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1. Introduction. It is well known that the method of A. Baker gives
the transcendence of numbers related to exponential functions (see Theo-
rems 2.3 and 2.4 of [2]). The idea of using Baker’s method to obtain results
of algebraic independence seems due to M. Waldschmidt [18], who makes
a hypothesis on the transcendence type of the underlying field. In 1976,
G. V. Chudnovsky announced some results of algebraic independence (tran-
scendence degree 2), which was repeated in Chapter 2 of [5]. The complete
proof of these last results can be seen in [8], where G. Diaz removed the
complicated arguments coming from Kummer’s theory by using the zero
estimate of P. Philippon [13]. The result was also obtained by R. Tubbs [17]
as a corollary to the general theorem on algebraic groups. G.-L. Chen [4]
generalized Chudnovsky’s result for exponential families to the case of large
transcendence degree.
In this paper we shall establish quantitative results of this type in a

general setting, by using Ably’s method [1], which includes Chen’s result.
The improvement with respect to [1] comes from the construction of an
auxiliary function with derivations. Furthermore if ℘ is a Weierstrass elliptic
function with algebraic invariants, and if ℘ has no complex multiplications,
we shall show that deg trQ Q(℘(u), ℘(βu), ℘(β2u), ℘(β3u)) ≥ 2, where β is an
algebraic number of degree 4 and u is a complex number such that u 6∈ Q(β).

2. Notations and definitions. Let G be a commutative algebraic
group of dimension d ≥ 1 defined over a number field K. Let Ga denote the
additive group of complex numbers and Gm the multiplicative group of com-
plex numbers. We suppose that G decomposes as G = Gd0a ×Gd1m ×G2, where
d0 ∈ {0, 1}, d1 ≥ 0, and G2 is a commutative algebraic group of dimension
d2 = d−d0−d1, defined over K and with no linear factor. The group G2(C)
of complex points of G2 is a complex Lie group. Let ψ : C→ G2(C) be an an-
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alytic homomorphism whose tangent map at the origin Lieψ : C→ TG2(C)
is nontrivial, where TG2(C) denotes the Lie algebra of G2, identified with
the tangent space at the origin, and let expG2 : TG2(C) → G2(C) be its
exponential map. We have ψ = expG2 ◦Lieψ. Let χ2 : G2(C) → PN (C)
be the K-embedding of G2 into projective N -space, as described by J.-P.
Serre in [16]. Then χ2 ◦ expG2 : TG2(C)→ PN (C) is given by analytic func-
tions Θ0, . . . , ΘN (say) with order of growth at most 2. Let χ be the natural
K-embedding of G(C) into Ad0(C)×Ad1(C)×PN (C) associated to χ2, where
Ad(C) denotes the set of complex points of the d-dimensional affine space Ad.
Let x1, . . . , xd1 be complex numbers linearly independent over Q, and

ϕ : C→ G(C) the analytic homomorphism defined by

ϕ(z) = (z, exp(x1z), . . . , exp(xd1z), ψ(z)).

In the definition of ϕ, if d0 = 0, d1 = 0 or d2 = 0, we omit the corresponding
component(s). Then we have ϕ = expG ◦Lieϕ, where Lieϕ is the tangent
map of ϕ at the origin.
For complex numbers y1, . . . , ym linearly independent over Q, we put

Y = Zy1 + · · · + Zym and Γ = ϕ(Y ). We put ℓ = rankZ(Y ∩ kerϕ) and
we suppose ℓ < m, hence we may assume without loss of generality that
ym−ℓ+1, . . . , ym ∈ kerϕ. Let L be an arbitrary subfield of C. LetW ⊆ TG(C)
denote a C-vector subspace of TG(C) of least dimension which is defined over
L and which contains Lieϕ(C). Put n = dimCW , and suppose n ≥ d0 + 1.
Let π0 and π1 be the projections of G onto Gd0a and Gd1m , respectively. Then
we define the Dirichlet exponent µ♯ as in M. Waldschmidt [23] as follows:

µ♯ = µ♯(Γ,G,W ) = min
G′(G

η + δ1 + 2δ2
δ − ν

,

where G′ runs over all connected algebraic subgroups of G which are defined
over K, with G′ 6= G and δ > ν, and where

η = rankZ Γ/(Γ ∩G
′), ν = dimC W/(W ∩ TG′(C)), δ = dimG/G′,

δ0 = dimGd0a /π0(G
′), δ1 = dimGd1m /π1(G

′), δ2 = δ − δ0 − δ1.

We also define

κ = κ(µ♯) =
µ♯(d− n)− d1 − 2d2
(1− ℓ/m)µ♯

+ 1.

Let a1, . . . , an denote a fixed basis ofW over C such that all the components
are in L, that is, ap = (a1p, . . . , adp), ahp ∈ L (h = 1, . . . , d; p = 1, . . . , n).
By a linear transformation, we may suppose that Θ0(Lieψ(yj)) 6= 0 for
1 ≤ j ≤ m− ℓ, and we put

ω =

(
ahp, yj , exp(xiyj),

Θs(Lieψ(yj))

Θ0(Lieψ(yj))
; h = 1, . . . , d; p = 1, . . . , n;

i = 1, . . . , d1; j = 1, . . . ,m− ℓ; s = 0, . . . , N

)
,
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where as above, if d0 = 0, d1 = 0, or d2 = 0, we omit the corresponding
components.

Let I be an ideal ofK[X1, . . . , Xt] and α a point of C
t. Recall the notions

of the height and degree of I and of the absolute value of I at α, denoted by
Ht(I),Deg(I) and ‖I‖α, respectively, which were defined by P. Philippon in
[12]; we define the size of I by T (I) = logHt(I) +Deg(I). For a polynomial
P ∈ K[X1, . . . , Xt], we define the size of P by t(P ) = max(1+degP, h(P )),
where h(P ) denotes the height of P (see [12, définition 1.11]). For α ∈ Ct

and a positive real number R, we define Bt(α,R) to be the open ball with
center α and radius R.

Definition. Let α ∈ Ct. A function Φ : R+ → R+ is said to be a
measure of algebraic independence of α at dimension k if for every ideal J
of K[X1, . . . , Xt] of codimension t − k and size T (J) sufficiently large, we
have

‖J‖α ≥ exp(−Φ(T (J))).

For every algebraic subvariety V of P = Pd0×Pd1×PN and real numbers
D0, D1, D2 > 0, we define H(V ;D0, D1, D2) as in [13] to be the homoge-
neous polynomial equal to (dimV )! times the homogeneous part of (maxi-
mal) degree (= dimV ) of the Hilbert–Samuel polynomial of V evaluated at
(D0, D1, D2).

Then we know from §3 of [13] that

(1) H(G;D0, D1, D2) =
d! degG2
d0!d1!d2!

Dd00 D
d1
1 D

d2
2 ,

and for a connected algebraic subgroup G′ of G with G′ 6= G,

(2) H(G′;D0, D1, D2)

≥
(d− δ)!

(d0 − δ0)!(d1 − δ1)!(d2 − δ2)!
Dd0−δ00 Dd1−δ11 Dd2−δ22 ,

where δ = dimG/G′, δ0 = dimGd0a /π0(G
′), δ1 = dimGd1m /π1(G

′), and δ2 =
δ − δ0 − δ1.

In what follows, we denote by c0, c1, c2, . . . real numbers depending only
on G, [K : Q], χ, x1, . . . , xd1 , y1, . . . , ym, by c a real number sufficiently large
with respect to c1, c2, . . . , and by S0 a real number sufficiently large with
respect to c.

For t = (t1, . . . , tm) ∈ (N ∪ {0})
m, we put |t| = t1 + · · · + tm. Further

for h = (h1, . . . , hm) ∈ Zm, we put ‖h‖ = max1≤i≤m |hi| and h · y =
h1y1 + · · ·+ hmym; and for real S > 0, we put
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Y ±(S) = {h · y; (h1, . . . , hm) ∈ Zm, |hi| < S, 1 ≤ i ≤ m},

Y (S) = {h · y; (h1, . . . , hm) ∈ Zm, 0 ≤ hi < S, 1 ≤ i ≤ m},

Γ (S) = ϕ(Y (S)),

Zm(S) = {h ∈ Zm; |hi| < S, 1 ≤ i ≤ m},

Nm(S) = {h ∈ Nm; 0 ≤ hi < S, 1 ≤ i ≤ m}.

As in [1], we put

A(S,G′) =

(
1

c
(Sµ

♯

(logS)a−1)ν card((Γ (S) +G′)/G′)

×
H(G′;Sµ

♯

(logS)−1, Sµ
♯−1, Sµ

♯−2)

H(G;Sµ♯(logS)−1, Sµ♯−1, Sµ♯−2)

)1/δ

for S ≥ S0 and a connected algebraic subgroupG
′ ofG with G′ 6= G, where a

denotes a constant chosen below. It is clear that card((Γ (S)+G′)/G′) ≥ Sη.
We see from (1) and (2), and the definition of µ♯ that

A(S,G′) ≥

(
1

c

)1/δ
(logS)((a−1)ν+δ0)/δ

for all connected algebraic subgroups G′ ( G. We put

A(S) = min
G′(G

A(S,G′),

where G′ runs over all connected algebraic subgroups of G with G′ 6= G,
and we also put B(S) = min{A(S), c−1(logS)((a−1)n+d0)/d}.
We introduce the following parameters:

D0(S) =

{
Sµ

♯

(logS)−1B(S) if d0 6= 0,

1 otherwise,

D1(S) =

{
Sµ

♯−1B(S) if d1 6= 0,

1 otherwise,

D2(S) =

{
Sµ

♯−2B(S) if d2 6= 0,

1 otherwise,

and we put D0(S) = [D0(S)], D1(S) = [D1(S)], D2(S) = [D2(S)], where
[ξ] denotes the integral part of a real number ξ. Note that if µ♯ > i for
i = 0, 1, 2, then we have Di(S) ≥ 1 for all S ≥ S0.
As in [13], if G is K-embedded in P = Pd0 × Pd1 × PN , we say that

a connected algebraic subgroup G′ of G is incompletely defined in G by
equations of multi-degree ≤ (D0, D1, D2) if G

′ is an irreducible component
of G ∩ Z(I), where Z(I) ⊂ P denotes the set of common zeros of an ideal I
of K[P] generated by polynomials of multi-degree ≤ (D0, D1, D2). We fix a
norm ‖ · ‖ on TG(C).
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We put

S1 = c
d+1(S0+1)

m/(κ−1)µ♯ , ∆(S) = Sµ
♯

(logS)a, ̺(S) = Sκµ
♯

(logS)a,

where a is the same constant as above. Now we impose the following tech-
nical hypothesis which is similar to (H) of [1]:

(HA) There exist positive constants c′0 and S0 such that for all S ≥ S0
and for all connected algebraic subgroups G′ of G with G′ ( G ⊂
Pd0 × Pd1 × Pd2 , incompletely defined in G by equations of multi-
degree ≤ (D0(S), D1(S), 2D2(S)), and for all y ∈ Y

±(S), we have

(i) if y 6= 0, then |y| ≥ exp(−c′0S logS),
(ii) either ϕ(y) ∈ G′(C) or for all u ∈ TG(C) such that expG(u) ∈

G′(C),
‖u− Lieϕ(y)‖ ≥ exp(−̺(S)).

Let θ1, . . . , θq, θq+1 be complex numbers such that θ1, . . . , θq are alge-
braic independent over Q, θq+1 integral over Z[θ1, . . . , θq] and K(ω) =
Q(θ1, . . . , θq+1). Then the components of ω can be written in the follow-
ing forms:

ahp =
Ahp(θ1, . . . , θq+1)

Q(θ1, . . . , θq)
(h = 1, . . . , d; p = 1, . . . , n),

yj =
Bj(θ1, . . . , θq+1)

Q(θ1, . . . , θq)
(j = 1, . . . ,m− ℓ),

exiyj =
Cij(θ1, . . . , θq+1)

Q(θ1, . . . , θq)
(i = 1, . . . , d1; j = 1, . . . ,m− ℓ),

Θs(Lieψ(yj))

Θ0(Lieψ(yj))
=
Dsj(θ1, . . . , θq+1)

Q(θ1, . . . , θq)
(s = 1, . . . , N ; j = 1, . . . ,m− ℓ),

where Ahp, Bj , Cij , Dsj and Q are polynomials with coefficients in Z.
Let R(θ1, . . . , θq, X) ∈ Z[θ1, . . . , θq][X] be the minimal polynomial of

θq+1 over Z[θ1, . . . , θq]. Let θ̃ = (θ̃1, . . . , θ̃q) ∈ B
q(θ, exp(−c̺(S))). By using

the semi-resultant of Chudnovsky, there exists a simple zero θ̃q+1 of

R(θ̃1, . . . , θ̃q, X) such that |θ̃q+1−θq+1| ≤ exp(−(c/2)̺(S)) (cf. [21, p. 263]);

and we use the same notation as above for the vector (θ̃1, . . . , θ̃q+1), i.e.,

θ̃ = (θ̃1, . . . , θ̃q+1).

For any θ̃ = (θ̃1, . . . , θ̃q+1) with θ̃ ∈ B
q(θ, exp(−c̺(S))), let ãhp denote

the fractions resulting when all θi in ahp are replaced by θ̃i (i = 1, . . . , q+1).

Put W̃ := Cã1 + · · · + Cãn, where ãp = (ã1p, . . . , ãdp) (p = 1, . . . , n). Now
we shall impose the second hypothesis:

(HB) For all S ≥ S1, for all θ̃ = (θ̃1, . . . , θ̃q) ∈ B
q(θ, exp(−c̺(S))) and

for all connected algebraic subgroups G′ of G with G′ 6= G, incom-
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pletely defined by equations of multi-degree ≤ (D0, D1, 2D2), the
following inequality holds:

codim
W̃
(W̃ ∩ TG′(C)) ≥ codimW (W ∩ TG′(C)).

3. The main result and corollaries. We shall prove the following
theorem.

Theorem. Suppose that hypotheses (HA) and (HB) are satisfied and
that κ > 1, and if G is nonlinear , then also µ♯ > 2. Let k be an integer ≥ 0
such that κ ≥ k + 1. Then there exists a real number

c1 = c1(G,χ, ϕ, [K : Q], L, x1, . . . , xd1 , y1, . . . , ym, k) > 0

such that

(i) if κ = k + 1, the function

Φ1(T ) = exp(c1T
d−n

(κ−1)(n−d0) )

is a measure of algebraic independence of ω at dimension k,
(ii) if κ > k + 1, the function

Φ2(T ) = c1

(
T

(log T )
(k+1)(κ−1)(n−d0)

(d−n)κ

)κ/(κ−k−1)

is a measure of algebraic independence of ω at dimension k.

Corollary 1. Under the assumptions of the Theorem, we have

deg trQK(ω) ≥ [κ].

Remark. We shall compare our result with Ably’s in the special case
that the Dirichlet exponent µ♯ attains its minimum when G′ = {0}, where
G′ is a connected algebraic subgroup of G with G′ 6= G, and furthermore
we suppose ℓ = 0, since otherwise this is complicated. To avoid confusion,
we shall denote the quantities µ♯ and κ by µ♯(A) and κ(A) in Ably’s case,
and by µ♯(T ) and κ(T ) in our case. Then under the above assumption, we
have

µ♯(A) = (m+ d1 + 2d2)/d, κ(A) = dm/(m+ d1 + 2d2),

µ♯(T ) = (m+ d1 + 2d2)/(d− n), κ(T ) = 1 + (d− n)m/(m+ d1 + 2d2).

Hence if [κ(T )] > [κ(A)], our result is better than Ably’s, and otherwise the
latter is better. However, one must bear in mind that our result requires
some superfluous assumptions.

Now we shall state some corollaries derived from our Theorem. Let
z1, . . . , zt be complex numbers and L an arbitrary subfield of C. Let s denote
the number of elements among {z1, . . . , zt} linearly independent over L. For
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simplicity, we shall assume that z1, . . . , zs (say) are linearly independent
over L, and so we can write zh =

∑s
p=1 ahpzp, ahp ∈ L (h = 1, . . . , t).

Then we shall need the following definition similar to that of Chen [4].

Definition. Let α be a positive number and τ an irrational number.
We say that a family {z1, . . . , zt} of complex numbers satisfies hypothesis
H(L,Z;α) (resp. H(L,Z + τZ;α)) if there exist positive constants c∗ and
N∗ such that for all integers N ≥ N∗, all integers k with 1 ≤ k ≤ s and
all λi1...ik ∈ Z (resp. λi1,...,ik ∈ Z + τZ) (1 ≤ i1 < · · · < ik ≤ t) satisfying
|λi1...ik | ≤ N , we have either

max
1≤j1<···<jk≤s

∣∣∣
∑

1≤i1<···<ik≤t

λi1...ik det(aiujv )1≤u,v≤k

∣∣∣ = 0,

or

max
1≤j1<···<jk≤s

∣∣∣
∑

1≤i1<···<ik≤t

λi1...ik det(aiujv )1≤u,v≤k

∣∣∣ ≥ exp(−c∗Nα).

Algebraic independence of values of the exponential function. Let x1, . . .
. . . , xd1 (resp. y1, . . . , ym) be Q-linearly independent complex numbers. Let
L be an arbitrary subfield of C. Let r (resp. r + 1) denote the number
of elements among {x1, . . . , xd1} (resp. {1, x1, . . . , xd1}) linearly indepen-
dent over L. As above, for brevity, we shall assume that {x1, . . . , xr} (resp.
{1, x1, . . . , xr}) are linearly independent over L, and hence xh =

∑r
p=1 ahpxp

(h = 1, . . . , d1) (resp. xh =
∑r
p=0 ahpxp (h = 0, . . . , d1), x0 := 1). Put

κ1 = (d1− r)m/(m+d1)+1, µ♯1 = (m+d1)/(d1−r), ̺1 = (m+d1)/mr,

ω(1) = (ahp, e
xiyj ; h = 1, . . . , d1, p = 1, . . . , r, i = 1, . . . , d1, j = 1, . . . ,m),

ω(2)= (ahp, yj , e
xiyj ; h=0, . . . , d1, p=0, . . . , r, i=1, . . . , d1, j=1, . . . ,m).

We consider the following technical hypothesis.

(H1) There exist c′1, S
′
1 > 0 such that for all S ≥ S′1 and for all λ =

(λ1, . . . , λd1) not all zero in Zn satisfying ‖λ‖ ≤ S (resp. for all
h = (h1, . . . , hm) not all zero in Zm satisfying ‖h‖ ≤ S), we have

∣∣∣
d1∑

i=1

λixi

∣∣∣ ≥ exp(−S(µ
♯
1+m)/(2µ

♯
1−1)),

resp.
∣∣∣
m∑

j=1

hjyj

∣∣∣ ≥ max(exp(−c′1S logS), exp(−S(µ
♯
1+m)/(µ

♯
1+1))).

Corollary 2. Let σ=1 or 2. Suppose that κ1>1 and that hypotheses
(H1) and H(L,Z; (µ

♯
1+m)/d1(µ

♯
1−1)) hold. Let k be an integer such that κ1≥

k + 1. Then there exists a real number c1 = c1(x1, . . . , xd1 , y1, . . . , ym, L, k)
> 0 such that
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(i) if κ1 = k + 1, the function Φ1(T ) = exp(c1T
̺1) is a measure of

algebraic independence of ω(σ) at dimension k,
(ii) if κ1>k+1, the function Φ2(T ) = c1(T/(log T )

(k+1)/κ1̺1)κ1/(κ1−k−1)

is a measure of algebraic independence of ω(σ) at dimension k.

Corollary 3 (see Chen [4]). Under the assumptions of Corollary 2, we
have

deg trQ Q(ω(σ)) ≥ [κ1] (σ = 1, 2).

Corollary 4. Let α 6= 0, 1 and β be algebraic numbers with deg(β) = 5.
Then

deg trQ Q(αβ , αβ
2

, αβ
3

, αβ
4

) ≥ 3.

Algebraic independence of values of a Weierstrass elliptic function. We
shall deduce from our Theorem the elliptic analogue of the preceding results.
Let ℘ be a Weierstrass elliptic function with algebraic invariants g2 and g3,
Ω the lattice of periods, and ω1, ω2 a fixed basis for Ω. We put τ = ω2/ω1.
Let F be the field of multiplications of ℘, and O(F) the ring of integers
of F. Let x1, . . . , xd1 (resp. y1, . . . , ym) be F-linearly independent complex
numbers. We suppose that 2m ≤ md1 − 1 if ℘ has complex multiplications,
and 2m ≤ md1 + d1 − 3 otherwise. Let L be an arbitrary subfield of C.
Let r (resp. r + 1) denote the number of elements among {x1, . . . , xd1}
(resp. {1, x1, . . . , xd1}) linearly independent over L, and let ahp be as in the
exponential case. We put

κ2 = [F : Q](d1−r)m/([F : Q]m+2d1)+1, µ♯2=([F : Q]m+2d1)/(d1−r),

̺2 = ([F : Q]m+ 2d1)/rm,

ω(3) = (ahp, ℘(xiyj); h = 1, . . . , d1, p = 1, . . . , r, i = 1, . . . , d1, j = 1, . . . ,m,

xiyj 6∈ Ω),

ω(4)= (ahp, yj , ℘(xiyj); h = 0, . . . , d1, p = 0, . . . , r, i = 1, . . . , d1,

j = 1, . . . ,m, xiyj 6∈ Ω).

We consider the following technical hypothesis.

(H2) There exist c′2, S
′
2 > 0 such that for all S ≥ S′2 and for all λ =

(λ1, . . . , λd1) not all zero in (O(F))
d1 satisfying ‖λ‖ ≤ S (resp. for

all h = (h1, . . . , hm) not all zero in (O(F))
m satisfying ‖h‖ ≤ S),

we have
∣∣∣
d1∑

i=1

λixi

∣∣∣ ≥ exp(−S([F:Q]m+µ
♯
2)/18µ

♯
2),

resp.
∣∣∣
m∑

j=1

hjyj

∣∣∣ ≥ max(exp(−c′2S logS), exp(−S([F:Q]m+µ
♯
2)/4µ

♯
2)).
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Corollary 5. Let σ = 3 or 4. Suppose that κ2 > 1 and that hypotheses
(H2) and H(L,Z+Zτ ; ([F : Q]m+µ♯2)/2d1(1+ log d1)(µ

♯
2− 2)) are satisfied.

Let k be an integer such that κ2 ≥ k + 1. Then there exists a real number
c1 = c1(x1, . . . , xd1 , y1, . . . , ym, k, L) > 0 such that

(i) if κ2 = k + 1, the function Φ1(T ) = exp(c1T
̺2) is a measure of

algebraic independence of ω(σ) at dimension k,
(ii) if κ2>k+1, the function Φ2(T ) = c1(T/(log T )

(k+1)/κ2̺2)κ2/(κ2−k−1)

is a measure of algebraic independence of ω(σ) at dimension k.

Corollary 6. Under the assumptions of Corollary 5, we have

deg trQ Q(ω(σ)) ≥ [κ2] (σ = 3, 4).

Corollary 7. Let ℘ be a Weierstrass elliptic function with algebraic
invariants. Let E be the elliptic curve associated to ℘. Let β be an al-
gebraic number of degree δ ≥ 2 over F and u a complex number such
that ℘(u), ℘(βu), . . . , ℘(βδ−1u) are defined and u 6∈ Q(β). Suppose that
δ > 2/[F : Q]. Then:

(i) if ℘ has no complex multiplications (F = Q) and δ > 2, we have

deg trQ Q(℘(u), ℘(βu), . . . , ℘(βδ−1u)) ≥

[
δ + 2

3

]
,

(ii) if ℘ has complex multiplications ([F : Q] = 2) and δ ≥ 2, we have

deg trQ Q(℘(u), ℘(βu), . . . , ℘(βδ−1u)) ≥

[
δ + 1

2

]
.

Remark. In Corollary 7, if ℘ has no complex multiplications and deg(β)
= 4, we have deg trQ Q(℘(u), ℘(βu), ℘(β2u), ℘(β3u)) ≥ 2.

4. Propositions. We shall use the notations of §2. For every j with 1 ≤
j ≤ m− ℓ, a point γj = ϕ(yj) = expG(Lieϕ(yj)) has projective coordinates

(3) (Q(θ), Bj(θ), Q(θ), C1j(θ), . . . , Cd1,j(θ), Q(θ), D1j(θ), . . . , DNj(θ))

in Pd0(C) × Pd1(C) × PN (C). For every j with 1 ≤ j ≤ m − ℓ, we let
γ̃j be the point with multiprojective coordinates given by evaluating the

coordinate polynomials of (3) at θ̃. Then γ̃j ∈ G(C) (cf. [21, §5]). Further,
for j = 1, . . . ,m − ℓ, there exists ỹj ∈ TG(C) such that expG(ỹj) = γ̃j and
‖Lieϕ(yj) − ỹj‖ ≤ exp(−(c/2)̺(S)), since expG is a local diffeomorphism.

Put Ỹ = Zỹ1+ · · ·+Zỹm−ℓ, Γ̃ = expG(Ỹ ); and for h = (h1, . . . , hm) ∈ Zm,
put h ·y = h1y1+· · ·+hmym ∈ C and h ·ỹ = h1ỹ1+· · ·+hm−ℓỹm−ℓ ∈ TG(C).

We identify TG(C) with Cd0 ⊕ Cd1 ⊕ Cd2 , and for i = 0, 1, 2 we denote
by pi the projection of TG(C) onto Cdi ; hence ỹ ∈ TG(C) can be written as
ỹ = p0(ỹ) + p1(ỹ) + p2(ỹ).
We use the following criterion for algebraic independence:
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Proposition A ([1, p. 207]). Let α = (α1, . . . , αt)∈Ct, k∈{0, . . . , t−1},
and K a number field. Let u : R+ → R+ be a continuous and strictly in-

creasing function. Suppose that there exist c0 ≥ 1 and N0 > 0 such that
for every real N ≥ N0, there exists an ideal IN = (GN,1, . . . , GN,m(N)) of
K[X1, . . . , Xt] satisfying

(i) the set of zeros of IN in B
t(α, exp(−c0N

k+1u(N))) is empty ,
(ii) max1≤j≤m(N) |GN,j(α)| ≤ exp(−N

k+1u(N)),
(iii) max1≤j≤m(N) t(GN,j) ≤ N .

Then if v denotes the inverse function of u, there exists c2 = c2(c0, t, k,
[K : Q]) > 0 such that the function Φ(T ) = c2T (v(c2T ))

k+1 is a measure of

algebraic independence of α at dimension k.

The proof of our Theorem will be established by combining the follow-
ing result with Proposition A. Recall that the constant c occurred in the
definition of A(S,G′).

Proposition B. Suppose that hypotheses (HA) and (HB) are satisfied
and that κ > 1, and µ♯ > 2 if G is nonlinear. Then for all S ≥ S1 there
exists an ideal IS = (PS,1, . . . , PS,m(S)) in K[X1, . . . , Xq] such that

(i) the set of zeros of IS in B
q(θ, exp(−c̺(S))) is empty ,

(ii) max1≤i≤m(S) |PS,i(θ)| ≤ exp(−c3̺(S)),
(iii) max1≤i≤m(S) t(PS,i) ≤ c4∆(S).

5. Auxiliary lemmas. The proof of the following lemma is easy, and
hence we shall omit it.

Lemma1. For every polynomial P ∈C[X1, . . . , Xt] and for any two points
z = (z1, . . . , zt) and z

′ = (z′1, . . . , z
′
t) of Ct satisfying max1≤i≤t |zi − z

′
i| ≤

ε < 1, we have
|P (z)− P (z′)| ≤ ε exp(c′t(P )),

where c′ > 1 depends only on z and t.

Lemma 2. For all h ∈ Zm(S), there exist a finite set Bh and a family

(uβi )β∈Bh, 0≤i≤N of polynomials in q + 1 variables with integral coefficients
in K such that

(i) t(uβi ) ≤ c5S
2,

(ii) for every θ̃ ∈ Bq(θ, exp(−c̺(S))), there exists β ∈ Bh such that

(uβ0 (θ̃), . . . , u
β
N (θ̃)) is a system of projective coordinates of χ2 ◦

expG2(p2(h · ỹ)).

Proof. For the polynomials (Uβi )β∈Bh, 0≤i≤N in [1, lemme 2.2], put

uβi (Y ) =

Uβi (Q(Y ), D1,1(Y ), . . . , DN,1(Y ), . . . , Q(Y ), D1,m−ℓ(Y ), . . . , DN,m−ℓ(Y )).
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Lemma 3 ([19, Proposition 1.2.3]). Suppose that TG(C) is identified with
Cd = {(z1, . . . , zd); zi ∈ C}. Let Θ0, . . . , ΘN be as in §2. Then if Θj 6= 0
(0 ≤ j ≤ N), there exist polynomials Qis (1 ≤ i ≤ d, 0 ≤ s ≤ N, s 6= j),
depending on j, with coefficients in K such that

∂

∂zi

(
Θs
Θj

)
= Qis

(
Θ0
Θj

, . . . ,
Θs−1
Θj

,
Θs+1
Θj

, . . . ,
ΘN
Θj

)
.

6. Proof of Proposition B. In the preceding notation, recall a1 =
(a11, . . . , ad1), . . . , an = (a1n, . . . , adn). Now we define n differential opera-
tors Da1 , . . . , Dan by

Da1 =
d∑

i=1

ai1
∂

∂zi
, . . . , Dan =

d∑

i=1

ain
∂

∂zi
.

For S ≥ S1, we consider a finite set Bh and a family (u
β
i ) (β ∈ Bh , 0 ≤ i ≤ N)

of polynomials given in Lemma 2. Then the proof depends on the quantity
maxβ∈Bh , 0≤i≤N |u

β
i (θ)|.

Case 1: There exists h ∈ Zm(S) such that

max
β∈Bh, 0≤i≤N

|uβi (θ)| ≤ exp

(
−
c

5

̺(S)

D2(S)− 1

)
.

Since the proof of this case is as in Ably [1], we shall omit it.

Case 2: For all h ∈ Zm(S),

max
β∈Bh, 0≤i≤N

|uβi (θ)| > exp

(
−
c

5

̺(S)

D2(S)− 1

)
.

In a similar fashion to that of Ably [1], we divide the argument into
several steps. In the first step, we shall construct an auxiliary function with
many zeros, by Siegel’s lemma and the estimation of rank in [14, lemme
6.7]. In the second step, we use the idea due to G. Diaz [7] to construct an
ideal IS which takes “small values” at θ by the extrapolation formula. In
the third step, we appeal to P. Philippon’s zero estimate [13] on algebraic
groups to show that the variety of zeros of IS is locally empty.

Step 1: Construction of an auxiliary function. For S ≥ S1, we put

M(S) =

[
1

cd+1
S(κ−1)µ

♯/m

]
, T (S) = [Sµ

♯

(logS)a−1].

Note that M(S)≥ S0, since S ≥ S1, and that M(S)<S, because (κ−1)µ♯

≤ m and c is sufficiently large. For simplicity, we write D0, D1, D2, A,B,
M, . . . instead of D0(S), D1(S), D2(S), A(S), B(S),M(S), . . . .



222 M. Takeuchi

Let E be a set of monic monomials in Z with degree D2, linearly in-
dependent over K(θ) modulo the homogeneous ideal I of K(θ)[Z] of poly-
nomials which vanish on G2; since the K(θ)-vector space of elements of
K(θ)[Z]/I of degree D2 − 1 is of dimension ≥ c6D

d2
2 , we can take E such

that cardE ≥ c6D
d2
2 .

We consider the following polynomial:

P (X,Y , Z) =
∑

α≤D0−1

∑

|β|≤D1−1

∑

Zλ∈E

Pαβλ(θ)X
αY β11 · · ·Y

βd1
d1

Zλ00 · · ·Z
λN
N ,

where β = (β1, . . . , βd1), λ = (λ0, . . . , λN ), |β| = β1 + · · · + βd1 , Z
λ =

Zλ00 · · ·Z
λN
N , and Pαβλ ∈ Z[X1, . . . , Xq] and Pαβλ(θ) = Pαβλ(θ1, . . . , θq).

We putz=(z0, z1, . . . , zd1 , zd1+1, . . . , zd1+d2) and z
′= (zd1+1, . . . , zd1+d2).

Now we define a function Ψ : Cd → C2+d1+N by

Ψ(z) = (z0, e
z1 , . . . , ezd1 , Θ0(z

′), . . . , ΘN (z
′)).

We put

F (z) := P (Ψ(z)) =
∑

α≤D0−1
|β|≤D1−1

Zλ∈E

Pαβλ(θ)z
α
0 exp(β1z1 + · · ·+ βd1zd1)

×Θ0(z
′)λ0 · · ·ΘN (z

′)λN .

By Philippon [11], there exist polynomials A0, . . . , AN bihomogeneous in
(X0, . . . , XN ;X

′
0, . . . , X

′
N ) such that

Θ0(z
′ + u′) = A0(Ψ

′(z′);Ψ ′(u′)), . . . , ΘN (z
′ + u′) = AN (Ψ

′(z′);Ψ ′(u′))

for z′ and u′ in Cd2 , where Ψ ′(z′) = (Θ0(z
′), . . . , ΘN (z

′)). Hence we have

F (z+u) =
∑

α≤D0−1
|β|≤D1−1

Zλ∈E

Pαβλ(θ)(z0+u0)
α exp(β1(z1+u1)+· · ·+βd1(zd1+ud1))

×A0(Ψ
′(z′), Ψ ′(u′))λ0 · · ·AN (Ψ

′(z′), Ψ ′(u′))λN

for z = (z0, . . . , zd1+d2) and u = (u0, . . . , ud1+d2). Then for h ∈ Nm(S), we
obtain

F (z + Lieϕ(h · y)) =
∑

α≤D0−1
|β|≤D1−1

Zλ∈E

Pαβλ(θ)Rαβλ(Ψ(z);Ψ(Lieϕ(h · y))),

where Rαβλ(X,Y , Z;X
′, Y ′, Z ′) is a polynomial in (X,Y , Z;X ′, Y ′, Z′) with

degX,X′ Rαβλ ≤ α ≤ D0−1, degY ,Y ′ Rαβλ ≤ |β| ≤ D1−1, and degZ,Z′ Rα,βλ
≤ c7(λ0 + · · ·+ λn) ≤ c7D2. Note that

Dt1a1 · · ·D
tn
an
F (z + u)z=0 = D

t1
a1
· · ·DtnanF (u)
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for (t1, . . . , tn) ∈ Nn and u ∈ Cd. For each h ∈ Nm(S) and Θj0(z
′) 6= 0, we

see from Lemma 3 that

Dt1a1 · · ·D
tn
an

(
F (z + Lieϕ(h · y))

Θj0(z
′)c8D2

)

z=0

=
∑

α≤D0−1
|β|≤D1−1

Zλ∈E

Pαβλ(θ)

× Uαβλ(h · y, a1, . . . , an, e
x1(h·y), . . . , exd1 (h·y), Θ0(Lieψ(h · y)), . . .

. . . , ΘN (Lieψ(h · y))),

where Uαβλ is a polynomial with algebraic coefficients in variables (X,V01, . . .
. . . , Vd1+d2,1, . . . , V0n, . . . , Vd1+d2,n, Y , Z) with degX Uαβλ ≤ α ≤ D0 − 1,
degV Uαβλ ≤ |t| ≤ T , degY Uαβλ ≤ (h1 + · · · + hm) · maxβi ≤ mD1S,
degZ Uαβλ ≤ c9D2, and t(Uαβλ) ≤ c10T log(D0 +D1 +D2 + T ).
For each h ∈ Nm(S), we choose jh, 0 ≤ jh ≤ N , βh ∈ Bh such that

max
β∈Bh, 0≤i≤N

|uβi (θ)| = |u
βh
jh
(θ)|.

Here (u
βh
0 (θ), . . . , u

βh
N (θ)) are the projective coordinates of χ2◦ψ(h ·y). Then

we have

(4) Q(θ)T+D0+mD1S
(

u
βh
jh
(θ)

Θjh (Lieψ(h · y))

)c8D2

×Dt1a1 · · ·D
tn
an

(
F (z + Lieϕ(h · y))

Θj0(z
′)c8D2

)

z=0

=
∑

α≤D0−1
|β|≤D1−1

Zλ∈E

Pαβλ(θ)Hαβλht(θ),

where Hαβλht(X1, . . . , Xq+1) is a polynomial with integer coefficients in K.
Now we shall require that D0 ∼ T . For this we shall choose a constant a

(cf. §2) as follows:

(C1) (a− 1)n+ d0 = ad,

and hence a = −(n− d0)/(d− n) < 0. Then we have

t(Hαβλht) ≤ c11(D0 logS + (T ∧D0) logD0 + T logD1 +D1S +D2S
2)

≤ c12∆(S),

where T ∧D0 means min{T,D0}. We put

X = (X1, . . . , Xq+1), Pαβλ(X) = Pαβλ(X1, . . . , Xq),

Hht(X) =
∑

α≤D0−1

∑

|β|≤D1−1

∑

Zλ∈E

Pαβλ(X)Hαβλht(X),

ni = max{degXi Hαβλht; α ≤ D0 − 1, |β| ≤ D1 − 1,

Zλ ∈ E, h ∈ Nm(M), |t| < T}+ 1 (1 ≤ i ≤ q).
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The purpose of this first step is to find polynomials Pαβλ not all 0 with
rational integral coefficients with degXi Pαβλ ≤ ni (1 ≤ i ≤ q) such that
Hht(X) = 0 for all h ∈ Nm(M) and for all t ∈ Nn, |t| < T . Now we consider
the system

(S1) {Hht(X) = 0; h ∈ Nm(M), t ∈ Nn, |t| < T}

with unknowns the coefficients of the polynomials Pαβλ (α ≤ D0 − 1, |β| ≤

D1 − 1, Z
λ ∈ E) and with coefficients the coefficients of the polynomials

Hαβλhtj (α ≤ D0 − 1, |β| ≤ D1 − 1, Z
λ ∈ E, h ∈ Nm(M), |t| < T ,

0 ≤ j ≤ δ′− 1). Then we shall show that (S1) has a nontrivial solution. The
system of linear equations

(S2) {Dt1a1 · · ·D
tn
an
F (Lieϕ(h · y)) = 0; h ∈ Nm(M), t ∈ Nn, |t| < T}

with unknowns xτ with {xτ ; τ} = {Pαβλ(θ); α≤D0−1, |β|≤D1−1, Z
λ ∈E}

is of rank at most 8dimG
′

T ν card((Γ (M) + G′)/G′)H(G′;D0, D1, D2) for
every connected algebraic subgroup G′ ( G (cf. [14, lemma 6.7]). By (4),
(S2) is equivalent to the system of linear equations

(S3) {Hht(θ) = 0; h ∈ Nm(M), t ∈ Nn, |t| < T}

with unknowns xτ .
On the other hand, we have

Hht(θ) = 0 ⇔
∑

α≤D0−1
|β|≤D1−1

Zλ∈E

Pαβλ(θ)Hαβλhtj(θ) = 0 (∀j, 0 ≤ j ≤ δ
′ − 1).

Since θ1, . . . , θq are algebraic independent over K, we obtain a linear system
such that the unknowns are the coefficients of Pαβλ and the coefficients are
the coefficients of Hαβλhtj , which is exactly the system (S1).
From degXi Pαβλ ≤ ni and degXi Hαβλht ≤ ni (1 ≤ i ≤ q), we deduce

that the rank L′ of (S1) satisfies L
′ ≤ 2q(

∏q
i=1 ni)δ

′ · rank(S2). From the
same arguments as in Ably [1], we deduce

(5) L′ ≤ 2q
( q∏

i=1

ni

)
degXq+1 R

× 8dimG
′

T ν card((Γ (M) +G′)/G′)H(G′;D0, D1, D2).

The number N of the unknowns of (S1) is at least c13(
∏q
i=1 ni)D

d0
0 D

d1
1 D

d2
2 .

We shall show that L′ < N . Recall the definition of A and B in §2.

Case (i): B = c−1(logS)((a−1)n+d0)/d. Taking G′ = {0} in (5), we ob-
tain

L′ ≤ 2q
( q∏

i=1

ni

)
degXq+1 R · T

nMm−ℓ,
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since ν = n. On the other hand, it follows from our choices of parameters
that

Dd00 D
d1
1 D

d2
2 ≥

1

2cd
Sµ

♯d−d1−2d2(logS)(a−1)n.

Recalling the definition of T and M and combining these results, we have
N ≥ 2[K : Q]L′, since c is sufficiently large.

Case (ii): B = A. Let G′0 be the connected algebraic subgroup of G such
that A = A(S,G′0). From the definitions of A(S,G

′
0) and the parameters

D0, D1, D2, we have

AdimG/G
′

0 ≥
1

c
T ν card((Γ (S) +G′0)/G

′
0)
H(G′0;D0/B,D1/B,D2/B)

H(G;D0/B,D1/B,D2/B)
.

Taking account of the homogeneity of H and noting A = B, we have

H(G;D0, D1, D2) ≥
1

c
T ν card((Γ (S) +G′0)/G

′
0)H(G

′
0;D0, D1, D2).

Furthermore, using (1) and recalling the choice of M we have

Dd00 D
d1
1 D

d2
2 >

1

c14
2q+1(degXq+1 R)8

dimG′0 [K : Q]T ν

× card((Γ (M) +G′0)/G
′
0)H(G

′
0;D0, D1, D2),

where c14 = c13(
∏
ni), since c is sufficiently large. Finally, taking G

′ = G′0
in (5), we obtain N ≥ 2[K : Q]L′.
Therefore in both cases, we have the same upper bound, and hence we

can apply Siegel’s lemma to find a nontrivial solution of the system (S1)
such that max(t(Pαβλ)) ≤ c15∆(S).

Step 2: Derivation of coefficients and extrapolation. The polynomials
Hht constructed in the first step may vanish in a neighborhood of θ, and
hence we need to modify them to get polynomials that satisfy the conditions
of the proposition. For this we shall make use of the idea of Chudnovsky,
developed by Diaz [7]. For i = (i1, . . . , iq) ∈ Nq we define the differential
operator and the length of i by

Di =
1

i1! · · · iq!

(
∂

∂X1

)i1
· · ·

(
∂

∂Xq

)iq
, |i| = i1 + · · ·+ iq,

respectively. Let θ̃ ∈ Bq(θ, exp(−c̺(S))), and let (θ̃1, . . . , θ̃q+1) be the ele-

ment of Cq+1 associated to θ̃ as in §2; we denote it by the same notation
again. The set

I(θ̃) := {i ∈ Nq; ∃(α, β, λ), α≤D0−1, |β| ≤D1−1, Z
λ ∈ E, DiPαβλ(θ̃) 6=0}

is nonempty and finite. Put

i(θ̃) := min
i∈I(θ̃)

|i|, I := {i(θ̃); θ̃ ∈ Bq(θ, exp(−c̺(S)))}.
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For i ∈ I, we put

Hhti(X) =
∑

α≤D0−1

∑

|β|≤D1−1

∑

Zλ∈E

DiPαβλ(X)Hαβλht(X).

Lemma 4. For all h ∈ Nm(S), all t ∈ Nn with |t| < T/2, and all i ∈ I,
we have

|Hhti(θ)| ≤ exp(−c16̺(S)).

Proof. Following Ably [1], we first prove this for h ∈ Nm(M), and then

for h ∈ Nm(S). We fix i ∈ I and θ̃ such that i(θ̃) = i. We have

Hhti(θ) =
∑

α≤D0−1
|β|≤D1−1

Zλ∈E

(DiPαβλ(θ)−D
iPαβλ(θ̃))Hαβλht(θ)(6)

+
∑

α≤D0−1
|β|≤D1−1

Zλ∈E

DiPαβλ(θ̃)(Hαβλht(θ)−Hαβλht(θ̃))

+
∑

α≤D0−1
|β|≤D1−1

Zλ∈E

DiPαβλ(θ̃)Hαβλht(θ̃).

By the definition of i = i(θ̃) and the construction of Hht, we have

DiHht(θ̃) =
∑

α≤D0−1

∑

|β|≤D1−1

∑

Zλ∈E

DiPαβλ(θ̃)Hαβλht(θ̃) = 0.

Using this and Lemma 1 in (6), we have

(7) |Hhti(θ)| ≤ exp

(
−
c

2
̺(S)

)
exp(c17∆(S)) ≤ exp

(
−
c

3
̺(S)

)
,

because t(Hαβλht) ≤ c12∆(S) and t(D
iPαβλ) ≤ c18∆(S).

Extrapolation. We shall extend this upper bound to the pair (h, t) with
h ∈ Nm(S), t ∈ Nn, |t| < T/2. For this we consider the following polynomial
and an analytic function:

P̃ (X,Y , Z) =
∑

α≤D0−1

∑

|β|≤D1−1

∑

Zλ∈E

DiPαβλ(θ̃)X
αY βZλ,

F̃ (z) = P̃ (Ψ(z)),

where z = (z0, z1, . . . , zd1 , zd1+1, . . . , zd1+d2) = (z0, z1, . . . , zd1 , z
′). We put

R1(S) = c19S with c19 = maxj{2,m|yj|}, and R2(S) = S1+(κ−1)µ
♯/3. For
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simplicity, we write M , R1 and R2 in place of M(S), R1(S) and R2(S). We
define a one-variable function g̃t(z) by

(8) g̃t(z) = D
t1
a1
· · ·Dtnan F̃ (Lieϕ(z))

for t = (t1, . . . , tn) ∈ Nn; this is clearly an entire function. We define

δ(M) = min
y′,y′′∈Y (M)
y′ 6=y′′

{1, |y′ − y′′|}.

By applying an extrapolation formula [15, lemme 4.5] to the function g̃t(z),
we obtain

|g̃t|R1≤ 2|g̃t|R2

(
4R1
R2

)TMm/2
(9)

+Mm
(
18R1
M |ym|

)TMm/2(
|ym|

2δ(M)

)TMm−1/2
max

h·y∈Y (M)

0≤k<T/2

∣∣∣∣
g̃
(k)
t (h · y)

k!

∣∣∣∣,

where g̃
(k)
t (z) = (∂/∂z)

kg̃t(z). From hypothesis (HA) we have δ(M) ≥

exp(−c′0M logM), since M ≥ S0. We shall estimate |g̃
(k)
t (h · y)|. We in-

fer from Lemma 1 and t(Hαβλht) ≤ c12∆(S) that

(10)
∣∣∣
∑

α≤D0−1

∑

|β|≤D1−1

∑

Zλ∈E

DiPαβλ(θ̃)Hαβλht(θ)
∣∣∣ ≤ exp

(
−
c

3
̺(S)

)

for all h ∈ Nm(M) and all t ∈ Nn with |t| < T . Then we have the following
equality analogous to (4):

(11) Q(θ)T+D0+mD1S
(

u
βh
jh
(θ)

Θjh (Lieψ(h · y))

)c8D2

×Dt1a1 · · ·D
tn
an

(
F̃ (z + Lieϕ(h · y))

Θj0(z
′)c8D2

)

z=0

=
∑

α≤D0−1
|β|≤D1−1

Zλ∈E

DiPαβλ(θ̃)Hαβλht(θ).

From the assumption in this case we have

|u
βh
jh
(θ)| ≥ exp

(
−
c

5

̺(S)

D2 − 1

)
for h ∈ Zm(S).

Further, since Θjh is of order ≤ 2, we obtain |Θjh (Lieψ(h ·y))| ≤ exp(c20S
2),

and finally |Q(θ)| ≥ c21 > 0. Hence from (10) and (11) we have
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(12)

∣∣∣∣D
t1
a1
· · ·Dtnan

(
F̃ (z + Lieϕ(h · y))

Θj0(z
′)c8D2

)

z=0

∣∣∣∣

≤ exp

(
−
c

3
̺(S)

)
exp

(
c

5
̺(S)

)
exp((c17 + c20)∆(S))

≤ exp

(
−
c

10
̺(S)

)

for all h ∈ Nm(M) and all t ∈ Nn with |t| < T . We shall use the following
identity:

Dt1a1 · · ·D
tn
an
F̃ (Lieϕ(h · y))

=
∑

0≤τi≤ti
1≤i≤n

(
t1
τ1

)
· · ·

(
tn
τn

)
Dt1−τ1a1

· · ·Dtn−τnan

(
F̃ (z + Lieϕ(h · y))

Θj0(z
′)c8D2

)

z=0

×Dτ1a1 · · ·D
τn
an
(Θj0(z

′)c8D2)z′=0.

Then (12) yields

|Dt1a1 · · ·D
tn
an
F̃ (Lieϕ(h · y))| ≤ exp

(
−
c

15
̺(S)

)

for all h ∈ Nm(M) and all t ∈ Nn with |t| < T . From our assumption,
Lieϕ(C) ⊂W , we have Lieϕ(z) = ℓ1(z)a1 + · · ·+ ℓn(z)an for z ∈ C, where
ℓ1(z) = ℓ1z, . . . , ℓn(z) = ℓnz for some complex numbers ℓ1, . . . , ℓn. Note that

g̃
(k)
t (z) =

∑

t′1+···+t
′

n=k
t′i≥0

k!

t′1! · · · t
′
n!
ℓ
t′1
1 · · · ℓ

t′n
n D

t1+t
′

1
a1 · · ·D

tn+t
′

n
an F̃ (Lieϕ(z))

for an integer k ≥ 0. Hence

(13) |g̃
(k)
t (h · y)| ≤ exp(c21T ) exp

(
−
c

15
̺(S)

)
≤ exp

(
−
c

20
̺(S)

)

for all h ∈ Nm(M), all t ∈ Nn with |t| < T/2, and 0 ≤ k ≤ T/2. It follows
easily that

|g̃t|R2 ≤ exp(c22(T logD0 + T logD1 +D0 logR2 +D1R2 +D2R
2
2)),

and taking into account (9) and (13), we have |g̃t|R1 ≤ exp(−c23̺(S)), since
TMm logS ≫≪ ̺(S). Therefore

(14) |g̃t(h · y)| ≤ exp(−c23̺(S))

for h ∈ Nm(S). From the properties of the theta function (cf. [20, lemme
2.2]), we have max |Θi(Lieψ(h · y))| ≥ exp(−c24S

2), and we also obtain

max |u
βh
i (θ)| ≤ exp(c24S

2), and |Q(θ)|T+D0+mD1S ≤ exp(c25∆(S)). Thus
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we deduce from (8), (11), and (14) that
∣∣∣
∑

α≤D0−1

∑

|β|≤D1−1

∑

Zλ∈E

DiPαβλ(θ̃)Hαβλht(θ)
∣∣∣ ≤ exp(−c26̺(S))

for all h ∈ Nm(S) and all t ∈ Nn with |t| < T/2. Finally, Lemma 1 shows
that

|Hht i(θ)| =
∣∣∣
∑

α≤D0−1

∑

|β|≤D1−1

∑

Zλ∈E

DiPαβλ(θ)Hαβλht(θ)
∣∣∣≤exp(−c27̺(S))

for all h ∈ Nm(S) and all t ∈ Nn with |t| < T/2.
This completes the proof of Lemma 4.

Step 3: Philippon’s zero estimate

Lemma 5. The family {Hhti; h ∈ Nm(S), t ∈ Nn, |t| < T/2, i ∈ I} has
no common zeros in Bq(θ, exp(−c̺(S))).

Proof. The proof is by contradiction. Suppose that there exists a point
θ̃ = (θ̃1, . . . , θ̃q) ∈ Bq(θ, exp(−c̺(S))) such that Hhti(θ̃) = 0 for all h ∈
Nm(S), all t ∈ Nn with |t| < T/2, and all i ∈ I.

Let ã1, . . . , ãn, and W̃ be as in §2. We see that ã1, . . . , ãn are linearly
independent over C. Denote byDã1 , . . . , Dãn the differential operators corre-
sponding to ã1, . . . , ãn (cf. the beginning of this section). Let (ỹ1, . . . , ỹm−ℓ)
be the element of TG(C)

m−ℓ defined as above. Then by the same arguments
as in the previous section, we have

(Q(θ̃))T+D0+mD1S
(

u
βh
jh
(θ̃)

Θjh (p2(h · ỹ))

)c8D2
Dt1ã1
· · ·Dtnãn

(
F̃ (z + h · ỹ)

Θj0(z
′)c8D2

)

z=0

=
∑

α≤D0−1
|β|≤D1−1

Zλ∈E

DiPαβλ(θ̃)Hαβλht(θ̃) = Hht i(θ̃) = 0.

By the previous arguments, we then have Dt1ã1
· · ·Dtnãn

F̃ (h · ỹ) = 0, since

Q(θ̃) 6= 0 and u
βh
jh
(θ̃) 6= 0. Hence P̃ (X,Y , Z) vanishes to order at least

[T/2] along W̃ on Γ̃ (S). On the other hand, by our construction, P̃ is not
identically zero on G, and hence we see by Philippon’s zero estimate [13,
théorème 2.1] that there exists a connected algebraic subgroup G′ of G with
G′ 6= G, incompletely defined by equations of multi-degree ≤ (D0, D1, 2D2),
such that

(15)

([T−2
2

]
+ codim

W̃
(W̃ ∩ TG′(C))

codim
W̃
(W̃ ∩ TG′(C))

)
card((Γ̃ (S) +G′)/G′)

×H(G′;D0, D1, D2) ≤ H(G;D0, D1, 2D2).
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From our hypothesis (HB), we have

codim
W̃
(W̃ ∩ TG′(C)) ≥ codimW (W ∩ TG′(C)).

As in Ably [1, p. 222], we deduce from hypothesis (HA) that

card((Γ̃ (S) +G′)/G′) ≥ card((Γ (S) +G′)/G′).

By the homogeneity of H, we infer from (15) that

(16)

(
T

3

)ν
card((Γ (S) +G′)/G′)

H(G′;D0/B,D1/B,D2/B)

H(G;D0/B,D1/B,D2/B)

≤ 2d2BdimG/G
′

.

Recalling the definition of A(S,G′) and T , and taking into account A ≤
A(S,G′) and B ≤ A, we conclude from (16) that c ≤ 2d23ν , which is impos-
sible, since c is sufficiently large. This completes the proof of Lemma 5.

Proof of Proposition B (in Case 2). For h ∈ Nm(S), t ∈ Nn with |t| <
T/2, and i ∈ I, we put

H∗ht i(θ1, . . . , θq) := r(Hhti(θ1, . . . , θq, X), R(θ1, . . . , θq, X)),

where r( , ) denotes Chudnovsky’s semi-resultant. We see from [3, p. 207]
and Lemma 4 that

|H∗hti(θ1, . . . , θq)| ≤ exp(−c28̺(S)), t(H∗hti) ≤ c29∆(S).

It follows from Lemma 5 that the family {H∗ht i; h ∈ Nm(S), t ∈ Nn, |t| <
T/2, i ∈ I} has no common zeros in Bq(θ, exp(−c̺(S))). If we denote by
{PS,1, . . . , PS,m(S)} the family of polynomials {H

∗
hti; h ∈ Nm(S), t ∈ Nn,

|t| < T/2, i ∈ I} for S ≥ S0, and if we put IS := (PS,j)1≤j≤m(S), then the
ideal IS satisfies the conditions of Proposition B. This concludes the proof
of Proposition B.

7. Proof of the Theorem. We shall show that the ω of our Theorem
satisfies the assumption of Proposition A. We may assume without loss of
generality that θj ∈ K[ω] for all j, 1 ≤ j ≤ q. Put Fj(ω) := θj , where
Fj ∈ K[Y ] (1 ≤ j ≤ q), and put QS,i(Y ) := PS,i(F1(Y ), . . . , Fq(Y )) (1 ≤
i ≤ m(S)), where PS,i are the polynomials in K[X1, . . . , Xq], constructed in
Proposition B. It is clear from Proposition B that

|QS,i(ω)| = |PS,i(θ)| ≤ exp(−c30̺(S)), t(QS,i) ≤ c31t(PS,i) ≤ c32∆(S).

On the other hand, it follows from Lemma 1 that for j, 1 ≤ j ≤ q,

|Fj(ω)− Fj(ω̃)| ≤ exp(−c̺(S)) whenever ‖ω̃ − ω‖ ≤ exp(−2c̺(S)).
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Putting θ̃ = Fj(ω̃), we have ‖θ − θ̃‖ ≤ exp(−c̺(S)); and it follows from
Proposition B that

max
1≤i≤m(S)

|PS,i(θ̃)| = max
1≤i≤m(S)

|QS,i(ω̃)| 6= 0.

Hence for all S ≥ S0, we have:

(i) the family (QS,i)1≤i≤m(S) has no common zeros in the ball with
center ω and radius exp(−2c̺(S)),

(ii) max1≤i≤m(S) |QS,i(ω)| ≤ exp(−c30̺(S)),

(iii) max1≤i≤m(S) t(QS,i) ≤ c32∆(S).

Now recall the definitions of ̺(S), ∆(S), and κ. Put N = c32∆(S); ∆(S)
is a strictly increasing function, since µ♯ > 0. Let σ be the inverse function
of c32∆(S). Define a function u : R+ → R+ by u(N) = c30̺(σ(N))N

−(k+1).
Since σ(N) = S, we have

u(N) = c30̺(S)N
−(k+1) =

c30

ck+132
S(κ−k−1)µ

♯

(logS)−ka.

For κ ≥ k + 1, the function u is strictly increasing. In fact, if κ > k + 1,
this is obvious. If κ = k + 1, we see from (C1) that −ka > 0. For all N
such that σ(N) ≥ S1, we put GN,i = Qσ(N),i, 1 ≤ i ≤ m(σ(N)). Then from
properties (i), (ii), and (iii) above, for all N satisfying σ(N) ≥ S1 we have

(i)′ the family (GN,i)1≤i≤m(σ(N)) has no common zeros in the ball with

center ω and radius exp(−(2c/c30)N
k+1u(N)),

(ii)′ max1≤i≤m(σ(N)) |GN,i(ω)| ≤ exp(−N
k+1u(N)),

(iii)′ max1≤i≤m(σ(N)) t(GN,i) ≤ N .

Hence ω satisfies the assumption of Proposition A. Now we have u(N)≫≪

S(κ−k−1)µ
♯

(logS)−ka, where N = c32S
µ♯(logS)a, and hence u(N) ≫≪

Nκ−k−1(logN)−(κ−1)a. Note that

• if κ = k+1, the inverse function v of u satisfies log v(T )≫≪T−1/(κ−1)a,

• if κ > k + 1, then

v(T )≫≪

(
T

(log T )−(κ−1)a

)1/(κ−k−1)
.

Then Proposition A shows that there exists c1 = c1(G, [K : Q], φ, χ, x1, . . .
. . . , xd1 , y1, . . . , ym, k, L) > 0 such that

• if κ = k + 1, the function Φ1(T ) = exp(c1T
−1/(κ−1)a) is a measure of

algebraic independence of ω at dimension k,

• if κ>k+1, the function Φ2(T ) = c1(T/(log T )
−(κ−1)(k+1)a/κ)κ/(κ−k−1)

is a measure of algebraic independence of ω at dimension k.

This completes the proof of the Theorem.
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8. Proofs of corollaries

Exponential case

Proof of Corollary 2. First, we note that L is an arbitrary subfield of C
and ahp ∈ L (for all h, p).

For σ = 1 (resp. σ = 2), we take K = Q, G = Gd1m (resp. G = Ga×Gd1m ),
ω = ω(1) = (ahp, e

xiyj ; 1 ≤ h ≤ d1, 1 ≤ p ≤ r, 1 ≤ i ≤ d1, 1 ≤ j ≤ m) (resp.
ω = ω(2) = (ahp, yj , e

xiyj ; 0 ≤ h ≤ d1, 0 ≤ p ≤ r, 1 ≤ i ≤ d1, 1≤ j≤m)).
We consider the one-parameter subgroup ϕ : C → G(C) defined by ϕ(z) =
(exp(x1z), . . . , exp(xd1z)) (resp. ϕ(z) = (z, exp(x1z), . . . , exp(xd1z))). Put
Y = Zy1 + · · ·+ Zym, Γ = ϕ(Y ). Note that for both σ = 1 and σ = 2, we
have kerϕ = {0}; hence ℓ = rankZ(Y ∩ kerϕ) = 0.

We put ap = (a1p, . . . , ad1p) (1 ≤ p ≤ r) (resp. ap = (a0p, . . . , ad1p)
(0 ≤ p ≤ r)) andW (1) = Ca1+ · · ·+Car (resp.W

(2) = Ca0+ · · ·+Car). For
brevity, we put W =W (1) or W (2). From (x1, . . . , xd1) = x1a1 + · · ·+ xrar
(resp. (x0, . . . , xd1) = x0a0+· · ·+xrar), we have Lieϕ(C) ⊂W . First, for any
algebraic subgroup G′ ( G, we note that Lieϕ(C) ∩ TG′(C) = {0}. In fact,
otherwise we have Lieϕ(C) ⊂ TG′(C), because dimC Lieϕ(C) = 1, which
contradicts the fact that ϕ(C) is Zariski-dense in G(C) and G′(C) ( G(C).
Hence for any algebraic subgroup G′ ( G, we also deduce that Γ ∩G′ = {0}.
Next, we note for any algebraic subgroup G′ ( G that W ∩ TG′(C) = {0},
for otherwise we have W ∩ TG′(C) 6= {0} and W ∩ TG′(C) 6= W . On the
other hand, since Lieϕ(C) ∩ (W ∩ TG′(C)) = Lieϕ(C) ∩ TG′(C) = {0},
Lieϕ(C) is contained in the orthogonal complement of W ∩ TG′(C) in W ,

which contradicts the choice ofW . Hence we see that µ♯1 attains its minimum
when G′ = {0}, and so

µ♯1 =
m+ d1
d1 − r

and κ1 =
(d1 − r)m

m+ d1
+ 1.

Hypothesis (HA) is a consequence of hypothesis (H1) and the description
of the connected algebraic subgroups of Gd1m (resp. of Ga × Gd1m ) (see
[22] and also [4]). We shall prove that (HB) follows from hypothesis

H(L,Z; (µ♯1 +m)/d1(µ
♯
1 − 1)).

Lemma 6. H(L,Z; (µ♯1 +m)/(µ
♯
1 − 1)d1)⇒ (HB).

Proof. Here we shall only give the proof in the case G = Gd1m . Note that
W/(W∩TG′(C)) ∼= (W+TG′(C))/TG′(C). Put ν = dimW/(W∩TG′(C)). We
suppose that aj1 + TG′(C), . . . , ajν + TG′(C) (say) are linearly independent
over C in the vector space TG(C)/TG′(C). Then we shall show under the hy-

pothesis H(L,Z; (µ♯1 +m)/(µ
♯
1 − 1)d1) that ãj1 + TG′(C), . . . , ãjν + TG′(C)

are linearly independent over C, which yields (HB). The proof is by contra-
diction. Assume that ãj1 + TG′(C), . . . , ãjν + TG′(C) are linearly dependent
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over C, and hence there exist ν complex numbers e1, . . . , eν not all zero such
that e1ãj1 + · · ·+ eν ãjν ∈ TG′(C). Since ãjs = (ã1js , . . . , ãd1js) (1 ≤ s ≤ ν),
we have

(e1ã1j1 + · · ·+ eν ã1jν , . . . , e1ãd1j1 + · · ·+ eν ãd1jν ) ∈ TG′(C).

Then by Bertrand’s theorem [6, Annexe], there exist δ (= dimG/G′) linearly

independent integer points λ(1), . . . , λ(δ) ∈ Zd1 such that

λ
(̺)
1 (e1ã1j1 + · · ·+ eν ã1jν ) + · · ·+ λ

(̺)
d1
(e1ãd1j1 + · · ·+ eν ãd1jν ) = 2m̺πi

(1 ≤ ̺ ≤ δ),
δ∏

̺=1

‖λ(̺)‖ ≤ c(δ, d1)D
δ
1,

where λ(̺) = (λ
(̺)
1 , . . . , λ

(̺)
d1
), m̺ ∈ Z (1 ≤ ̺ ≤ δ) and c(δ, d1) is a posi-

tive constant depending only on δ and d1. We rewrite this system of linear
equations as follows:

(17)

p̃11e1 + · · ·+ p̃1νeν = 2m1πi,

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

p̃δ1e1 + · · ·+ p̃δνeν = 2mδπi,

where for simplicity, we put

p̺̃1 = λ
(̺)
1 ã1j1 + · · ·+ λ

(̺)
d1
ãd1j1 , . . . ,

p̺̃ν = λ
(̺)
1 ã1jν + · · ·+ λ

(̺)
d1
ãd1jν (1 ≤ ̺ ≤ δ).

Denote by p̺s the linear forms p̺̃s of ãhjs replaced by ahjs (1 ≤ ̺ ≤ δ, 1 ≤
h ≤ d1, 1 ≤ s ≤ ν). Let P = (p̺s)1≤̺≤δ, 1≤s≤ν denote a δ × ν matrix.

First, we suppose thatm = (m1, . . . ,mδ) 6= (0, . . . , 0). By the well known
result of linear algebra, if rankP < ν, then the system of linear equations

(18)

p11z1 + · · ·+ p1νzν = 2m1πi,

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

pδ1z1 + · · ·+ pδνzν = 2mδπi

has a nontrivial solution. If rankP = ν, we shall consider two cases.

Case (i): ν = δ. Then (18) has a unique (nontrivial) solution.

Case (ii): ν < δ. Then (17) has a nontrivial solution (e1, . . . , eν) 6=
(0, . . . , 0). This means that

rank



p̃11 · · · p̃1ν
...
. . .

...
p̃δ1 · · · p̃δν


 = rank



p̃11 · · · p̃1ν m1
...
. . .

...
...

p̃δ1 · · · p̃δν mδ


 .
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Thus for any η1, . . . , ην+1 with 1 ≤ η1 < · · · < ην+1 ≤ δ, we have

∣∣∣∣∣∣∣

p̃η1,1 . . . p̃η1,ν mη1
...

. . .
...

...
p̃ην+1,1 . . . p̃ην+1,ν mην+1

∣∣∣∣∣∣∣
= 0.

Then from this equation and an elementary computation, we have

∣∣∣∣∣∣∣

pη1,1 . . . pη1,ν mη1
...

. . .
...

...
pην+1,1 . . . pην+1,ν mην+1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

pη1,1 − p̃η1,1 pη1,2 · · · mη1
...

...
. . .

...
pην+1,1 − p̃ην+1,1 pην+1,2 · · · mην+1

∣∣∣∣∣∣∣

+ · · ·+

∣∣∣∣∣∣∣

p̃η1,1 · · · p̃η1,ν−1 pη1,ν − p̃η1,ν mη1
...

. . .
...

...
...

p̃ην+1,1 · · · p̃ην+1,ν−1 pην+1,ν − p̃ην+1,ν mην+1

∣∣∣∣∣∣∣
.

For all t (1 ≤ t ≤ ν + 1) and for all s (1 ≤ s ≤ ν), we easily obtain

|pηt,s − p̃ηt,s| ≤ c33‖λ
(ηt)‖ max

1≤h≤d1
1≤s≤ν

|ahjs − ãhjs | ≤ ‖λ
(ηt)‖ exp

(
−
c

3
̺(S)

)
,

|pηt,s|, |p̃ηt,s| ≤ c34‖λ
(ηt)‖, |mηt | ≤ c34‖λ

(ηt)‖.

Hence we have an upper bound

(19) abs




∣∣∣∣∣∣∣

pη1,1 · · · pη1,ν mη1
...

. . .
...

pην+1,1 · · · pην+1,ν mην+1

∣∣∣∣∣∣∣




≤ c35‖λ
(η1)‖ · · · ‖λ(ην+1)‖ exp

(
−
c

3
̺(S)

)

≤ c36D
d1
1 exp

(
−
c

3
̺(S)

)
≤ exp

(
−
c

4
̺(S)

)
.

Next, we shall find a lower bound for the above determinant. We use expan-
sion along the (ν + 1)th row:

∣∣∣∣∣∣∣∣∣

pη1,1 · · · pην+1,1
...
. . .

...
pη1,ν · · · pην+1,ν
mη1 · · · mην+1

∣∣∣∣∣∣∣∣∣
= mη1Aη1 + · · ·+mην+1Aην+1 ,
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where Aηt is the cofactor of mηt (1 ≤ t ≤ ν + 1). Hence we have

Aηt = ±
∑

i1,...,iν+1

λ
(η1)
i1
· · ·λ

(ηt−1)
it−1

λ
(ηt+1)
it+1

· · ·λ
(ην+1)
iν+1

×

∣∣∣∣∣∣∣

ai1j1 · · · ait−1j1 ait+1j1 · · · aiν+1j1
...
. . .

...
...

. . .
...

ai1jν · · · ait−1jν ait+1jν · · · aiν+1jν

∣∣∣∣∣∣∣
.

It follows easily that

|mηtλ
(η1)
i1
· · ·λ

(ηt−1)
it−1

λ
(ηt+1)
it+1

· · ·λ
(ην+1)
iν+1

| ≤ ‖λ(η1)‖ · · · ‖λ(ην+1)‖ ≤ c(δ, n)Dd11 .

Thus from hypothesis H(L,Z; (µ♯1 +m)/(µ
♯
1 − 1)d1), we have either∣∣∣∣∣∣∣

pη1,1 · · · pη1,ν mη1
...

. . .
...

...
pην+1,1 · · · pην+1,ν mην+1

∣∣∣∣∣∣∣
= 0,

or

abs




∣∣∣∣∣∣∣

pη1,1 · · · pη1,ν mη1
...

. . .
...

...
pην+1,1 · · · pην+1,ν mην+1

∣∣∣∣∣∣∣


 ≥ exp(−c37Dd1α1 ),

where α = (µ♯1 +m)/(µ
♯
1 − 1)d1; but the latter contradicts (19), since a < 0;

and hence rankP = rank(P, tm) = ν, where tm denotes the transpose of m.
Thus (18) has a nontrivial solution.

In the case of (m1, . . . ,mδ) = (0, . . . , 0), it is clear that rank P̃ < ν.
Then using the same arguments as above, it follows from hypothesis H(L,Z;

µ♯1/(µ
♯
1 − 1)d1) that rankP < ν, which will be excluded.
Thus we have shown that (18) always has a nontrivial solution (f1, . . . , fν)

(say). Now we see from (18) that

f1(λ
(̺)
1 a1j1 + · · ·+ λ

(̺)
d1
ad1j1) + · · ·+ fν(λ

(̺)
1 a1jν + · · ·+ λ

(̺)
d1
ad1jν ) = 2m̺πi

(1 ≤ ̺ ≤ δ).

We rewrite this equation as follows:

λ
(̺)
1 (f1a1j1 + · · ·+ fνa1jν ) + · · ·+ λ

(̺)
d1
(f1ad1j1 + · · ·+ fνad1jν ) = 2m̺πi

(1 ≤ ̺ ≤ δ).

Hence using Bertrand’s theorem [6, Annexe] again, we have f1aj1 + · · ·
· · · + fνajν ∈ TG′(C). This means that aj1 + TG′(C), . . . , ajν + TG′(C)
are C-linearly dependent in the vector space TG(C)/TG′(C), which
contradicts our choice of aj1 , . . . , ajν . Therefore codimW (W ∩ TG′(C)) ≤

codim
W̃
(W̃ ∩ TG′(C)).

This completes the proof of Lemma 6.
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End of proof of Corollary 2. Since hypotheses (HA) and (HB) are satis-
fied, Corollary 2 follows immediately from our Theorem.

Proof of Corollary 4. Take y1 = 1, y2 = β, . . . , y5 = β
4; x1 = logα, x2 =

β logα, . . . , x5 = β
4 logα; L = Q(β) in Corollary 2. Then the hypotheses of

Corollary 2 are clearly satisfied. Thus the result follows from Corollary 3 by
putting m = d1 = 5, and r = 1.

Elliptic case. Let E = E(C) be the elliptic curve associated to ℘, Ω the
lattice of periods of ℘, and K = Q(g2, g3), where g2 and g3 are the alge-
braic invariants of ℘. Let ω1, ω2 denote a fixed basis for Ω, and hence Ω =
{m1ω1 +m2ω2; m1,m2 ∈ Z}. Put τ = ω2/ω1. The exponential map of E is
given by expE : C→ E(C) ⊂ P2(C),

z 7→

{
(1, ℘(z), ℘′(z)) if z 6∈ Ω,

(0, 0, 1) if z ∈ Ω.

Proof of Corollary 5. If σ = 3 (resp. σ = 4), we take G = Ed1 (resp. G =
Ga ×E

d1). We consider the one-parameter subgroup ϕ : C→ G(C) defined
by ϕ(z) = (expE(x1z), . . . , expE(xd1z)) (resp. ϕ(z) = (z, expE(x1z), . . .
. . . , expE(xd1z))).

Case 1: F = Q. We take Y = Zy1 + · · ·+ Zym. If σ = 3 (resp. σ = 4),
we put ω = (ahp, 1, ℘(xiyj), ℘

′(xiyj); 1 ≤ h ≤ d1, 1 ≤ p ≤ r, 1 ≤ i ≤ d1, 1 ≤
j ≤ m, xiyj 6∈ Ω) (resp. ω = (ahp, yj , 1, ℘(xiyj), ℘

′(xiyj); 0 ≤ h ≤ d1, 0 ≤
p ≤ r, 1 ≤ i ≤ d1, 1 ≤ j ≤ m, xiyj 6∈ Ω)).

Case 2: F 6= Q, F = Q(τ), where τ is some quadratic irrational number.
We take Y = Zy1+ · · ·+Zym+Zτy1+ · · ·+Zτym and ω = (ahp, 1, ℘(xiyj),
℘′(xiyj), 1, ℘(xiyjτ), ℘

′(xiyjτ); 1≤ h≤ d1, 1≤ p ≤ r, 1≤ i ≤ d1, 1≤ j≤m,
xiyj 6∈ Ω) (resp. ω = (ahp, yj , 1, ℘(xiyj), ℘

′(xiyj), 1, ℘(xiyjτ), ℘
′(xiyjτ);

0 ≤ h ≤ d1, 0 ≤ p ≤ r, 1 ≤ i ≤ d1, 1 ≤ j ≤ m, xiyj 6∈ Ω)). Recall that
ω(3) = (ahp, ℘(xiyj); 1 ≤ h ≤ d1, 1 ≤ p ≤ r, 1 ≤ i ≤ d1, 1 ≤ j ≤ m, xiyj 6∈
Ω) and ω(4) = (ahp, yj , ℘(xiyj); 0≤ h≤ d1, 0≤ p≤ r, 1≤ i≤ d1, 1≤ j≤m,
xiyj 6∈ Ω).

We put ap = (a1p, . . . , ad1p) (1 ≤ p ≤ r) (resp. ap = (a0p, . . . , ad1p)

(0 ≤ p ≤ r)) and W (3) = Ca1 + · · ·+ Car (resp. W
(4) = Ca0 + · · ·+ Car).

From the same arguments as in the exponential case, we see that µ♯2 attains
its minimum when G′ = {0}, and hence

µ♯2 = ([F :Q]m+2d1)/(d1−r), κ2 = ([F : Q](d1−r)m)/([F :Q]m+2d1)+1.

(HA) is a consequence of hypothesis (H2) and the description of the
connected algebraic subgroups of Ed1 (resp. Ga × E

d1) with the aid of the
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effective Kolchin theorem (cf. [10]). Since (HB) is derived from hypothesis

H

(
L,Z+ Zτ ;

[F : Q]m+ µ♯2

2d1(1 + log d1)(µ
♯
2 − 2)

)

by the arguments similar to those of the exponential case, we shall omit its
proof. Finally, since K(ω) is algebraic over K(ω(σ)) (σ = 3, 4), Corollary 5
is easily deduced from our Theorem and a remark in [1, p. 225].

Proof of Corollary 7. We shall deduce this result from Corollary 6, in the
case σ = 4. We take yj = β

j−1 (j = 1, . . . , δ), xi = β
i−1u (i = 1, . . . , δ). We

put L = Q(β). Then it is clear that {1, u} are linearly independent over L
and that 1, u, βu, . . . , βδ−1u are linearly dependent on {1, u} over L. We put

a0 = (1, 0, . . . , 0)︸ ︷︷ ︸
δ+1

, a1 = (0, 1, β, . . . , β
δ−1)︸ ︷︷ ︸

δ+1

and W = Ca0 + Ca1; hence we have dimC W = 2 and r = 1.

It is easily checked that hypothesis (H2) (and hence (HA)) is satisfied.
Now we shall show that hypothesis (HB) is always satisfied.

Lemma 7. Under the assumption of Corollary 7, (HB) is true.

Proof. The proof is similar to that of the exponential case.

We consider G = Ga × E
δ. Any connected algebraic subgroup G′ of G

with G′ 6= G has the form G′ = G′0 × G
′
2, where G

′
0 = {0} or Ga, and

G′2 is a connected algebraic subgroup of E
δ. Since W ∩ TG′(C) = {0}, it

is obvious that a0 + TG′(C) and a1 + TG′(C) are C-linearly independent in
TG(C)/TG′(C). Then it suffices to prove that ã0+TG′(C) and ã1+TG′(C) are
C-linearly independent. The proof is by contradiction. Suppose that there
exist complex numbers e1, e2, not both zero, such that e1ã0+e2ã1 ∈ TG′(C).
This means that

e1(ã00, ã10, . . . , ãδ0) + e2(ã01, ã11, . . . , ãδ1) ∈ TG′(C),

that is,

(20) (e1ã00 + e2ã01, e1ã10 + e2ã11, . . . , e1ãδ0 + e2ãδ1) ∈ TG′(C).

In what follows, we denote by ci(δ) (i = 1, 2, 3) positive numbers depending
only on δ. First, we note that a0 + TG′(C) and a1 + TG′(C) being linearly
independent implies G′ = {0}×G′2. Hence we have TG′(C) = {0}⊕TG′2(C).

Case 1: δ2 = dimE
δ/G′2 = 0. This means TG′(C) = Cδ. Taking f1 = 0

and f2 = 1, we have

f1a0 + f2a1 ∈ TG′(C).
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Case 2: δ2 = dimE
δ/G′2 > 0. From (20), we have (e1ã10 + e2ã11, . . .

. . . , e1ãδ0 + e2ãδ1) ∈ TG′2 . Then by the effective Kolchin theorem [10], there

exist δ2 linearly independent integer points λ
(1), . . . , λ(δ2) ∈ Zδ such that for

any ̺ with 1 ≤ ̺ ≤ δ2,

λ
(̺)
1 (e1ã10 + e2ã11) + · · ·+ λ

(̺)
δ (e1ãδ0 + e2ãδ1) = m

(̺)
1 ω1 +m

(̺)
2 ω2,

‖λ(̺)‖ ≤ 2c1(δ)D
2δ2/(δ2+1−̺)
2 ,

where λ(̺) = (λ
(̺)
1 , . . . , λ

(̺)
δ ). Thus from (20) we have the system of equa-

tions

(21)

e1ã00 + e2ã01 = 0,

e1p̃10 + e2p̃11 = ξ1,

. . . . . . . . . . . . . . . . . . . .

e1p̃δ20 + e2p̃δ21 = ξδ2 ,

where for brevity we put p̺̃0 = λ
(̺)
1 ã10 + · · · + λ

(̺)
δ ãδ0, p̺̃1 = λ

(̺)
1 ã11 +

· · · + λ
(̺)
δ ãδ1, and ξ̺ = m

(̺)
1 ω1 +m

(̺)
2 ω2 (1 ≤ ̺ ≤ δ2). For any i1, i2 with

1 ≤ i1 < i2 ≤ δ2, we easily obtain

(22)

|pi10|, |pi11|, |p̃i10|, |p̃i11| ≤ c38‖λ
(i1)‖,

|pi20|, |pi21|, |p̃i20|, |p̃i21| ≤ c38‖λ
(i2)‖,

|ξi1 | ≤ c39‖λ
(i1)‖, |ξi2 | ≤ c39‖λ

(i2)‖.

Denote by p̺s the linear forms p̺̃s of ãhs replaced by ahs (1 ≤ ̺ ≤ δ2, 1 ≤
h ≤ δ, 0 ≤ s ≤ 1). Now we consider the system of linear equations analogous
to (21),

(23)

a00z1 + a01z2 = 0,

p10z1 + p11z2 = ξ1,

. . . . . . . . . . . . . . . . . . . .

pδ20z1 + pδ21z2 = ξδ2 .

Put

P =




a00 a01
p10 p11
...

...
pδ20 pδ21


 .

Since a00 = 1, a01 = 0, p10 = 0, and p11 = λ
(1)
1 ·1+λ

(1)
2 β+· · ·+λ

(1)
δ βδ−1 6= 0,

we have rankP = 2.
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First, we assume (ξ1, . . . , ξδ2) 6= (0, . . . , 0). Then we shall show that

rank




a00 a01 0
p10 p11 ξ1
...

...
...

pδ20 pδ21 ξδ2


 = 2,

which means that (23) has a nontrivial solution.

Subcase 2.1: δ2 = 1. Then (23) has nontrivial solution (for example,
take z1 = 0, z2 = p

−1
11 ξ1).

Subcase 2.2: δ2 > 1. From our assumption, (21) has a nontrivial so-

lution (e1, e2) 6= (0, 0). Thus we have rank P̃ = rank(P̃ ,
tξ), where ξ =

(0, ξ1, . . . , ξδ2). Hence for any i1, i2 with 1 ≤ i1 < i2 ≤ δ2, we have
∣∣∣∣∣∣

ã00 ã01 0
p̃i10 p̃i11 ξi1
p̃i20 p̃i21 ξi2

∣∣∣∣∣∣
= 0.

By similar arguments to those in the exponential case, from (22) we have

(24) abs



∣∣∣∣∣∣

a00 a01 0
pi10 pi11 ξi1
pi20 pi21 ξi2

∣∣∣∣∣∣


 ≤ exp

(
−
c

4
̺(S)

)
.

Next, we shall find a lower bound of the absolute value of the determinant
∣∣∣∣∣∣∣

a00 a10 0

pi10 pi11 ξi1

pi20 pi21 ξi2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

1 0 0

0
∑δ
j=1 λ

(i1)
j βj−1 ξi1

0
∑δ
j=1 λ

(i2)
j βj−1 ξi2

∣∣∣∣∣∣∣

=

∣∣∣∣∣

∑δ
j=1 λ

(i1)
j βj−1 m

(i1)
1

∑δ
j=1 λ

(i2)
j βj−1 m

(i2)
1

∣∣∣∣∣ω1 +
∣∣∣∣∣

∑δ
j=1 λ

(i1)
j βj−1 m

(i1)
2

∑δ
j=1 λ

(i2)
j βj−1 m

(i2)
2

∣∣∣∣∣ω2

=: ζ1ω1 + ζ2ω2.

It is clear that ζ1, ζ2 ∈ Q(β) and deg ζ1, deg ζ2 ≤ δ.

By an elementary computation, we see easily that

H(ζ1), H(ζ2) ≤ (c40‖λ
(i1)‖ ‖λ(i2)‖)c1(δ) ≤ (c41D

3δ2
2 )

c1(δ) ≤ c42D
c2(δ)
2 ,

where H(ζ) denotes the usual height of an algebraic number ζ. If ζ1ω1 +
ζ2ω2 6= 0, we have

|ζ1ω1 + ζ2ω2| ≥ C exp(−c3(δ)(logD2)
τ0),

where τ0 > 1 is some absolute constant and C > 0 is a number depending
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only on ω1, ω2 and δ (see [9, Theorem 1]). Thus in this case, we have

abs



∣∣∣∣∣∣

a00 a10 0
pi10 pi11 ξi1
pi20 pi21 ξi2

∣∣∣∣∣∣


 ≥ C exp(−c3(δ)(logD2)τ0),

which contradicts (24), since S is sufficiently large. Thus we have
∣∣∣∣∣∣

a00 a10 0
pi10 pi11 ξi1
pi20 pi21 ξi2

∣∣∣∣∣∣
= 0 (1 ≤ i1 < i2 ≤ δ2).

This means rankP = rank(P, tξ) = 2, and hence (23) has a nontrivial
solution.
In the case of (ξ1, . . . , ξδ2) = (0, . . . , 0), we have rank P̃ < 2; and we can

also show that rankP < 2, which will be excluded.

Thus (23) always has a nontrivial solution (f1, f2) 6= (0, 0) (say). Now by
similar arguments to those in the exponential case, we have f1a0 + f2a1 ∈
TG′(C), which is a contradiction.
This completes the proof of Lemma 7.

End of proof of Corollary 7. Since hypotheses (HA) and (HB) are satis-
fied, we can now apply Corollary 6. We put ω(4) = (1, 0, . . . , 0, 0, βj−1, βj−1,
℘(βsu); 1 ≤ j ≤ δ, 0 ≤ s ≤ (δ − 1)2), ω′ = (℘(βsu); 0 ≤ s ≤ δ − 1). Then
it is clear that deg trQ Q(ω(4)) = deg trQ Q(ω′).
If ℘ has no complex multiplications, we have F = Q, and hence κ =

(δ + 2)/3. Thus if δ ≥ 2, we have κ > 4/3, and we deduce from Corollary 6
that deg trQ Q(ω(4)) ≥ [(δ + 2)/3].
If ℘ has complex multiplications, we have [F : Q] = 2, and hence κ =

(δ + 1)/2. If δ ≥ 2, we have κ ≥ 3/2, and we infer from Corollary 6 that
deg trQ Q(ω(4)) ≥ [(δ + 1)/2].

Acknowledgements. I am grateful to the referee for his valuable sug-
gestions and useful comments.
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[12] —, Critères pour l’indépendance algébrique, Publ. I.H.E.S. 64 (1986), 5–52.
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