that is a unit
outside the primes above p.

Our conditions on p ensure that p is completely split in K1. Let u, v ∈ Z
be such that p = u2 + v2 and suppose that π1, . . . , π4 ∈ OK1 are such that
NormK1/Q(πi) = p and π1π2 = u + iv and π3π4 = u − iv. The unit group
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of OK1 is generated by {i, 1 + α}. Since NormK1/Q(i)(1 + α) = −1 is not a
square, the possible values for δ are

π1π3, π1π4, π2π3, π2π4, iπ1π3, iπ1π4, iπ2π3, iπ2π4.

A necessary condition for p ∈ V (4) is that

(5.7) 2z2α = δξ21 − ρδ ρξ21

has solutions everywhere locally. Noting that i is a square modulo p, we see
that there must be j, k ∈ {1, . . . , 4} with {j, k} 6= {1, 2}, {3, 4} such that for
all l we have (

πjπkα

πl

)
6= −1.

However, note that Lemma 4.1 yields identities such as(
π1π2
π3

)
=

(
u+ iv

π3

)
=

(
i

π3

)
= 1,

which allow us to deduce that the value does not depend on the actual
choices of j, k, l as long as l /∈ {j, k}. Note that ρδδ is a square locally at
the prime above 2, so we do not get any local obstructions there either.
Therefore, the condition in the theorem is sufficient for (5.7) to have points
everywhere locally and hence globally. Checking that these points also give
rise to primitive solutions is routine.

6. Congruent numbers: the first step. All classical results on con-
gruent primes can be obtained via straightforward 2-(isogeny) descent on
either Ep or one of its 2-isogenous curves. See for instance [Hem06]. We only
state the parts that are important for our subsequent analysis:

(i) If p ≡ 3 (mod 8) then rkEp(Q) = 0 and X(Ep/Q)[2] = 0.
(ii) If p ≡ 5, 7 (mod 8) then rkEp(Q) ≤ 1. In fact, Monsky [Mon90],

based on Heegner [Hee52], establishes equality and hence
X(Ep/Q)[2] = 0.

(iii) If p ≡ 1 (mod 8) then rkEp(Q) ≤ 2.

In the last case, p ≡ 1 (mod 8), some further work shows that the homo-
geneous spaces from (1.2) are everywhere locally solvable and that rational
points on them would give rise to independent points on Ep. We analyze
when this can be the case for Cp,1 and Cp,2.

Lemma 6.1. Let p ≡ 1 (mod 8) be a prime. Then Cp,1 has a rational
point if and only if the following curve has one:

Dp,1 : v2 = p(u4 − 4u3 − 6u2 − 12u− 7).

Furthermore, Dp,1 has points everywhere locally if and only if
(
1+i
p

)
= 1.
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Proof. For any rational point on Cp,1 there exists a value δ (determined
up to squares) such that the point lifts to

Dp,1 :

{
w2 = δ(x2 + 2x− 1),

v2 =
p

δ
(x2 − 2x− 1).

With some elementary resultant computation, one can show that it is suf-
ficient to consider δ ∈ {±1,±2,±p,±2p}, and a straightforward local com-
putation shows that for δ ∈ {±2,±2p} the curve does not have Q2-points.

Furthermore, the automorphisms of Cp,1 corresponding to x 7→ 1/x and
x 7→ −x show that the remaining values for δ all lead to isomorphic curves,
so it is sufficient to consider δ = 1.

We parametrize the first conic by (x,w) =
(
u2+1
2(u+1) ,

u2+2u−1
2(u+1)

)
. Substi-

tuting this parametrization into the second conic yields the given model of
Dp,1.

Note that since p ≡ 1 (mod 8), the local solvability of Dp,1 over Q2 does
not depend on p. Similarly, because p > 0, the local solvability over R does
not depend on p either. Given that Dp,1 has good reduction at all other
primes, the only obstruction to local solvability can be at p. Note that if
(u0, v0) ∈ Dp,1(Qp) then we need that ordp(u

4
0 − 4u30 − 6u20 − 12u0 − 7) is

odd. For this we need that the quartic has a root in Qp. Note that

u4−4u3−6u2−12u−7 = (u2−2(1+
√

2)u−1−
√

2)(u2−2(1−
√

2)u−1+
√

2)

and that the quadratics on the right hand side have discriminants 16(1±
√

2).
Furthermore, since p ≡ 1 (mod 8) we have

√
2 ∈ Qp, so Dp,1(Qp) is non-

empty if and only if (
1 +
√

2

p

)
=

(
1 + i

p

)
= 1;

see (5.5) for the reason why the first equality holds.

Lemma 6.2. Let p ≡ 1 (mod 8) be a prime. Then Cp,2 has a rational
point if and only if the following curve has one:

Dp,2 : v2 = p(u4 − 4u3 + 24u+ 20).

Furthermore, the curve Dp,2 has points everywhere locally if and only if(
i+1
p

)
= 1.

Proof. A rational point on Cp,2 lifts, for some δ, to

Dp,2 :

{
w2 = δ(x2 − 2x+ 2),

v2 =
p

δ
(x2 + 2x+ 2).

The first conic only has real solutions if δ > 0, and with an elementary re-
sultant computation one can show it is sufficient to consider δ ∈ {1, p, 2, 2p}.
Furthermore, the automorphisms of Cp corresponding to x 7→ 1/x and



78 N. Bruin and B. Hemenway

x 7→ −x show that all choices lead to isomorphic curves, so it is sufficient to
consider δ = 1.

We parametrize the first conic by (x,w) =
(
2−u2
2u+2 ,

u2+2u+2
2u+2

)
. Substitution

into the second yields the given model of Dp,2.

For p ≡ 1 (mod 8), the curve Dp,2 has points at all primes outside p. For
a point (u0, v0) ∈ Dp,2(Qp) we need ordp(u

4
0 − 4u30 + 24u0 + 20) to be odd,

so the quartic should have a root in Qp. Note that

u4 − 4u3 + 24u+ 20 = (u2 − (2− 2i)u− 4 + 2i)(u2 − (2 + 2i)u− 4− 2i)

and that the discriminants of the quadrics on the left hand side are, re-
spectively, (1 + i)9 and −i(1 + i)9. The statement in the lemma follows by
considering when these are squares in Qp.

Either of Lemmas 6.1 and 6.2 establishes that primes p ≡ 1 (mod 8) for
which

(
1+i
p

)
= −1 are not congruent. This result is already mentioned in

[Bas15] and [Tun83]. In order to interpret these results in terms of Ques-
tion B, we briefly review the relations between isogenies and Tate–Shafare-
vich groups in the next section.

7. Sha and isogenies. In this section, we review the conditions under
which we can conclude the existence of 2e-torsion in X(E) by exhibiting
2e−1-torsion in X(E′) for an appropriate 2-isogenous elliptic curve E′. We
use part of the proof that the truth of the Birch and Swinnerton-Dyer con-
jecture is constant in isogeny classes (see [Cas65] or [Mil06, I.7]).

Let E be an elliptic curve over a number field k and let φ : E → E′ be an
isogeny. Since elliptic curves are self-dual, we can interpret the isogeny dual
to φ as φ∨ : E′ → E. Suppose that m = deg(φ). Then the multiplication-
by-m homomorphism on E factorizes as m = φ∨ ◦ φ.

Note that elements of X(E) are represented by principal homogeneous
spaces C, so they have a free transitive E-action. We can use this together
with an isogeny φ : E → E′ to induce a homomorphism

φ : X(E)→X(E′), C 7→ C/ker(φ).

We write X(E)[φ] for its kernel.

For any abelian group A we define its divisible subgroup to be

Adiv := {a ∈ A : a ∈ mA for all m = 1, 2, . . .}

and write And := A/Adiv. General results from descent show that the p-
primary parts of X(E)nd are all finite.
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The Cassels–Tate pairing yields non-degenerate, alternating pairings

X(E)nd

φ
��

× X(E)nd // Q/Z

X(E′)nd × X(E′)nd

φ∨

OO

// Q/Z

with the diagram commuting in the sense that

〈φξ, ξ′〉E′ = 〈ξ, φ∨ξ′〉E .
In particular, the pairing induces an alternating, non-degenerate pairing

(7.1) X(E′)nd[φ∨]×X(E′)nd/φX(E)nd → Q/Z.

Lemma 7.1. Let φ : E → E′ be a p-isogeny between elliptic curves over
a number field k. Suppose that X(E′)[φ∨] = 0. Let ξ ∈ X(E)[p] and let
ξ′ ∈X(E′)[p] be such that φ∨(ξ′) = ξ. Then

ξ′ ∈ pe−1X(E′) implies that ξ ∈ peX(E).

More generally, if X(E′) has elements of order pe then X(E) has elements
of order pe+1.

Proof. Note that the first statement in the lemma is trivially true if
ξ′ = 0, or more generally, if ξ′ is divisible. Let us assume that ξ′′ ∈X(E′)
is such that ξ′ = pe−1ξ′′. From the pairing (7.1) we see that X(E′)[φ∨] = 0
implies that φ : X(E)→X(E′) is surjective, so there is a ξ′′′ ∈X(E) such
that φ(ξ′′′) = ξ′′. It follows that

ξ = φ∨ ◦ pe−1 ◦ φξ′′′ = peξ′′′,

which gives the statement in the lemma.

For the general observation, let ξ′′ ∈X(E′) be an element of order pe,
let ξ′ = pe−1ξ′′ and let ξ = φ∨ξ′. Then ξ is an element of order p that is
divisible by pe. This proves the statement.

8. Results from isogeny descents. The curves Dp,i arising in Lem-
mas 6.1 and 6.2 are principal homogeneous spaces for the elliptic curves

Ep,1 : y2 = x3 + 4p2x, Ep,2 : y2 = x3 + 6px2 + p2x

respectively. There are 2-isogenies φi : Ep → Ep,i.

Proof of (1.3b). The following discussion holds for i = 1 or i = 2. We do
not give details here (see [Sil86, Proposition X.4.9]), but a 2-isogeny descent
on the pair (Ep, Ep,i) for a prime p ≡ 1 (mod 8) implies that rkEp(Q) ≤ 2
as expected and that X(Ep,i)[φ

∨
i ] = 0 (the homogeneous spaces found there

correspond to the 2-torsion of Ep). It is perhaps worth noting that for the
third 2-isogenous curve Ep,3 : y2 = x3 − px2 + p2x, this is not the case.
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As established before, the curve Cp,i represents a class ξi in X(E)[2].
Note that since 2 = φ∨p,i ◦ φp,i, divisibility of ξi by 2 implies that there is
an everywhere locally solvable homogeneous space of Ep,i that covers Cp,i.
Lemma 6.1 or 6.2 shows that this must be Dp,i, so if

(
1+i
p

)
= −1 then ξi is

not divisible by 2 and X(Ep)[2
∞] = (Z/2Z)2 and p ∈W (1) \W (2).

If
(
1+i
p

)
= 1 then the class ξ′ of Dp,i in X(Ep,i) satisfies φ∨i (ξ′) = ξi, so

ξi is indeed divisible by 2, so p ∈W (2).

On the other hand, if
(
1+i
p

)
= 1 then Lemma 7.1 implies that ξi is

divisible by 2. If we can find conditions on p such that the class of Dp,i is
not divisible by 2 in X(Ep,i) then we classify when ξi is divisible by 2 but
not by 4 and hence when p is not congruent and X(Ep)[2

∞] = (Z/4Z)2.

The reason to concentrate on Dp,1 and Dp,2 is that we can write down
nice quartic models for them without using any properties of p. Other
homogeneous spaces would arise in a similar way, but the conic that re-
quires parametrization in order to arrive at a quartic model may only be
parametrizable if certain arithmetic conditions on p are taken into account,
i.e., that it is a prime p ≡ 1 (mod 8). We will see in the next section how
the nice models of Dp,1 and Dp,2 allow us to make one further step.

9. Second descents. Let p be a prime satisfying p ≡ 1 (mod 8) and(
1+i
p

)
= 1. In this section, we perform a second descent on the curves Dp,1

and Dp,2 to determine if their classes are divisible by 2 in X(Ep,1) and
X(Ep,2). For any particular p, this is a completely standard procedure which
can be executed automatically by several computer algebra systems. We give
some details here because we do the calculation for an unspecified p, which
is not completely automated.

We quickly review the parts of the method we have to refer to explicitly.
The method we use is largely as suggested in [MSS96]. However, we neglect
to explicitly construct the coverings. See also [BS09].

We consider the smooth projective curve corresponding to the affine
model

D : y2 = f(x)

where f(x) is a square-free quartic polynomial over a field k of characteris-
tic 0. If the leading coefficient of f(x) is a square in k then D has k-rational
points P with x(P ) = ∞. We denote these points by ∞+ and ∞−, where
the ± superscript provides an arbitrary but fixed label.

The curve D is a homogeneous space of an elliptic curve E, and invariant
theory of binary quartic forms provides a degree 4 map D → E, equipping
D with a torsor structure under E[2] with base E. If k is a number field and
D has points everywhere locally then D represents a class in X(E)[2].
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Let

L = k[θ] = k[x]/(f(x)).

We consider the map

µk : D(k)→ L×/L×2k×,

(x0, y0) 7→ x0 − θ if y0 6= 0,

(x0, 0) 7→ (x0 − θ) +
f(x)

(x− x0)

∣∣∣∣
x=θ

,

P 7→ 1 if P =∞±.

For k = Q and a place v of k we write Lv = L⊗Qv and consider the natural
map ρv : L×/L×2Q→ L×v /L

×2
v Q×v . We define

Sel2fake(D/Q) = {c ∈ L×/L×2k× : ρv(c) ∈ imµkv for all places v}.

We observe that the class of D is divisible by 2 in X(E) if and only if
Sel2fake(D/Q) is non-empty.

Let S be the set of places of k containing 2, the places at infinity, the
places where coefficients of f are not integral and the places where disc(f) is
not a unit. We write OL,S for the subring of L of elements that are integral
at all places v outside S.

In our cases, L is a number field where OL,S has class number 1. In those
cases, Sel2fake(D/Q) can be represented by elements in the finitely generated
multiplicative group O×L,S . Furthermore, for such elements δ we only have

to check some norm conditions and that ρv(δ) ∈ imµkv for the places v ∈ S
in order to conclude that δ ∈ Sel2fake(D/Q).

Finally, if f(x) has a root in kv then # imµkv = #E[2](kv)
|2|v , and if f(x)

has no root in kv then # imµkv = #E[2](kv)
2|2|v .

We use the notation for K0,K1 and their elements as introduced in
Section 4.

Proposition 9.1. Let p ≡ 1 (mod 8) be a prime satisfying
(
1+i
p

)
=1. Let

δ=δp∈K1=Q(
√

1 + i) be an algebraic integer such that NormK1/Q(i)(δ) = p
and p is a prime ideal above p such that δ /∈ p. Then the following are
equivalent:

(i) The class of Dp,1 in X(Ep,1) is divisible by 2.
(ii) The class of Dp,2 in X(Ep,2) is divisible by 2.

(iii)

(
δζ
√

1 + i

p

)
= 1.

Proof. (i)⇔(iii). We compute Sel2fake(Dp,1) as sketched above. We have
f(x) = p(x4 − 4x3 − 6x2 − 12x− 7) and L = N1.
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We can take S = {2, p,∞}. Since 2 and p are completely ramified and
split respectively, we have four prime ideals p1, . . . , p4 of ON1 above p. We
choose generators for them in the following way. Let π ∈ OM2 be a generator
of a prime ideal of OM2 above p. Since O×M2

surjects onto (OM1/2OM1)×,
we can assume that π ≡ 1 (mod 2OM1). We define

π1 = π σπ, π2 = ρπ σρπ, π3 = τπ στπ, π4 = τσπ στσπ

and write pi = πiON1 . Let ι : M2 → Qp be the completion corresponding to
πOM2 . We identify M2 with its image under ι. The completions ι1, . . . , ι4 :
N1 → Qp with respect to pi are induced by ι, ιρ, ιτσ, ιστ respectively.

From NormN1/Q(ε+ 1) = −2 we know that

O×L,S = 〈−1, ε, η, ε+ 1, π1, . . . , π4〉.

Furthermore, π2π3π4 = p/π1, so π1 and π2π3π4 represent the same class
in O×L,S/O

×2
L,SQ

×. It is straightforward to check that classes in Sel2fake(Dp,1)

must be represented by S-integers that have norm in pQ×2. This means that
a full set of representatives for Sel2fake(Dp,1) can be found in

(9.1) {πi, ηπi : i = 1, . . . , 4}.

Note that p is a square at 2, so imµQ2 is independent of p. We see that
f(x) is irreducible over Q2 and that #Ep,1[2](Q2) = 2, so # imµQ2 = 2. We
compute that

ker

(
N :

L×2
L×22 Q×2

→ Q×2
Q×22

)
' (Z/2Z)2

and that the images of (0,
√
−7p),∞+ ∈ Dp,1(Q2) form imµQ2 . We find that

it can be represented by {1, ε2} + 2ON1 . Our earlier normalization ensures
that πi ≡ 1 (mod 2ON1) and computation shows that η 6≡ ε2 (mod 2ON1),
so from (9.1) only {π1, . . . , π4} maps to imµQ2 .

Let θ = ε2 − 2ε be a root of f(x) in N1. We know that f(x) splits
completely over Qp. Let θ1 = ι1θ, . . . , θ4 = ι4θ be the roots of f(x) in Qp.
We fix L→ Lp ' (Qp)

4 by x 7→ (ι1x, . . . , ι4x).

We have #Ep,1[2](Qp) = 4. It is straightforward to check that imµQp is
represented by {(θ1, 0), . . . , (θ4, 0)}, which in Lp gives

(9.2)

(p(θ1 − θ2)(θ1 − θ3)(θ1 − θ4), (θ1 − θ2), (θ1 − θ3), (θ1 − θ4)),
((θ2 − θ1), p(θ2 − θ1)(θ2 − θ3)(θ2 − θ4), (θ2 − θ3), (θ2 − θ4)),
((θ3 − θ1), (θ3 − θ2), p(θ3 − θ1)(θ3 − θ2)(θ3 − θ4), (θ3 − θ4)),
((θ4 − θ1), (θ4 − θ2), (θ4 − θ3), p(θ4 − θ1)(θ4 − θ2)(θ4 − θ3)).
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If π1 represents a class in Sel2fake(Dp,1), then based on valuations, π1 and the
first element listed in (9.2) must represent the same class modulo L×2p Q×p .
That means that(

ρπ1
τσπ1

στπ1(θ1 − θ2)(θ1 − θ3)(θ1 − θ4)
π

)
=

(
ρπ1(θ1 − θ2)

π

)
=

(
τσπ1(θ1 − θ3)

π

)
=

(
στπ1(θ1 − θ4)

π

)
.

We notice that the first and last equalities lead to(
τπ τσπ στπ στσπ(θ1 − θ3)(θ1 − θ4)

π

)
=

(
NormM2/N0

(τπ)
√

2

π

)
= 1,

which always holds by Lemma 4.1. By equating the second and the last
symbol we obtain(

ρπ ρσπ στπ στσπ(θ1 − θ2)(θ1 − θ4)
π

)
=

(
NormM2/K1

(ρπ στπ)ζα

π

)
.

It is straightforward to check that δ = NormM2/K1
(ρπ στπ) satisfies the def-

inition set out in the proposition, so this establishes that π1 represents an
element in Sel2fake(Dp,1) if and only if p satisfies condition (iii). The same
conclusion holds for the other πi by symmetry.

(ii)⇔(iii). We follow the strategy used for the first equivalence. We
choose π ∈ OM2 in the same way and consider

π1 = π τπ, π2 = ρπ τρπ, π3 = σπ τσπ, π4 = στπ τστπ.

The four prime ideals p1, . . . , p4 of OK1 above p are generated by the πi
above, and the completions K1 → Qp with respect to pi are induced by the
same embeddings ι, ιρ, ιτσ, ιστ as before.

We have f(x) = p(x4 − 4x3 + 24x + 20) and L = K1 and θ = α2 − 2α.
We can take S = {2, p,∞} and we have

O×K1,S
= 〈i, α+ 1, α, π1, . . . , π4〉.

Note that i = α4/2 ∈ K×21 Q×, so for representing Sel2fake(Dp,2) we can ignore
multiplication by i. Norm considerations show that a full set of representa-
tives can be taken from the set

{π1, . . . , π4, (α+ 1)π1, . . . , (α+ 1)π4}.

A computation as before shows that the images of ∞+, (1,
√

41p) ∈
D(Q2) form imµQ2 , represented by {1, i}+2ON1 . Since α+1 6≡ i (mod 2OK1),
we find that Sel2fake(Dp,2) can be represented by elements from {π1, . . . , π4}.
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By setting θj = ιjθ we see that imµQp is represented by the same for-
mulas (9.2). Based on valuations, π1 can only represent the element corre-
sponding to the first element there. For π1 to represent the same class in
L×2p /Q×p , we need that(

ρπ1
τσπ1

στπ1(θ1 − θ2)(θ1 − θ3)(θ1 − θ4)
π

)
=

(
ρπ1(θ1 − θ2)

π

)
=

(
τσπ1(θ1 − θ3)

π

)
=

(
στπ1(θ1 − θ4)

π

)
.

The first and last equalities, together with (θ1− θ3)(θ1− θ4) being a square,
yield (

τσπ τστπ στπ σπ(θ1 − θ3)(θ1 − θ4)
π

)
=

(
NormM2/K0

(σπ)

π

)
= 1,

which holds by Lemma 4.1. Equating the second and the fourth term yields

(9.3)

(
ρπ στσπ σπ στπζα

π

)
= 1.

From Lemma 4.2 with D = i and γ = ζ we obtain(
τπ στσπ

π

)
=

(
NormM2/M1

(τπ)

π

)
=

(
ζ

π

)
.

Another application of Lemma 4.1 gives(
στπ τπ τσπ στσπ

π

)
=

(
NormM2/N0

(τπ)

π

)
=

(√
2

π

)
=

(
ζ

π

)
.

Multiplying these with (9.3) shows that it is equivalent to(
ρπ στσπ σπ τσπζα

π

)
= 1,

which is the condition stated in the proposition. Conditions for the other πi
follow by symmetry.

Proof of Theorem B. We assume p ∈ W (2). With Lemma 7.1 and the
results of Section 8 we have established that [Cp,i] ∈ 4X(Ep) if and only if
Dp,i ∈ 2X(Ep,i). This is exactly what either of the equivalences (i)⇔(iii)
and (ii)⇔(iii) in Proposition 9.1 establishes.

10. Comparison of the methods. This section gives an informal com-
parison of the methods of proof of Theorems A and B. They share some
important characteristics and naturally the question arises to what extent
a framework can be constructed in which both are applications of the same
principle. A full answer is beyond the scope of this article (see for instance
[CTX09]) but we do sketch why Theorem A is not directly related to an
isogeny.
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Both questions can be interpreted in terms of local-global obstructions
to rational or integral points on principal homogeneous spaces under alge-
braic groups. The congruent number problem is directly formulated in this
language. We have the homogeneous spaces Cp,i and Dp,i under Ep and
Ep,i respectively. In our case, for non-congruent primes p ≡ 1 (mod 8) and
assuming that X(Ep) is finite, Lemma 7.1 yields #X(Ep) = 4#X(Ep,i),
which means that analysis of the 2- and 4-torsion in #X(Ep,i) allows us to
obtain information about 4- and 8-torsion in X(Ep). There is a long his-
tory of exploiting isogenies to obtain information about X(E) for elliptic
curves E; see [Kra83].

For the class number problem, we consider integer points on C : x2 +
py2 = 2. The affine scheme described by this equation is a principal homo-
geneous space under the algebraic group scheme T that describes the kernel
of the norm map Norm: Q(

√
−p)× → Q×. The fact that C has integer points

everywhere locally follows from the fact that there is an ideal t of norm 2,
and the fact that C does not have global integer points follows from the fact
that t is not a principal ideal.

The fundamental step that allows us to prove Theorem A is to base
extend to Z[i]. Here C does acquire an integer point and we are led to
consider essentially the homogeneous space D : x2 + py2 = 1 + i under T ′ =
T ×Z Z[i] instead (noting that at 1 + i, the modified notion of primitivity
actually describes a slightly different space than the model given here).
Proposition 5.4 allows us to relate the information back to the quantities we
are originally interested in.

Note that in the latter case, the two algebraic group schemes T and T ′

are not isogenous. They are not even defined over the same base. For elliptic
curves one can also use base extensions to kill part of X; see for instance
[Kra81]. This leads to particular instances of Mazur visibility [CM00]. See
[Bru04] for an explicit description of these ideas regarding X(E)[2] for el-
liptic curves E.

We searched for a proof of Theorem B based on visibility but were unable
to find an appropriate base extension or auxiliary elliptic curve that would
work for all relevant p.

Acknowledgements. We would like to thank Peter Stevenhagen for
pointing out the similarities between the results for congruent numbers and
those for imaginary quadratic class groups. Furthermore, we thank Soroosh
Yazdani for useful discussions about Lemma 4.1, Tom Archibald for discus-
sions about the history of the subject, Jeffrey Lagarias for useful comments
and Alexa van der Waall for general discussions and suggestions.

Research of the first author is supported by NSERC.



86 N. Bruin and B. Hemenway

References

[BC69] P. Barrucand and H. Cohn, Note on primes of type x2 + 32y2, class number,
and residuacity, J. Reine Angew. Math. 238 (1969), 67–70.

[Bas15] L. Bastien, Nombres congruents, Intermédiaire des Math. 22 (1915), 231–232.

[Bru04] N. Bruin, Visualising Sha[2] in Abelian surfaces, Math. Comp. 73 (2004), 1459–
1476.

[BS09] N. Bruin and M. Stoll, Two-cover descent on hyperelliptic curves, Math. Comp.
78 (2009), 2347–2370.

[Cas62] J. W. S. Cassels, Arithmetic on curves of genus 1. IV. Proof of the Hauptver-
mutung, J. Reine Angew. Math. 211 (1962), 95–112.

[Cas65] J. W. S. Cassels, Arithmetic on curves of genus 1. VIII. On conjectures of Birch
and Swinnerton-Dyer, J. Reine Angew. Math. 217 (1965), 180–199.

[Coh78] H. Cohn, A Classical Invitation to Algebraic Numbers and Class Fields, Sprin-
ger, New York, 1978.

[CL83] H. Cohn and J. C. Lagarias, On the existence of fields governing the 2-invariants
of the classgroup of Q(

√
dp) as p varies, Math. Comp. 41 (1983), 711–730.

[CL84] H. Cohn and J. C. Lagarias, Is there a density for the set of primes p such
that the class number of Q(

√
−p) is divisible by 16?, in: Topics in Classical

Number Theory, Budapest, 1981, Vol. I, Colloq. Math. Soc. János Bolyai 34,
North-Holland, Amsterdam, 1984, 257–280.

[CTX09] J.-L. Colliot-Thélène and F. Xu, Brauer–Manin obstruction for integral points
of homogeneous spaces and representation by integral quadratic forms, Compos.
Math. 145 (2009), 309–363.

[CM00] J. E. Cremona and B. Mazur, Visualizing elements in the Shafarevich–Tate
group, Experiment. Math. 9 (2000), 13–28.

[Dic20] L. Dickson and E. Leonard, History of the Theory of Numbers. Vol. II: Dio-
phantine Analysis, Carnegie Institution of Washington, Washington, DC, 1920.

[Dic23] L. Dickson and E. Leonard, History of the Theory of Numbers. Vol. III: Quad-
ratic and Higher Forms, Carnegie Institution of Washington, Washington, DC,
1923.

[DD10] T. Dokchitser and V. Dokchitser, On the Birch–Swinnerton-Dyer quotients
modulo squares, Ann. of Math. (2) 172 (2010), 567–596.

[Hee52] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952),
227–253.

[Hem06] B. Hemenway, On recognizing congruent primes, M.Sc. thesis, Simon Fraser
Univ., 2006; http://ir.lib.sfu.ca/handle/1892/3791.

[Kra81] K. Kramer, Arithmetic of elliptic curves upon quadratic extension, Trans. Amer.
Math. Soc. 264 (1981), 121–135.

[Kra83] K. Kramer, A family of semistable elliptic curves with large Tate–Shafarevitch
groups, Proc. Amer. Math. Soc. 89 (1983), 379–386.

[Lem00] F. Lemmermeyer, Reciprocity Laws, From Euler to Eisenstein, Springer
Monogr. Math., Springer, Berlin, 2000.

[MSS96] J. R. Merriman, S. Siksek and N. P. Smart, Explicit 4-descents on an elliptic
curve, Acta Arith. 77 (1996), 385–404.

[Mil06] J. S. Milne, Arithmetic Duality Theorems, 2nd ed., BookSurge, Charleston, SC,
2006.

[Mon90] P. Monsky, Mock Heegner points and congruent numbers, Math. Z. 204 (1990),
45–67.

http://dx.doi.org/10.1090/S0025-5718-04-01633-3
http://dx.doi.org/10.1090/S0025-5718-09-02255-8
http://dx.doi.org/10.1112/S0010437X0800376X
http://dx.doi.org/10.1080/10586458.2000.10504633
http://dx.doi.org/10.4007/annals.2010.172.567
http://dx.doi.org/10.1007/BF01174749
http://ir.lib.sfu.ca/handle/1892/3791
http://dx.doi.org/10.1090/S0002-9947-1981-0597871-8
http://dx.doi.org/10.1090/S0002-9939-1983-0715850-1
http://dx.doi.org/10.1007/BF02570859


Congruent primes and class numbers 87

[Rub87] K. Rubin, Tate–Shafarevich groups and L-functions of elliptic curves with com-
plex multiplication, Invent. Math. 89 (1987), 527–559.

[RS02] K. Rubin and A. Silverberg, Ranks of elliptic curves, Bull. Amer. Math. Soc.
(N.S.) 39 (2002), 455–474.

[Sil86] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106,
Springer, New York, 1986.

[Ste93] P. Stevenhagen, Divisibility by 2-powers of certain quadratic class numbers,
J. Number Theory 43 (1993), 1–19.

[Tun83] J. B. Tunnell, A classical Diophantine problem and modular forms of weight
3/2, Invent. Math. 72 (1983), 323–334.

Nils Bruin
Department of Mathematics
Simon Fraser University
Burnaby, BC V5A 1S6, Canada
E-mail: nbruin@sfu.ca
http://www.cecm.sfu.ca/˜nbruin

Brett Hemenway
Department of Mathematics

University of Michigan
Ann Arbor, MI 48109-1043, U.S.A.

Received on 22.7.2012
and in revised form on 14.12.2012 (7135)

http://dx.doi.org/10.1007/BF01388984
http://dx.doi.org/10.1090/S0273-0979-02-00952-7
http://dx.doi.org/10.1006/jnth.1993.1001
http://dx.doi.org/10.1007/BF01389327



	1 Introduction
	2 Implications
	3 Some related modular results
	4 Preliminaries
	5 Class groups as local-global obstructions
	6 Congruent numbers: the first step
	7 Sha and isogenies
	8 Results from isogeny descents
	9 Second descents
	10 Comparison of the methods
	References

