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To Wolfgang Schmidt on his seventy-fifth birthday,
with all best wishes and many thanks for his mathematical inspiration

1. Introduction. We derive new, improved lower bounds for the block
complexity of an irrational algebraic number and for the number of digit
changes in the b-ary expansion of an irrational algebraic number. To this
end, we apply a version of the quantitative subspace theorem by Evertse
and Schlickewei [14, Theorem 2.1].

Throughout the present paper, b always denotes an integer > 2 and &
is a real number with 0 < £ < 1. There exists a unique infinite sequence
a = (a;)j>1 of integers from {0,1,...,b—1}, called the b-ary expansion of &,

such that
N %

¢ ; o
and a does not terminate in an infinite string of the digit b — 1. Clearly,
the sequence a is ultimately periodic if, and only if, £ is rational. With a
slight abuse of notation, we also denote by a the infinite word ajas....
To measure the complexity of £, we measure the complexity of a. Among
the different ways to do this, two notions of complexity have been recently
studied. A first one, namely the block complexity, consists in counting the
number p(n,&,b) = p(n,a) of distinct blocks of length n occurring in the
word a, that is,

p(n,&,b) = Card{agyiaps2...aktn : k >0}

A second one deals with the asymptotic behaviour of the number of digit
changes in a. The function nbdc, “number of digit changes”, introduced
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in [8], is defined by
nbdc(n,§,b) = Card{1 <k <n:ap # agt1} forn>1.
Suppose from now on that £ is algebraic and irrational. Non-trivial lower
bounds for p(n,{,b) and nbdc(n,{,b) were obtained in [1, 8] by means of

transcendence criteria that ultimately depend on the Schmidt subspace the-
orem [24] or on the quantitative Roth theorem [23, 16]. It is known that

p(n,&,b)

(1.1) lim —— =40
n—-+oo n
and
(1.2) nbde(n, £,b) > 3(log n) 1/ @O+ (1oglog n) /4

for every sufficiently large n, where w(l) counts the number of distinct prime
factors of the integer .

Both (1.1) and (1.2) are very far from what can be expected if one
believes that, regarding these notions of complexity, algebraic irrational
numbers behave like almost all real numbers (in the sense of the Lebesgue
measure). Thus, it is widely believed that the functions n — p(n,&,b) and
n — nbdc(n, &, b) should grow, respectively, exponentially in n and linearly
in n.

The main purpose of the present paper is to improve (1.2) for all n and
(1.1) for infinitely many n. Our results imply that

(1.3) p(n,&,b) > n(logn)®%?  for infinitely many n

and
nbdc(n, £, b) > ¢(d)(log n)*?(log logn) /2

for every sufficiently large n, where ¢(d) is a constant depending only on the
degree d of £. In particular, we have been able to remove the dependence on
bin (1.2).

The new ingredient in the proof of (1.3) is the use of a quantitative
version of the subspace theorem, while (1.1) was established by means of a
standard qualitative version of the subspace theorem. Originally, quantita-
tive versions of the subspace theorem were stated for a single inequality with
a product of linear forms, and then the resulting upper bound for the num-
ber of subspaces depended on the number of places involved. Instead, we use
a version for systems of inequalities each involving one linear form giving
an upper bound for the number of subspaces independent of the number of
places. In fact, for many applications, the version for systems of inequalities
suffices, and it leads to much better results when many non-Archimedean
places are involved.

Our paper is organized as follows. We begin by stating and discussing our
result upon (1.1) in Section 2 and that upon (1.2) in Section 3. Then we state
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in Section 4 our main auxiliary tool, namely the quantitative parametric
subspace theorem from [14]. We have included an improvement of the two-
dimensional case of the latter which is needed for our improvement upon
(1.2); the proof of this improvement is included in an appendix at the end
of our paper. This quantitative parametric subspace theorem is a statement
about classes of twisted heights parametrized by a parameter (), and one
can deduce from this suitable versions of the quantitative subspace theorem,
dealing with (systems of) Diophantine inequalities. In Section 5 we deduce
a quantitative result for systems of inequalities (Theorem 5.1) fine-tuned for
the applications in the present paper. In the particular case where we have
only two unknowns we obtain a sharper quantitative version of a Ridout
type theorem (Corollary 5.2). The proof of Theorem 2.1 splits in Sections
6 and 7, and that of Theorem 3.1 is given in Section 8. Finally, further
applications of our results are discussed in Section 9.

2. Block complexity of b-ary expansions of algebraic numbers.
We keep the notation from the introduction. Recall that the real number
& is called normal in base b if, for any positive integer n, each one of the
b™ words of length n on the alphabet {0,1,...,b — 1} occurs in the b-ary
expansion of & with the same frequency 1/b". The first explicit example of
a number normal in base 10, namely the number

0.1234567891011121314 . . .,

whose sequence of digits is the concatenation of the sequence of all positive
integers ranged in increasing order, was given in 1933 by Champernowne
[10]. It follows from the Borel-Cantelli lemma that almost all real numbers
(in the sense of the Lebesgue measure) are normal in every integer base,
but proving that a specific number, like e, 7 or /2, is normal in some base
remains a challenging open problem. However, it is believed that every real
irrational algebraic number is normal in every integer base. This problem,
which was first formulated by Emile Borel [7], is likely to be very difficult.

Assume from now on that £ is algebraic and irrational. In particular, the
sequence a is not ultimately periodic. By a result of Morse and Hedlund [18,
19], every infinite word w that is not ultimately periodic satisfies p(n,w) >
n+ 1 for n > 1. Consequently, p(n,&,b) > n+ 1 for every positive integer n.
This lower bound was subsequently improved upon in 1997 by Ferenczi and
Mauduit [15], who applied a non-Archimedean extension of Roth’s theorem
established by Ridout [21] to show (see also [4]) that

Then a new combinatorial transcendence criterion proved with the help
of the Schmidt subspace theorem by Adamczewski, Bugeaud, and Luca [2]
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enabled Adamczewski and Bugeaud [1] to establish that

(2.1) im 20080
n—-4oo n

By combining ideas from [9] with a suitable version of the quantitative
subspace theorem, we are able to prove the following concerning (2.1).

THEOREM 2.1. Let b > 2 be an integer and & an algebraic irrational
number with 0 < £ < 1. Then, for any real number n such that n < 1/11,
we have

b
(2.2) lim sup LIGRSU) = +o0.

W3 S log n)

Ideas from [9] combined with Theorem 3.1 from [14] allow us to prove
a weaker version of Theorem 2.1, namely that (2.2) holds for any n smaller
than 1/(4w(b) + 15). The key point for removing the dependence on b is the
use of Theorem 5.1 below, and more precisely the fact that the exponent on
e~ in (5.9) does not depend of the cardinality of the set of places S.

We remark that Theorem 2.1 does not follow from (2.1). Indeed, there
exist infinite words w having a complexity function p satisfying
(2.3) m 2% o and nim 200 o

notoo M n—+oo n loglogn

In particular, there exist morphic words satisfying (2.3). We refer the reader
to [1] for the definition of a morphic word. An open question posed in [1]
was whether the b-ary expansion of an irrational algebraic number can be a
morphic word. Theorem 2.1 above allows us to make a small step towards
a negative answer. Indeed, by a result of Pansiot [20], the complexity of a
morphic word that is not ultimately periodic is either of order n, nloglogn,
nlogn, or n?. It immediately follows from Theorem 2.1 that, regardless
of the base b, if the b-ary expansion of an irrational algebraic number is
generated by a morphism, then the complexity of this morphism is of order
either nlogn or n?. However, by using combinatorical properties of morphic
words and the transcendence criterion from [2], Albert [3], on page 59 of
his thesis, was able to show a stronger result, namely that, regardless of the
base b, if the b-ary expansion of an irrational algebraic number is generated
by a morphism, then its complexity is of order n2.

Note that our method yields the existence of a positive ¢ such that

. p(n. & b)(loglogn)® _
(2.4) l;rgigg (log ) /11 =

In order to avoid painful technical details, we decided not to give a proof of
(2.4).
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3. Digit changes in b-ary expansions of algebraic numbers. Our
next result is a new lower bound for the number of digit changes in b-ary
expansions of irrational algebraic numbers.

THEOREM 3.1. Let b > 2 be an integer. Let € be an irrational, real al-
gebraic number of degree d. There exist an effectively computable absolute
constant ¢1 and an effectively computable constant c2(&,b), depending only
on & and b, such that

(logn)?/?

bd b) >
nbde(n, £, ) 2 &1 (loglogn)'/2 (log 6d)'/2

for every integer n > ca(&,b).

Theorem 3.1 improves upon Theorem 1 from [8], where the exponent
of logn depends on b and tends to 1 as the number of prime factors of
b tends to infinity. This improvement is a consequence of the use of the
two-dimensional case of Theorem 5.1 (dealing with systems of inequalities)
instead of a result of Locher [16] (dealing with one inequality with a product
of linear forms).

Theorem 3.1 allows us to improve upon many of the results from [8]. We
restrict our attention to Section 7 from [8], that is, to the study of the gap

series
fnp =) b7

j>1

for a given integer b > 2 and a non-decreasing sequence n = (n;);>1 of
positive integers. As mentioned in [8], it easily follows from Ridout’s theorem
[21] that the assumption

j41

lim sup >1

jotoo T
implies the transcendence of &, p, (see e.g. Satz 7 from Schneider’s monograph
[25]).
In particular, for any positive real number e, the real number &, is
transcendental when n; = 217l where [-] denotes the integer part func-

tion. A much sharper statement, that improves Corollaries 4 and 5 from [§],
follows at once from Theorem 3.1.

COROLLARY 3.2. Let b > 2 be an integer. For any real number n > 2/3,
the sum of the series

Z b=,  wheren; = 2" for j > 1,
i>1

1s transcendental.
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To establish Corollary 3.2, it is enough to check that the number of
positive integers j such that 20" < N is less than some absolute constant
times (log N)/7, and to apply Theorem 3.1. Stronger transcendence results
for the gap series &, 2 follow from [5, 22], including the fact that Corollary
3.2 holds for any positive n when b = 2.

Further results are given in Section 9.

4. The quantitative parametric subspace theorem. We fix an al-
gebraic closure Q of Q; all algebraic number fields occurring henceforth will
be subfields of Q.

We introduce the necessary absolute values. The set Mg of places of Q
may be identified with {co} U {primes}. We denote by |- |« the ordinary
(Archimedean) absolute value on Q and for a prime p we denote by |- |, the
p-adic absolute value, normalized so that |p|, = p~1.

Let K be an algebraic number field. We denote by My the set of places
(equivalence classes of non-trivial absolute values) of K. The completion of
K at a place v is denoted by K,. Given a place v € Mg, we denote by p,
the place in Mg lying below v. We choose the absolute value | - |, in v in
such a way that the restriction of |- |, to Qis | - |,,. Further, we define the
normalized absolute value || - ||, by

e jd(w) _ [Ky - Qp,]
(4.1) W llo:=115 where d(v) : K Q

These absolute values satisfy the product formula

IT lzlle =1 for z € K*.
vE My
Further, they satisfy the extension formula: Suppose that E is a finite ex-
tension of K and normalized absolute values || - ||, (w € Mg) are defined in
precisely the same manner as those for K. Then if w € Mg and v € Mk is
the place below w, we have

E,: K
(4.2) 2]l = |22 for 2 € K, where d(w|v) := [Ew i Ko}
[E : K]
Notice that
(4.3) > d(wlv) =1,
wlv

where by w|v we indicate that w runs through all places of E lying above v.

Let again K be an algebraic number field, and n an integer > 2. Let
L = (Liy : v € Mg,i = 1,...,n) be a tuple of linear forms with the
following properties:

(44) LZ'UEK[XL...,X”] forve Mg,i=1,...,n,
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(4.5) L1y =X1,...,Lny =X, for all but finitely many v € My,
(4.6) det(Liy,...,Lny) =1 forv e Mg,

(4.7) Card( U {le,...,Lm}> <r
ve My
Further, we define
(4.8) H=HCL)= ][] 1§ilr<g§z<ings||det(Lil,...,Lin)nv,
'UGM]K
where we have written {L1,..., Ls} for U,epp {L1vs- - -5 Lo}
Let ¢ = (¢jp : v € Mg, i =1,...,n) be a tuple of reals with the following
properties:

(4.9) Cly = -+ = Cppy =0 for all but finitely many v € Mg,
n
(410) Z ZC'L"U =0,
’UGMK i=1
(4.11) Z max(Ciy, ..., Cpy) < 1.
'UEM]K

Finally, for any finite extension E of K and any place w € My we define
(4.12) Liw = Liy, iy = d(w|v)eyy,  fori=1,...,n,
where v is the place of Mk lying below w and d(w|v) is given by (4.2).

We define a so-called twisted height Hg ¢ on Q" as follows. For x € K”
define

Horo(x)i= ] max L)@
vE Mg

More generally, for x € Q" take any finite extension E of K with x € E»
and put

(4.13) Hqre(x) = ax || Liw (%) [|lw@
weMy =S

Using (4.12), (4.2), (4.3), and basic properties of degrees of field extensions,
one easily shows that this does not depend on the choice of E.

PROPOSITION 4.1. Let n be an integer > 2, let L = (L, : v € Mg, i =
1,...,n) be a tuple of linear forms satisfying (4.4)-(4.7) and ¢ = (cip :
ve Mg, i=1,...,n) a tuple of reals satisfying (4.9)—(4.11). Further, let
0 < & < 1. Then there are proper linear subspaces Ty, ..., Ty, of Q", all

defined over K, with
(n+8)2 s—n—4 ; >
R 4 0 log(2r) loglog(2r) ifn > 3,
22553 log(2r) log(6 ' log(2r)) ifn =2
such that the following holds: for every real QQ with
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Q> maX(Hl/(Z),nz/‘s)
there is a subspace T; € {T1,..., T, } such that
{(xeQ": Hore(x) <Q7°} C T
For n > 3 this is precisely Theorem 2.1 of [14], while for n = 2 this
is an improvement of that theorem. This improvement can be obtained by
combining some lemmata from [14] with more precise computations in the

case n = 2. We give more details in the appendix at the end of the present
paper.

5. Systems of inequalities. For every place p € Mg = {oco}U{primes}
we choose an extension of | - |, to @ which we also denote by | - |,. For a
linear form L = > " | o; X; with coefficients in Q we define the following:
We denote by Q(L) the field generated by the coefficients of L, i.e., Q(L) :=
Q(aq, ..., ap); for any map o from Q(L) to any other field we define o(L) :=
> o(ai)X;; and the inhomogeneous height of L is given by H*(L) :=
[Toenr, max(1, |aillo, - - -, [[anlly), where K is any number field containing
Q(L). Further, we put ||L]|, := max(||ai]y, .., ||an|ly) for v e Mk.

Let n be an integer with n>2, € a real with e >0 and S={o0,p1,...,pt}
a finite subset of Mg containing the infinite place. Furthermore, let L;,
(p € S,i=1,...,n) be linear forms in Xi,...,X, with coefficients in Q
such that

(5.1) det(Lip,...,Lpp) =1 forpe S,
(5.2) Card ( U{Lip. - an}) <R,
peS
(5.3) Q(Lip) : Q<D forpesS,i=1,...,n,
(5.4) H*(Lijp) <H forpesS,i=1,...,n,

and e;, (p € S,i=1,...,n) be reals satisfying
(5.5) eiw<1(i=1,....n), €p<0(peS\{oo},i=1,...,n),
n
(5.6) D> D ep=—c
peS i=1

Finally, let ¥ be a function from Z" to R>g. We consider the system of
inequalities

(5.7) |Lip(x)|p <¥(x)? (peS,i=1,...,n) inx e Z" with ¥(x) # 0.
THEOREM 5.1. The set of solutions of (5.7) with
(5.8) ¥ (x) > max(2H, n*"¢)

s contained in the union of at most
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(5.9) { 8(nt9)*(1 4 e=1)nt410g(2RD) log log(2RD) if n >3,
232(1 +e71)3log(2RD) log((1 + e~ 1) log(2RD)) if n =2,
proper linear subspaces of Q™.
REMARK. Let || - || be any vector norm on Z". Then for the solutions x
of (5.7) we have, in view of (5.5),
x| < Dax |Lioo(x)| < ¥(x).
So it would not have been a substantial restriction if in the formulation

of Theorem 5.1 we had restricted the function ¥ to vector norms. But for
applications it is convenient to allow other functions for V.

We deduce from Theorem 5.1 a quantitative Ridout type theorem. Let
S1, Sa be finite, possibly empty sets of prime numbers, put S := {co} US; U
S, let € € Q be an algebraic number, let € > 0, and let f, (p € S) be reals
such that

(5.10) fpo=0 forpeS, Y fy=2+e.
peS

We consider the system of inequalities
€ —x/yl <y~
(5.11) lz|, <y~ (pe€S) in (v,y) € Z? with y > 0.
yly <y~ (p e Sy)

Define the height of § by H(§) = [[,cp max(1, [|€]lv), where K is any
algebraic number field with £ € K. Suppose that £ has degree d.

COROLLARY 5.2. The set of solutions of (5.11) with

(5.12) y > max(2H (€),2%/¢)
s contained in the union of at most
(5.13) 232(1 4 713 1og(6d) log((1 + 1) log(6d))

one-dimensional linear subspaces of Q2.
To obtain Corollary 5.2 one simply has to apply Theorem 5.1 with n = 2,
S = {o0} U S USy and with
Lioo = X1 —€X2, Lo = Xo,
L1p=X1, L2p=X2 for p € 51 U Ss,
€loo = 1 — foo, €200 = 1,
elp=—fp, ep=0 forpelS,
elp=0, eyp=—f forpeS,,
W(x) = |xy| for x = (w1,22) € Z2.
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It is straightforward to verify that (5.1) is satisfied, and that (5.2)—(5.4) are
satisfied with R =3, D = d, H = H(§), respectively. Further, it follows at
once from (5.10) that (5.5) and (5.6) are satisfied.

Proof of Theorem 5.1. Let K be a finite normal extension of @, con-
taining the coefficients of L;, as well as the conjugates over QQ of those
coefficients, for p € S, i =1,...,n. For v € Mg we put d(v) := [K, : Qp,]
where p, is the place of Q below v, and

s(v) = { d(v) if v is Archimedean,
0 if v is non-Archimedean.
Recall that every | - |, (p € Mg) has been extended to Q so in particular

to K. For every v € Mk there is an automorphism o, of K such that |o,(-)|,
represents v. So by (4.1) we have

(5.14) |z]lo = |ou(@)|d")  for x € K.
Let T denote the set of places of K lying above the places in S. Define linear
forms L;, and reals e;, (v € Mg, i=1,...,n) by

(5.15) Liy =0, (Lip,) WeT), Liy=2X;(veMg\T)
and
(5.16) eiw =d(v)eip, (VET), €n=0(@weMg\T),
respectively. Then system (5.7) can be rewritten as
(5.17)  [[Li(x)|lo <¥(x)" (ve Mg,i=1,...,n)
in x € Z" with ¥(x) # 0.

Notice that in view of (5.17), (5.5), (5.6), and }_,, d(v) = 1 for p € Mg we
have

(5.18) eiw <sv) (i=1,...,m), Y Y ep<-—c

’UEMK i=1
Further, by (5.2), (5.15),
(5.19) Card ( U {Lios- - ,Lm,}) <r:=n+DR.
vE My
Now define

(5.20) §i= |

n-+e
let L= (Ljy:v € Mg,i=1,...,n), and define the tuple of reals ¢ = (¢;,, :
UEMK,Z—L..., n) by

(5.21) Civ = (1+ (g/n))” < —Zew>
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Let H = H(L) be the quantity defined by (4.8) and Hg . the twisted
height defined by (4.13). We want to apply Proposition 4.1, and to this end
we have to verify the conditions (4.4)-(4.7) and (4.9)—(4.11). Condition (4.4)
is obvious. (5.1) and (5.15) imply (4.5), (4.6), while (4.7) is (5.18). Condition
(4.9) is satisfied in view of (5.16), (5.20), while (4.10) follows at once from
(5.21). To verify (4.11), observe that by (5.21) and (5.18) we have

Y- max(ery, - en0) < <1+;>_1< 3 5(7))—% 3 zn:ejv>

’UGM]K UEMK ’UGMK ]:1
~1
:<1+€> <1+6>:1.
n n
The following lemma connects system (5.7) to Proposition 4.1.

LEMMA 5.3. Let x be a solution of (5.7) with (5.8). Put
Q= lI/(x)Hs/”.

Then
(522) HQ,E,C<X) < Q_67
(5.23) Q > max(HY (), n?/%).

Proof. As observed above, x satisfies (5.17). In combination with (5.21)
this yields

1L () 0@ = [ Liu() o - W ()~ - W ()" Hr 9 <) i

for v € Mg, i = 1,...,n. By taking the product over v € Mg and using
(5.18), (5.20) we obtain
Hare(x) = max || Li,(x)[[,@™ = w(x) " =Q0

1<i<
’UGMK

This proves (5.22).

To prove (5.23), write U, e {L1vs -+ Lnw} = {L1,..., Ls}. Then s <r
by (5.19). By (5.4), (5.15) we have H*(L;,) < H forv e Mg,i=1,...,n
By applying e.g., Hadamard’s inequality for the Archimedean places and
the ultrametric inequality for the non-Archimedean places, we obtain for
Uyev-yin € {1,...,8}, v € Mk,

Ildet(Liy, .. Li, )llo < (n"/?)° HIIL lo < (n"/?)* Hmaxl 1Lill)

hence

H < nn/2 HH* < nn/QHr
=1
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Together with (5.19), (5.20) this implies
maX(Hl/(;),nwé) < max(n"/z(;) T/(;),n2(”+a)/5) < max(2H, n?"/®)1+e/n,
So if x satisfies (5.8), then Q = ¥(x)'*4/" satisfies (5.23).

We apply Proposition 4.1 with the values of r, 4 given by (5.19), (5.20),
ie, 7=n+ DR and § = ¢/(n+¢). It is straightforward to show that for
these choices of r, § the quantity ¢; from Proposition 4.1 is bounded above by
the quantity in (5.9). By Proposition 4.1, there are proper linear subspaces
Ti,..., Ty, of Q" such that for every Q with (5.23) thereis T; € {T1,..., T}, }
with

{x€Q": Hgre(x) <Q7°} CT.
Now Lemma 5.3 implies that the solutions x of (5.7) with (5.8) lie in
UL, (T: N Q). Theorem 5.1 follows.

6. A combinatorial lemma for the proof of Theorem 2.1. In this
section, we establish the following lemma.

LEMMA 6.1. Letb > 2 be an integer. Let ¢ and u be positive real numbers.
Let &€ be an irrational real number such that 0 < £ <1 and

p(n,&,b) < en(logn)*  forn > 1.
Then for every positive real number v < w, there exist integer sequences
(rn)n>1, (tn)n>1, (Pn)n>1 and a positive real number C' depending only on

c,u,v such that
’btng _ b?"ng _ pn| S (btn)—(logtn)*v,

(6.1) 0<ry<tn, 2n<tp+1, tn< (2n)cn forn > 1.
Furthermore, b does not divide py, if r, > 1.

Proof. Let b and & be as in the statement of the lemma. Let a denote the
b-ary expansion of £&. Throughout this proof, ¢, co, ... are positive constants
depending only on ¢, u, v. The length of a finite word W, that is, the number
of letters composing W, is denoted by |W|. The infinite word W is obtained
by concatenation of infinitely many copies of the finite word W.

By assumption, the complexity function of a satisfies

p(n,a) < cin(logn)*  for n > 1.

Our aim is to show that there exists a “dense” (in some sense) sequence of
rational approximations to & with special properties.

Let [ > 2 be an integer, and denote by A(l) the prefix of a of length [.
By the Schubfachprinzip, there exist (possibly empty) words U, V;, W; and
X, such that

Al) =U,ViWViX; and  |Vi| > cal(logl) ™.
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Set r; = |U;| and s; = |V;W;|. We choose the words U;, V;, W; and X; in such
a way that |V}| is maximal and, among the corresponding factorizations of
A(l), such that |U;| is minimal. In particular, either U; is the empty word,
or the last digits of U; and V;W; are different.

If &; denotes the rational number with b-ary expansion U;(V;W;)°°, then
there exists an integer p; such that

_ b
é-l - brl(bsl _ 1)7

and b does not divide p; if r; > 1.

Take t; = r; 4+ s;. Then

(6.2) 1>t > s > col(logl)™™.

€ — & < b il)

Hence,
‘btlf o bmé _pl| < b*Cgl(logl)_“ < (btl)fcg(logtl)_“.

We construct a sequence of positive integers ()3, such that for every
k>1,

(63) bIRg = bTE — py, | < (b))
(6.5) t, < (2k)°*.

Then a slight change of notation establishes the lemma.

Let I; be the smallest positive integer [ such that c3(logt;)* > (logt;).
Further, for k = 1,2,..., let [x4+1 be the smallest positive integer [ such that
t1 > 2t;,. This sequence is well-defined by (6.2). It is clear that (6.3), (6.4)
are satisfied.

To prove (6.5), observe that if [ is any integer with cal(logl)™ > 21
then, by (6.2), t; > 2l > 2t;,. This shows that there is a constant ¢4 such
that lg+1 < cali(logl)*. Now an easy induction shows that there exists a
constant C', depending only on ¢, u,v, such that [ < (2k)Ck for £ > 1.
Invoking again (6.2) we obtain (6.5). m

7. Completion of the proof of Theorem 2.1. Let £ be an algebraic
irrational real number. Let v be a real number such that 0 < v < 1/11.
Define the positive real number 7 by

(7.1) (11+2n)(v+n) +n=1.

We assume that there exists a positive constant ¢ such that the com-
plexity function of £ in base b satisfies

(7.2) p(n,&,b) < en(logn)?™  for n > 1,

and we will derive a contradiction. Then Theorem 2.1 follows.
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Let N be a sufficiently large integer. We will often use the fact that N
is large, in order to absorb numerical constants.

Let (1n)n>1, (tn)n>1, and (pp)n>1 be the sequences given by Lemma 6.1
applied with v := v 4+ 7. Set

(7.3) e = (logtn)™",

and observe that, in view of (6.1) and (7.3), we have
(7.4) e ! = (logty)? < NV,
Forn=1,..., N, we have

(7.5) g = 0"E — pal < (b") 7.
Put

(7.6) k:=[2/e] + 1.

For each n =1,..., N there is [ € {0,1,...,k — 1} such that
l<7"n l+1.

<<
k~ ty k
For the moment, we consider those n € {1,..., N} such that
N I rn 1+1
7.7 —<n<N, << —"
(7.7) g =S RS S TR

where [ € {0,1,...,k — 1} is fixed, and show that the vectors
Xp = (btnabrnapn)

satisfy a system of inequalities to which Theorem 5.1 is applicable.

Let S = {oo} U{p : p|b} be the set of places on Q composed of the
infinite place and the finite places corresponding to the prime divisors of b.
We choose

U(x)=x1 forx = (z1,20,13) € Z>.
We introduce the linear forms with real algebraic coefficients
Lio(X) = X1, Looo(X) =Xo, L3o(X)=—-6X1 +£Xo + X3,
and, for every prime divisor p of b, we set
Lip(X) = X1, Lop(X) = Xa, L3p(X) = Xs.
Set also
l+1

o =1, €900 = y €300 = —E,

k
and, for every prime divisor p of b,

_ log [blp P log [bl, . !

) 2p %, €3p = 0.

€ip log p

logp
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Notice that

3
Z Zeip =—(e— k'_l)a
(7.8) peS =1
eino <1 (i=1,2,3),
ez‘pSO (pGS\{OO},Z:1,2,3)
Furthermore,
(7.9) det(Llp, Loy, Lgp) =1 forpes.
Writing d := [Q(£) : Q], we have
Card ( U {Z1ps L. L3p}) — 4,
(7.10) peS
[Q(Lip) :Q <d forpeS,i=1,2,3.
Further,

A1 H*(L;y,) = H(E).
(7.11) Jednax HY(Lip) = H(E)
(7.8)—(7.11) imply that the linear forms L;, and reals e;, defined above
satisfy the conditions (5.1)—(5.6) of Theorem 5.1 with n =3, R =4, D =d,
H = H(€).
It is clear from (7.5), (7.8) that for any integer n with (7.7) we have

|Lip(xp)|p < ¥(x,)? forpeS, i=1,2,3.

Assuming that N is sufficiently large, we infer from (6.1), (7.4) that for
every n with (7.7) we have

U (x,) = bin > 2 > max{2H (¢), 30/ (k"D

Now, Theorem 5.1 implies that the set of vectors x,, = (b, b™ p,) with n
satisfying (7.7) is contained in the union of at most

Ay =81+ (e — kH 7Y log(8d) log log(8d)
proper linear subspaces of Q3. We now consider the vectors x,, with N/2 <
n < N and drop the condition [/k < r,/t,, < (I41)/k. Then by (7.6), for any
sufficiently large IV, the set of vectors x,, = (b'", b p,) with N/2 <n < N
lies in the union of at most kA; < (¢71)8*" proper linear subspaces of Q3.
We claim that if NV is sufficiently large, then any two-dimensional linear

subspace of Q3 contains at most (¢71)**" vectors x,,. Having achieved this,
it follows by (7.1), (7.4) that

N/2 < (e 1)BFn(e=1)3tn < NA2n)(otn) — Nl-n,

oN/2_q

which is clearly impossible if N is sufficiently large. Thus (7.2) leads to a
contradiction.
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So let T' be a two-dimensional linear subspace of Q3, say given by an
equation z1 X1 + 20 X9 + 23 X3 = 0, where we may assume that 2z, zo, 23 are
integers without a common prime divisor. Let

N={i1<-<i)
be the set of n with N/2 < n < N and x,, € T. So we have to prove that
r < (713,

Recall that by Lemma 6.1, for every n > 1 we have either r, = 0, or

r, > 0 and b does not divide p,,. Hence the vectors x,,, n > 1, are pairwise

non-collinear. So the exterior product of x;,, x;, must be a non-zero multiple
of z = (z1, 22, 23), and therefore

(7.12) max{|z1], |zal, | 23]} < 2%z,
By combining (7.5) with z1b' + 20" + 23p, = 0, eliminating b, it follows
that for n in N,

22
§z3 — 22
We want to apply Corollary 5.2 with £(z1 + 22) /({23 — 22) instead of &.

Recall that d denotes the degree of £. By (7.12), assuming that N is
sufficiently large, we have

H<§(’21+22)> < 4h?tiz H(¢) < pitia

§(z1+22)  —pn piny—1-¢
fo3— 2 bin T

(7.13) <

§z3 — 22
Likewise,
22 (21 + 22)\*
— 1< H<> < bgdtiZ.
§z3 — 22 §z3 — 22
There is no loss of generality to assume that there is an integer k < r with
(714) btik > b(3dti2)2/5.
Indeed, if there is no such k then we infer from (6.1) that
btf;_g < p(3dt)?* < btfz/i
hence loa(4
Loy lond/e)
log 2

which is stronger than what we have to prove. Letting kg be the smallest
integer k with (7.14), we have

(7.15) Bl >y g < 44 1BUE),
log 2
Let N7 = {ik,,iko+1, - - %r}. We divide this set further into

_/\/-”:{ne'/\/’/:rn#(]}, N///:{TLEN/:rn:O}~
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By (7.13), for n in N we have

£(z1+22)  —pn 1
(7.16) i < (btm)~1=e/2,
Let Sy =0 and Sy = {p: p|b}. Then for | € Sy we have
(7.17) ‘bt"’l < (btn)IOglbll/IOgb'
Lastly,
B B §z3 — 22

Now, (7.16)—(7.18) imply that all the conditions of Corollary 5.2 are satisfied

with £/2 instead of € and with

_log |b;
log b

13
T = Pn, y:btn, foo:]-+§, fl: (lGSQ).

Notice that
fo+ > fi=2+¢/2,
l€Ss
and foo > 0, fj > 0 for [ € Sy. Consequently, the set of vectors (py,bt),
n € N”, lies in the union of at most
(7.19) B(d, ) := 2%*(1 + 2 )3 log(6d) log((1 4 2¢ 1) log(6d))

one-dimensional linear subspaces of Q2. But the vectors (p,,b™), n € N,
are pairwise non-proportional, since b does not divide p,, for these values
of n. Hence Card N < B(d, ¢).

To deal with n € N, we observe that by combining (7.5) again with
21b'n 4 29b™ + 23p, = 0, but now eliminating p,, we obtain
Ez3+ 2 1 23
Er3— 2z bin| " |Ezs— 2
In precisely the same manner as above, one finds that the pairs (b, 1) lie
in at most B(d, €) one-dimensional subspaces. Since these pairs are pairwise
non-proportional, it follows that Card N < B(d, ¢).

By combining the above we obtain

Card N =r < kg + Card N + Card N < ko + 2B(d, ¢).

In view of (7.15), (7.19), this is smaller than (¢71)3*7 for N sufficiently
large. This proves the claim, hence Theorem 2.1. =

(btn)*lfi-?.

8. Proof of Theorem 3.1. We closely follow Section 4 of [8]. Assume
without loss of generality that
b—1

D 1.
5 <€
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Define the increasing sequence of positive integers (n;);>1 by a1 = - -+ = an,,
Uny # Gpy+1 and Apj41 = -+ = Qpjoy, Anjyy # Any 41 for j > 1. Observe
that

nbdc(n, €,b) = max{j : n; < n}
for n > ny, and that n; > j for j > 1. Define

. i ag n +i:.o Opj+1 - ak+ Qnj+1
&= a bk bk bnj(b_l)'
k=1 k=n;+1 k=1
Then
_ B
&= :
b (b—1)

where P;(X) is an integer polynomial of degree at most n; whose constant
coefficient an; 11 — ay; is not divisible by b. That is, b does not divide P;(b).
We have

1
€ =&l < pren
and this can be rewritten as
P;(b) b—1
(8.1) (b—1)¢ — Ty ‘ g
By Liouville’s inequality,
P;(b
o-1e- 20| > @r(e-now),
so, if
(8.2) nj > U :=1+3H((b— 1)),
then
(83) Tj4+1 S Zdnj.

In what follows, constants implied by the Vinogradov symbols <, >> are
absolute. We need the following lemma.

LEMMA 8.1. Let 0 < € < 1 and let j; denote the smallest j such that
nj > max{U,5/c}. Then

Card{j : j > j1, nj+1/n; > 1+ 2} < log(6d)e > log(c " log(6d)).
Proof. For the integers j under consideration, we have
b > max{2H ((b— 1)¢),2/¢}.
Further, by (8.1), for n; > U, we get

P;(b b—1 1
(8.4) (b—1)¢ - gsj) (b )1+2e < (b )L+e’
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Moreover, for every prime [ dividing b,
(8.5) |bnj’l < (bn]—)log\b\l/logb.

Since

—log |b];
1+€+§ W:2+5’

Corollary 5.2 applied to (8.4), (8.5) shows that for the integers j under
consideration the pairs (P;(b), 0" ) lie in
< log(6d)e 3 log(s ! log(6d))

one-dimensional linear subspaces of Q2. But these pairs are non-proportional
since b does not divide P;j(b). The lemma follows. =

Let jo be the smallest j such that n; > U. Let J be an integer with

3 6
(8.6) J > max{nj , (4d)"}.
Let jo be the largest integer with
(8.7) nj, < 6dJY3.
Then since n;, > nj, > U, we have
Tjo+1
(8.8) nj, > == > 313,
Now choose
log(6d) 1 1/3
(8.9) . (Og<6>0g=f>
J
and let k be any positive integer and ea,...,cr_1 any reals such that
(8.10) €1 <eg < - < g1 <€ =1,
We infer from (8.8) that
(8.11) nj, > max{U,5/ep} forh=1,... k.

Let So = {jo,jo + 1,...,J} and, for h = 1,... k, let Sj, denote the set of
positive integers j such that jo < j < J and nj41 > (1+42¢4)n;. Further, let
Ty, be the cardinality of Sy, for h =1,..., k. Obviously, So D S1 D --- D Sk
and

So = (So\S1) U (S1\S2) U+ U (Sp—1\ Si) U S

Now,

k—1
s () )
Ny njy-1 mNj—2 T4y h=0 NeSp\Shi1 Uz FESH 5
k—1
< (1+2€1)J H(1+2€h+1)Th—Th+l(2d)Tk’
h=1
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where in the last estimate we have used (8.11) and (8.3). Taking logarithms,
we get

k—1
log(ny/nj,) < 2e1J +2 Z en+1(Th — The1) + Ty log(2d)
h=1
k—1
< 2e1J + 26974 + 2 (ent1 — en)Th — 2Tk + Tjlog(2d).
h=2

In view of (8.11), we can apply Lemma 8.1 to obtain
Ti, < log(6d)e;, ® log (s, * log(6d))
for h=1,..., k. This gives
log(ny/n;,) < e1J + log(6d)eae; ® log(e] * log(6d))

k—1
+ log(6d) Z e, > log(e, ' log(6d))(ept1 — €n)
h=2
+ (log(6d))? log log(6d).
Now, let k tend to infinity and maxj<p<i—1(€p+1 — €p) tend to zero. Then
the sum converges to a Riemann integral, and, after a short computation,
using the fact that in view of (8.6), (8.9) we have ;' > d, we get

log(n./nj,) < e1J +log(6d)e; * log(ey ).

By (8.6) and (8.7), we have nj, < J/2 < n3/2, SO Ny /nj, > n1J/2. Inserting

our choice (8.9) for €1 and using (8.6), we get
logny < J?3(log J)/3(log(6d))"/?,

ie.,
J > (logny)*?(loglog ny)~'/?(log(6d)) /2.
This proves Theorem 3.1. =

9. Final remarks. We deduce from Corollary 5.2 an improvement of
an extension due to Mahler [17] of a theorem of Cugiani [11] (see [9] for
further references on the Cugiani-Mahler theorem).

Let S1, S2 be finite, possibly empty sets of prime numbers, put S :=
{oo} U S U Sy, let € € Q be an algebraic number, let ¢ > 0, and let f,
(p € S) be reals such that

fp=0 forpesS, > fy=2
peS

Let € : Z>1 — R>q be a non-increasing function. We consider the system
of inequalities
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€ —x/y| <yl
(9.1) |, <y~ (pe€S)
lyly <y~ (peSy)

Arguing as in [9], we get the following improvement of Theorem 1 on
p. 169 of [17], which we state without proof. For a positive integer m, we
denote by exp,,, the mth iterate of the exponential function and by log,, the
function that coincides with the mth iterate of the logarithm function on
[exp,, 1, +00) and that takes the value 1 on (—oo, exp,, 1].

in (v,y) € Z? with y > 0
and ged(z,y) = 1.

THEOREM 9.1. Keep the above notation. Let m be a positive integer, and
¢ be a positive real number. Set

e(y) = c(logy 1 y) " 3logny fory>1.

Let (xj/y;)j>1 be the sequence of reduced rational solutions of (9.1) ordered
so that 1 <y <ya < ---. Then either the sequence (xj/y;)j>1 is finite or

lo ;
lim sup O8m Yjt+1

= +00.
j—too 108, Yj

Theorem 9.1 improves upon Mahler’s result, which deals only with the
case m = 1 and involves the very slowly decreasing function y— (logs y)_l/ 2,

Theorem 9.1 can be compared with Theorem 2 from [9] that deals with
products of linear forms and involves a function & that depends on the
cardinality of S7 U S5. Note that Theorem 6.5.10 from Chapter 6 of the
monograph of Bombieri and Gubler [6], given without proof, deals also with
products of linear forms, but the function ¢ occurring there does not involve
the cardinality of S7 U .Ss.

We can then proceed exactly as Mahler did ([17, Theorem 3, p. 178]) to
construct new explicit examples of transcendental numbers.

THEOREM 9.2. Let b > 2 be an integer. Let 6 be a real number with
0 <6 < 1. Let n = (nj)j>1 be an increasing sequence of positive integers
satisfying n1 > 3 and

loglogn; .
> T —— i > 1.
> (1+ (g3 )" 721

Let (aj);>1 be a sequence of positive integers prime to b such that

aji1 < b¢9(”j+1—7”bj)7 j>1.

£=> a;b™™

j>1

Then the real number

1s transcendental.
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This improves Theorem 4 from [8], which is, in addition, incorrectly
formulated.

We omit the proof of Theorem 9.2, which follows from Theorem 9.1 with
m = 1.

It is of interest to note that Theorem 9.2 yields Corollary 3.2 only for
n > 3/4. We would have obtained the same result by taking £ = 1 in (8.10).
It is precisely the introduction of the parameter k there that allows us to
get in Theorem 3.1 the exponent of logn equal to 3/2 and not to 4/3.

Appendix. A quantitative two-dimensional parametric subspace
theorem. We give a proof of the two-dimensional case of Proposition 4.1.
We keep the notation and assumptions from Section 4, except that we as-
sume n = 2. As before, K is an algebraic number field. We recall the notation
from Section 4, but now specialized to n = 2. Thus, £ = (L;, : v € Mg, i =
1,2) is a tuple of linear forms satisfying

) L;, EK[Xl,XQ] forve Mg,i1=1,2,

) L1y = Xi, Ly, = Xo  for all but finitely many v € Mg,
) det(Liy, Lay) =1  for v € Mg,

)

Card (| {1 Lau}) <,

ve Mg

and ¢ = (¢, : v € Mg, i = 1,2) is a tuple of reals satisfying

(A.5) €1y = Cop, = 0 for all but finitely many v € Mg,
2
<A6) Z Z Civ = 0,
veEMg =1
(A.7) Z max(cyy, c2p) < 1.
vE Mg
We define
(A.8) H=H(L):= 514 ,max _fdet(Liy, Liy) o,
veMg

where we have written {L1,..., Ls} for U,cpp {L1v, L2y} Finally, for any
finite extension E of K and any place w € Mg we define

(A.9) Ly = Ly, ci = d(w|v)e;,,  fori=1,2,

where v is the place of Mk lying below w and d(w|v) is given by (4.2).

The twisted height Hg £ c(x) of x € Q? is defined by taking any finite
extension E of K such that x € E? and putting
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(A.10) Hoce(x) =[] maxliLinGollu@™;
we Mg

this does not depend on the choice of E.

PROPOSITION A.1. Let L = (Ljy : v € Mg, i = 1,2) be a tuple of linear
forms and ¢ = (¢jy : v € Mg, i = 1,2) a tuple of reals satisfying (A.1)—(A.7).
Further, let 0 < § < 1. Then there are one-dimensional linear subspaces

Ty, ..., Ty, of Q2 all defined over K, with

(A.11) ty = to(r,8) = 22263 log(2r) log(6 ' log(2r))
such that for every real QQ with

(A.12) Q > max(H¥/m(r=1) 41/9)

there is a subspace T; € {T1,...,T,} with

(A.13) (x€eQ®: Hgre(x) <Q7°} C T

The proof of Proposition A.1 is by combining some lemmata from [14],
specialized to n = 2. We keep the notation and assumptions from above.
By condition (A.4), there exists a “family” (unordered sequence, possibly
with repetitions) of linear forms {Li,..., L.} such that Lj,, La, belong to
this family for every v € Mg and Ly = X1, Lo = Xs. Now conditions
(A.1)—(A.7) imply the conditions (5.12)—(5.17) on p. 36 of [14] with n = 2.
These conditions are kept throughout [14] and so all arguments of [14] from
p- 36 onwards are applicable in our situation. Since in what follows the
tuples £ and ¢ will be fixed and only @ will vary, we will write H¢ for the
twisted height Hg £ c.

Let @ be a real with @ > 1. We define the “successive infima” A\ (Q),
A2(Q) of Hg as follows: for i = 1,2, X;(Q) is the infimum of all reals A > 0
such that {x € Q% : Hg(x) < A} contains at least 4 linearly independent
points. Since we are working on the algebraic closure of Q and not on a
given number field, those infima need not be assumed by Hyg.

In [14] (specialized to n = 2), A\1(Q), A2(Q) were defined to be the
successive infima of some sort of parallelepiped IT(Q, c) defined over Q, and
the lemmata in that paper were all formulated in terms of those infima.
However, according to [14, Corollary 7.4, p. 53], applied with n = 2 and
A = (Q%, v € Mk, i =1,2), the successive infima of IT(Q, c) are equal to
the successive infima of Hg as defined above.

LEMMA A2, Letd >0, Q > 1.

(i) 1/2 < M (Q)A2(Q) < 2. _
(i) If there exists a non-zero x € Q% with Ho(x) < Q70 then \(Q) <

Q7% and \(Q) > 3Q°.
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Proof. Assertion (i) follows from [14, Corollary 7.6, p. 54]; (ii) is then
obvious. =

LeEMMA A.3 (Gap Principle). Let § > 0, and let Qo be a real with Qo >
4Y% . Then there is a unique, one-dimensional linear subspace T of Q? with
the following property: for every Q with

146/2
Qo<Q<Qy™
we have {x € Q% : Ho(x) < Q%) CT.

Proof. Let T be the linear subspace of Q2 spanned by all x such that
Hg,(x) < QEWZ. If T # (0) then by Lemma A.2 we have A\;1(Qq) < Q(;&/z
and A2(Qo) > %Qg/ 2, which by our assumption on @ is strictly larger than
A (Qo). Hence T' has dimension at most 1. So it suffices to prove that if
x € Q? and Q are such that Qy < Q < Q(l]M/Z and Hg(x) < Q79, then

—40/2
Ha,(x) < Q"""

To prove this, choose a finite extension E of K such that x € E2. Notice
that by (A.7), (A.9), (4.3) we have u := > .\, max(ciy,c2w) < 1. For
w € Mg we have

aX(HLlwc(i?Hw’ HL2wC(2}i)Hw>
Qo Qo

< max<||L1w(x)||w ||L2w(X)Hw> . ( Q >max(c1w,02w).

chw ’ QCQw @
So 0\ o
—_ 50 -0
Hou) < o)L ) <07 & <@r'af* ="
Qo Qo
LEMMA A4. Let 6 > 0 and let A, B be reals with 41/(L< A < B. Then
there are one-dimensional linear subspaces 11, ..., T, of Q? with
b <1t log(log B/log A)

- log(1+46/2)
such that for every Q with A < Q < B there is T; € {T1,...,Ti,} with
(xeQ®: Ho(x) <Q %} C T
Proof. Let k be the smallest integer with AQ+6/2% > B Apply Lemma
A3 with Qg =AM/ for i =0,...,k—1. =

We define the Euclidean height Hy(x) for x = (z1,...,7,) € Q™ as
follows. Choose any number field E such that x € E™, define

1.2 := {(i |xl’12u> 1/2}[Ew:RM]E:Q} if w is Archimedean,
i i=1

max(||z1||ws -« 5 | Zm||w) if w is non-Archimedean,
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and put
Hy(x):= [] IIxlluw2-
we Mg

This is independent of the choice of E. For a polynomial P with coefficients in
Q, define Hy(P) := Ha(p), where p is a vector consisting of the coefficients
of P.

LEMMA A.5. Let § > 0. Consider the set of reals QQ such that
(A.14) there is xg € Q2 \ {0} with Ho(xq) < Q~°,
(A.15) Q> (2H)56).

Then one of the following two alternatives is true:
(i) For all Q under consideration we have Ha(xg) > Q‘S/?’(;),

(ii) There is a single one-dimensional linear subspace Ty of Q2 such that
for all Q under consideration we have xg € Tp.

Proof. This is [14, p. 80, Lemma 12.4] with n = 2. Condition (A.14) and
Lemma A.2 imply A\;(Q) < Q79 which is condition (12.37) of Lemma 12.4
of [14] with n = 2. Further, the quantity R in that lemma is < (}) (see [14,
p. 75, Lemma 12.1]). =

Let m be a positive integer and r = (r1,...,7y) a tuple of positive
integers. We say that a polynomial is multihomogeneous of degree r in the
blocks of variables Xy = (Xi1,X12),..., Xy = (X1, Xim2) if it can be
expressed as a linear combination of monomials

m 2
HHX;'JZk with ip; +ipg =rp for h=1,...,m.

h=1k=1

(Below, h will always index the block.) Given points x;, = (xp1,xh2) (h =
1,...,m) and a polynomial P which is multihomogeneous in Xy, ..., X,
we write P(x1,...,X;,) for the value obtained by substituting zp; for Xpj
(h=1,....,m, k=1,2).

The indez of a polynomial P multihomogeneous in Xy, ..., X,, with re-
spect to points Xy, . . ., X,, and to a tuple of positive integers r = (r1,...,7p),
denoted by

Ind(P;r;x1,. .., Xm),

is defined to be the smallest real o with the following property: there is a
tuple of non-negative integers i = (ipx : h =1,...,m, k = 1,2) such that

m 2 ink o .
(Hl—‘[(@)(?hk) P>(X1,-~-,xm)7é0, ZM:U

.
h=1 h
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For a field F and a tuple r = (rq,...,ry,) of positive integers, we denote by
F[r] the set of polynomials with coefficients in IF which are multihomogeneous
of degree r in Xy,...,X,,.

We define the constant C(K) := |Dg |/ where Dy denotes the dis-
criminant of K. In fact, the precise value of C'(K) is not of importance.

LEMMA A.6. Suppose that 0 < § <1, let 6 be a real with

(A.16) 0 <6 <6/80,

m an integer with

(A.17) m > 40 %log(2r)

andr = (r1,...,mm) a tuple of positive integers, and put q == 11+ -+ Tp.
Suppose that there exist positive reals Q1,...,Qm and non-zero points
X1,...,Xm in Q2 such that

(A18) ™ lOng SrhIOth < (1+9)7"1 IOng (h: 15"'>m)7

(A19) Hg,(xn) <Q;° (h=1,...,m),

(A.20)  Qf > C(K)>49259H29=5/2,

Then there is a non-zero polynomial P € K|[r] such that

(A.21) Ind(P;r;x1,...,Xm) > mb,

(A.22) Hy(P) < C(K)Y?2°™(12H)1.

Proof. This is [14, Lemma 15.1, p. 89] with n = 2. The space Vi3(Qn)
in that lemma is in our situation precisely the space spanned by xj for
h=1,...,m. Inequality (A.17) comes from [14, (14.7), p. 83]; later it is as-
sumed that s = r (see [14, (14.10), p. 85]). Inequality (A.22) comes from the
inequality at the bottom of p. 87 of [14]. The construction of the polynomial

P is by means of a now standard argument, based on the Bombieri—Vaaler
Siegel’s lemma. »

LEMMA A.7 (Roth’s lemma). Let 0 < 6 < 1. Let m be an integer with

m>2andr = (ry,...,rm) a tuple of positive integers such that
9 2

(A.23) T > 2V (h=1,...,m—1).

Th+1 0
Further, let P be a non-zero polynomial in Q[r] and x1,...,%, non-zero
points in Q2 such that
(A.24) Ha(xp)™ > (e9Hy(P)P™ /07 (h=1,...,m),
where e =2.7182...,g=r1+---+1rm. Then
(A.25) Ind(P;r;x1,...,Xm) < mb.

Proof. This is the case n = 2 of [13, Lemma 24]. It is an immediate
consequence of [12, Theorem 3]. m
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We keep our assumption 0 < § < 1 and define the integer

(A.26) m =1+ 2560002 log(2r)].

Put

(A.27) C = (36H)™m(240m*/0)"3(3)/5

Denote by S the set of reals @@ such that

(A.28) Q> C, thereis x € Q%\ {0} with Hp(x) < Q7.

LEMMA A.8. One of the following two alternatives is true:

(i) There is a single, one-dimensional linear subspace Ty of Q* such
that for every Q € S we have {x € Q% : Hg(x) < Q7%} C Tp.
(ii) There are reals Q1, ..., Qm-1 with C < Q1 < -+ < Qm—1 such that
m—1 )
(A.29) sc JI@n@ ).
h=1
Proof. Suppose that neither (i) nor (ii) is true. We will deduce that
there are a tuple r = (71, ...,7y) of positive integers, a non-zero polynomial
P € K[r], and non-zero points X, ..., X, € Q2 satisfying both (A.21) and
(A.25). This is obviously impossible.

By our assumption, there are reals Q1,...,Q, € S with
(A.30) I‘Eg%zl > 16267”2 (h=1,...,m—1),
and non-zero points X1, ..., X, € Q% with
(A.31) Ho,(xp) < Q% (h=1,...,m).
Put 0 := 6/80. First choose a positive integer s; such that 0s;log @y >
log Qp, for h =2,...,m. Then there are integers so, ..., s, such that
s1log@Qr < splogQn < (1+0)s1logQ1 (h=1,...,m).
Now take rp, :=ts, (h =1,...,m), r = (r1,...,7rm), where t is a positive

integer, chosen large enough so that the right-hand side of (A.20) is smaller
than C° and the right-hand side of (A.22) is smaller than (13H)?, where
g =ri+-+-+7my. Then conditions (A.18)—(A.20) of Lemma A.6 are satisfied,
hence there exists a non-zero polynomial P € K[r| such that (A.21), (A.22)
are satisfied. So we have in fact

(A.32) Hy(P) < (13H)1.
We now show that P, r, xi,...,X,, satisfy conditions (A.23), (A.24)

of Lemma A.7. Then it follows that (A.25) holds, and we arrive at the
contradiction we wanted.
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In view of (A.30), (A.18) and 6 = §/80 < 1/80 we have

rho_ _ralog@Qn  logQnir 1 162m? - 160m? _ 2m?
Th+1  Tht11l0gQpi1  logQp — 1460 6 = 4 0
for h=1,...,m — 1, which is (A.23).
Our reals @ € S satisfy conditions (A.14), (A.15) of Lemma A.5. Since
we assumed that alternative (i) of Lemma A.8 is false, alternative (ii) of

Lemma A.5 must also be false. So (i) of that lemma must be true. This
implies in particular that

Hy(xy) > Q72 (h=1,....m).
Combining this with (A.18), (A.32) implies
Ha(xp)"™ > (th)zs/za(g) > (QT)(S/?,(;) > Cr16/3(5)
> (367)™r1 (Bm*/0)" > (eqHQ(p))(3m2/9)m
for h =1,...,m, which is (A.25). This completes our proof. m

Proof of Proposition A.1. First suppose that alternative (ii) of Lemma

A.8 is true. By applying Lemma A.4 with A = Q, B = Q262m2/5 for
h =1,...,m—1 we conclude that there are one-dimensional linear subspaces
Ti,..., Ty, of Q% with

ty < (m—l){1+

such that for every @ with

log(162m?/6)

< 56 'mlog(162m?
log(1+5/2)}56 mlog(162m=/9)

Q>C:= (36H)(240m2/6)m3m(g)/6

there is T € {T1,..., Ty, } with {x € Q? : Hg(x) < Q°} C T;. This also
holds true trivially if alternative (i) of Lemma A.8 is true; so it holds true
in all cases.

It remains to consider those values ) with

(A.33) max(HY (), 419 =. ¢’ < @ < C.
Notice that C’ > (367’()1/12(;). Hence, by Lemma A.4, there are one-dimen-
sional linear subspaces 17, ..., T, of Q? with

log(log C/log C")
log(1+0/2)

< 56~ mlog(240m? /8) + log <3m (;)) + log (12(2))

< 66~ m log(240m?/6)

ts <1+
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such that for every Q with (A.33) there is T} € {T7{,...,T}.} with {x € Q*:
Hg(x) <Q°} CTj.

Collecting the above, we find that there are one-dimensional linear sub-
spaces 11, ...,T;, of Q? with

to <ty +t5 < 115_1mlog(240m2/6) < 33(5_1mlogm

such that for every Q > C’ there is T; € {Ty,...,T;,} with {x € Q? :
Hg(x) < Q%) C T;. Substituting (A.26) for m we obtain

ty < 3367125601072 log(2r) log(256016 2 log(2r))
< 25573 log(2r) log(6~ " log(2r)),

which is the right-hand side of (A.11).

To finish the proof of Proposition A.1, it remains to show that the spaces
T1,...,T;, are defined over K. Let () be any real > 1. Suppose that there
are non-zero vectors x € Q2 with H, o(x) < Q~°, and that these vectors span
a one-dimensional linear subspace T of Q?. According to [14, Lemma 4.1,
p. 32], for any K-automorphism o of Q we have Hg(o(x)) = Hg(x), where
o(x) is obtained by applying o to the coordinates of x; hence o(x) € T.
This implies that T is defined over K. =
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