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1. Introduction. Formal power series over a finite field are analogues
of real numbers. Like quadratic real numbers, for which the continued frac-
tion expansion is well known, certain algebraic power series have a con-
tinued fraction expansion which can be explicitly described. Most of these
power series belong to a particular subset of algebraic elements related to
the existence of the Frobenius isomorphism in these power series fields. The
reader may consult [BL] for further information on these elements, called
hyperquadratic. In a recent work [L1] we have introduced a family of hy-
perquadratic elements having a continued fraction expansion with a regular
pattern. This expansion is linked to particular sequences in a finite field.
Here we complete the study of these sequences. It is also worth mentioning
that, in an unexpected way, the present work sheds a new light on an older
one [LR].

We are concerned with power series over a finite field Fq of odd character-
istic p. Given a formal indeterminate T , we consider the ring of polynomials
Fq[T ] and the field of rational functions Fq(T ). Then if |T | is a fixed real
number greater than one, we introduce the ultrametric absolute value de-
fined on the field Fq(T ) by |P/Q| = |T |deg(P )−deg(Q). The completion of this
field for this absolute value is the field of power series in 1/T over Fq, which
is often denoted by Fq((T−1)), and here simply by F(q). If α ∈ F(q) and
α 6= 0, we have

α =
∑
k≤k0

ukT
k, where k0 ∈ Z, uk ∈ Fq, uk0 6= 0 and |α| = |T |k0 .
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We know that each irrational element α of F(q) can be expanded as an
infinite continued fraction. This will be denoted by α = [a1, . . . , an, . . . ],
where the ai ∈ Fq[T ] are non-constant polynomials (except possibly for
the first one) and are called the partial quotients of α. As usual the tail
of the expansion, [an, an+1, . . . ], called the complete quotient, is denoted
by αn, where α1 = α. The numerator and the denominator of the truncated
expansion [a1, a2, . . . , an], which is called a convergent, are denoted by xn

and yn. These polynomials, called continuants, are both defined by the same
recursive relation:Kn = anKn−1+Kn−2 for n ≥ 2, with the initial conditions
x0 = 1 and x1 = a1 for the sequence of numerators, and y0 = 0 and y1 = 1 for
the sequence of denominators. For a general account of continued fractions in
power series fields and also for numerous references the reader may consult
W. Schmidt’s article [S].

In this note we consider continued fraction expansions for algebraic power
series over a finite field. We recall that the first works in this area are
due to L. Baum and M. Sweet [BS] and later to W. Mills and D. Rob-
bins [MR]. The problem discussed here has been introduced in [L1]. In the
next section we present the background of this problem and we state a tech-
nical lemma to go from characteristic zero to positive characteristic. In the
third section, in Proposition A, we define a large class of algebraic con-
tinued fractions in the fields F(q). In the fourth section we state the main
result, Theorem B, which gives an explicit description of these continued
fractions under certain conditions. We also present an illustration in the
field of power series over F27, which is Corollary C. At the end of this sec-
tion we state a conjecture concerning a family of irreducible polynomials
over Fp. The last section is dedicated to the proof of Theorem B and its
corollary.

2. A special pair of polynomials. For each integer k ≥ 1, we consider
the following pair of polynomials in Q[T ]:

Pk(T ) = (T 2 − 1)k and Qk(T ) =
T�

0

(x2 − 1)k−1 dx.

We have the following finite continued fraction expansions in Q(T ):

P1(T )/Q1(T ) = [T,−T ], P2(T )/Q2(T ) = [3T, T/3,−3T/4,−4T/3],

and more generally

(1) Pk/Qk = [v1,kT, . . . , vi,kT, . . . , v2k,kT ],

where the rational numbers vi,k for k ≥ 1 and 1 ≤ i ≤ 2k are defined by
v1,k = 2k − 1 and recursively, for 1 ≤ i ≤ 2k − 1, by

(2) vi+1,kvi,k = (2k − 2i− 1)(2k − 2i+ 1)(i(2k − i))−1.
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This continued fraction expansion for Pk/Qk has been established in [L1].
Moreover, we consider the rational numbers

(3) θk = (−1)k2−2k

(
2k
k

)
and ωk = −(2kθk)−2 for k ≥ 1.

These rational numbers were introduced in [L1] in connection with the pair
(Pk, Qk). Indeed, we have Qk(1) = −(2kθk)−1 and also

(4) v2k+1−i,k = vi,kω
(−1)i+1

k .

We recall that throughout this note, p is an odd prime number. Our aim
is to obtain, by reducing the identity (1) modulo p, a similar identity in
Fp(T ). Clearly the integer k must be well chosen. The easiest way to do so
is to assume that 2k < p, and this is what we did in [L1]. Here we shall
extend this to other values of k. We set r = pt, where t is a positive integer.
Then we introduce the subset E(r) of integers k such that

(5) k = mpl + (pl − 1)/2 for 1 ≤ m ≤ (p− 1)/2 and 0 ≤ l ≤ t− 1.

For instance, E(3) = {1}, E(5) = {1, 2} and E(25) = {1, 2, 7, 12}. Note that
E(r) ⊂ {1, . . . , (r − 1)/2} with equality if r = p. Also (r − 1)/2 ∈ E(r) in
all cases. We have the following result, where vp(x) is used to denote the
p-adic valuation of a rational number x.

Lemma 1. Let p and r be as above. Let k be a positive integer with
k ∈ E(r).

(i) For 1 ≤ i ≤ 2k−1 we have vp(i) = vp(2k−2i+1) and vp(2k− i) =
vp(2k−2i−1). For 1 ≤ i ≤ 2k we have vp(vi,k) = 0. Consequently ,
vi,k for 1 ≤ i ≤ 2k, and i/(2k − 2i + 1) and (2k − i)/(2k − 2i − 1)
for 1 ≤ i ≤ 2k − 1, will be considered as elements of F∗p.

(ii) For 0 ≤ i ≤ 2k we have vp

((
2k
i

))
= 0. Consequently , θk, 2kθk

and ωk as well as
(
2k
i

)
for 0 ≤ i ≤ 2k will be considered as elements

of F∗p.
(iii) We can define in Fp[T ] the pair of polynomials

Pk(T ) = (T 2 − 1)k and Qk(T ) =
∑

0≤i≤k−1

biT
2i+1,

where bi = (−1)k−1−i
(
k−1

i

)
(2i+1)−1 ∈ Fp. The identity (1) holds in

Fp(T ) for the rational function Pk/Qk, with the vi,k defined in F∗p
as above.

Proof. Let k ∈ E(r). According to (5) we have 2k+ 1 = (2m+ 1)pl with
3 ≤ 2m + 1 ≤ p and 0 ≤ l ≤ t − 1. For 1 ≤ i ≤ 2k − 1 we have i < pt and
therefore vp(i) ≤ vp(2k+1). This implies clearly that vp(i) = vp(2k−2i+1).
We also have 2k− 2i− 1 = 2(2k− i)− (2k+ 1), and consequently, changing
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i into 2k − i, the same arguments show that vp(2k − i) = vp(2k − 2i − 1).
In view of (2), it follows that vp(vi,kvi+1,k) = 0 for 1 ≤ i ≤ 2k − 1. Since
vp(v1,k) = vp(2k − 1) = 0 we have vp(vi,k) = 0 for 1 ≤ i ≤ 2k. So we have
proved (i).

For (ii) we use a classical formula on the p-adic valuation of n!. Indeed,
for an integer n ≥ 1 and a prime p we have vp(n!) = (n − sp(n))/(p − 1),
where sp(n) denotes the sum of the digits of n when it is written in base p.
Since k ∈ E(r) we can write 2k = 2mpl + (p − 1)(pl−1 + · · · + 1). For
0 ≤ i ≤ 2k, this writing implies the equality sp(2k − i) + sp(i) = sp(2k).
Consequently, vp((2k − i)!) + vp(i!) = vp((2k)!) and therefore vp

((
2k
i

))
= 0

for 0 ≤ i ≤ 2k.
Now we prove (iii). According to (1), by a trivial integration, we can

write in Q(T ) ∑
0≤i≤k−1

biT
2i+1 = (T 2 − 1)k[0, v1,kT, . . . , v2k,kT ].

Since k ∈ E(r), the right hand side of this equality can be reduced modulo
p in Fp(T ). Thus the left hand side is well defined by reduction modulo p,
i.e. vp(bi) ≥ 0 for 0 ≤ i ≤ k − 1. Consequently, the pair (Pk, Qk) is well
defined in (Fp[T ])2 and we have the desired continued fraction expansion
for the rational function Pk(T )/Qk(T ) in Fp(T ). This completes the proof
of the lemma.

Given r and k ∈ E(r), we now need to introduce a pair of finite sequences
(gi)0≤i≤2k and (hi)0≤i≤2k of functions in Fp(X) which will be used further
on. We set

(G)


g0(X) = θk +X, g2k(X) = 1/(θk −X),
and for 1 ≤ i ≤ 2k − 1,

gi(X) = 2kθkvi,k(i/(2k − 2i+ 1))
θk + wi,kX

θk + wi−1,kX
,

and also

(H)


h0(X) = X/(θk +X), h2k(X) = X/(θk −X),
and for 1 ≤ i ≤ 2k − 1,

hi(X) = (−1)i

(
2k
i

)
θkX

(θk + wi,kX)(θk + wi−1,kX)
,

where

wi,k = (−1)i

(
2k − 1
i

)
∈ Fp for 0 ≤ i ≤ 2k − 1.

By Lemma 1, the functions defined above are not zero. Moreover, we may
have wi,k = 0 for some i but wi,k−wi−1,k = (−1)i

(
2k
i

)
6= 0 for 1 ≤ i ≤ 2k−1.
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3. Continued fractions of type (r, l, k) in F(q). In [L1] a process to
generate in F(q) algebraic continued fractions from certain polynomials in
Fq[T ] is presented. The following proposition is a particular case of a more
general theorem (see [L1, Theorem 1, pp. 332–333]).

Proposition A. Let p be an odd prime number. Set q = ps and r = pt

with s, t ≥ 1. Let k be an integer with k ∈ E(r). Let (Pk, Qk) ∈ (Fp[T ])2

be defined as in Lemma 1. Let l ≥ 1 be an integer. Let (λ1, . . . , λl) be an
l-tuple in (F∗q)l. Let (ε1, ε2) ∈ (F∗q)2. There exists a unique infinite continued
fraction α = [λ1T, . . . , λlT, αl+1] ∈ F(q) defined by

αr = ε1Pkαl+1 + ε2Qk.

This element α is the unique root in F(q) with |α| ≥ |T | of the algebraic
equation

ylX
r+1 − xlX

r + (ε1Pkyl−1 − ε2Qkyl)X − ε1Pkxl−1 + ε2Qkxl = 0,

where xl, xl−1, yl and yl−1 are the continuants defined in the introduction.

Note that these continued fractions satisfy an algebraic equation of a
particular type. The reader may consult the introduction of [BL] for a pre-
sentation of these particular algebraic power series which are called hyper-
quadratic. A continued fraction defined as in Proposition A is generated by
the pair (Pk, Qk) for k ∈ E(r). Such a continued fraction will be called an
expansion of type (r, l, k). When the pair (Pk, Qk) is fixed, this expansion
depends on the l-tuple (λ1, . . . , λl) in (F∗q)l and on the pair (ε1, ε2) in (F∗q)2.
When these l + 2 elements in F∗q are taken arbitrarily, the expansion has a
regular pattern only up to a certain point (see [L1, Proposition 4.6, p. 347]).
In the next section we are concerned with a particular subfamily of these
continued fractions.

4. Perfect continued fractions of type (r, l, k) in F(q). In previ-
ous works we have seen that an expansion of type (r, l, k), under certain
conditions on (λ1, . . . , λl) and (ε1, ε2), may be given explicitly. A first exam-
ple was given in [L1, Theorem 3]. In [L2] a more general case was treated,
but there we restricted ourselves to the case of a prime base field Fp and
we also only considered the case r = p. Note that in this way we could
prove the conjecture for the expansion of a quartic power series over F13

made by Mills and Robbins in [MR, p. 403]. Here our aim is to describe
explicitly many expansions of type (r, l, k) having a very regular pattern as
Mills and Robbins’ example does. To do so we need first to introduce further
notations. Given l, k ≥ 1, we define the sequence (f(n))n≥1 of integers, by
f(n) = (2k+ 1)n+ l− 2k. We also define the sequence (i(n))n≥1 of integers
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in the following way:

i(n) = 1 if n /∈ f(N∗) and i(f(n)) = i(n) + 1.

Finally, we introduce the sequence (Ai)i≥1 of polynomials in Fp[T ] defined
recursively by

A1 = T and Ai+1 = [Ar
i /Pk] for i ≥ 1

(here the square brackets denote the integer part, i.e. the polynomial part).
Note that the sequence (Ai)i≥1 depends on the polynomial Pk chosen with
k ∈ E(r). It is remarkable that if 2k = r−1 then this sequence of polynomials
is constant: Ai = T for i ≥ 1.

For an arbitrary continued fraction of type (r, l, k) the sequence of partial
quotients is based on the above sequence (Ai)i≥1 but only up to a certain
rank (see the remark after Lemma 5.1 below). Nevertheless, it may happen
that this sequence of partial quotients is entirely determined by (Ai)i≥1.
The aim of the following theorem is to give this description as well as the
conditions of its existence. These particular expansions of type (r, l, k), which
are defined in this theorem, will be called perfect (this term was introduced
in [L1, p. 348]).

Theorem B. Let p be an odd prime and q = ps, r = pt with s, t ≥ 1 be
given. Let k ∈ E(r). Let (Ai)i≥1 in Fp[T ] and (f(n))n≥1 and (i(n))n≥1 in
N∗ be the sequences defined above. Let α ∈ F(q) be a continued fraction of
type (r, l, k) defined by the l-tuple (λ1, . . . , λl) in (F∗q)l and the pair (ε1, ε2)
in (F∗q)2. Then the partial quotients of this expansion satisfy

(I) an = λnAi(n) where λn ∈ F∗q for n ≥ 1

if and only if we can define in F∗q

(II) δn = 2kθk[λr
n, . . . , λ

r
1, 2kθkε

−1
2 ] for 1 ≤ n ≤ l

and we have

(III) either
(III1) δl = 4k2θk(ε1/ε2)r, or
(III2) δl 6= 4k2θk(ε1/ε2)r and there exists in F∗q a sequence

(γn)n≥1 defined recursively by

(Γ )


γr

1 = (4k2θkε
r
1δ
−1
l − ε

r
2)θkδ

−r
1 ,

γn = γn−1(δnδn−1ωk)−1 for 2 ≤ n ≤ l,
γf(n)+i = C0hi(γr

n) for 0 ≤ i ≤ 2k and n ≥ 1,

where
C0 = γlε

r
1(δ1γ1)−r(δlωk)−1 ∈ F∗q .
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If (II) and (III) hold then we can define recursively a sequence (δn)n≥1 in
F∗q by the initial values δ1, . . . , δl given by (II) and the formulas

(D) δf(n)+i = ε
r(−1)n+i

1 δr(−1)i

n gi,n for n ≥ 1 and 0 ≤ i ≤ 2k,

where gi,n = gi(0) in case (III1) and gi,n = gi(γr
n) in case (III2). Then the

sequence (λn)n≥1 in F∗q , introduced in (I), is defined recursively by the first
values λ1, . . . , λl and the formulas

(LD) λf(n) = ε
(−1)n

1 λr
n, λf(n)+i = −vi,kε

(−1)n+i

1 δ(−1)i

n

for n ≥ 1 and 1 ≤ i ≤ 2k.

In this theorem we have two conditions (II) and (III) which are not at
the same level. Condition (II) is primary and clearly necessary to define re-
cursively the sequence (δn)n≥1 in F∗q by (D). This condition has already been
pointed out in [L2] even though there we only considered the simplest case
where the base field is prime, that is, q = p. Here it is necessary to underline
that there is a mistake in the formula given there for δn when 1 ≤ n ≤ l.
Indeed in [L2, Theorem 1, condition (H1)], δi = [2kθkλi, . . . , 2kθkλ1, ε

−1
2 ]

should read δi = 2kθk[λi, . . . , λ1, 2kθkε
−1
2 ]. Note that this last formula is

in agreement with (II) in Theorem B if the base field is prime and conse-
quently the Frobenius isomorphism is reduced to the identity in Fp. This
mistake has no consequence on Theorem 2 of [L2] because there the values
of δi were computed with the right formula. Condition (III) is of a different
kind. It is split into two distinct cases. In fact case (III1) has also already
been considered in [L2, Theorem 1, condition (H2)], again when the base
field is prime.

We now want to discuss case (III2). It is more complex because of a
possible obstruction in the recursive definition of the sequence (γn)n≥1 in F∗q .
Actually it is conjectured that this second case can only happen if the base
field Fq is a particular algebraic extension of the prime field Fp. Indeed,
the sequence (γn)n≥1 is clearly well defined if γn /∈ Fp for all n. There is
a sufficient condition to obtain that. We recall that the functions hi for
0 ≤ i ≤ 2k involved in the recursive definition of (γn)n≥1 are of two types:
h(x) = ax/(x + u) or h′(x) = ax/(x + u1)(x + u2), where a ∈ F∗p and
u, u1, u2 ∈ Fp. Consequently, if x is an algebraic element over Fp of degree
d > 2 then hi(x) has degree d (for all hi of type h) or d/2 (possibly for some
hi of type h′). This remark implies that if the first l terms of the sequence γn

have each a degree over Fp different from a power of two and the constant C0

has a degree over Fp which is a power of two, then by induction the degrees
over Fp of all the terms remain greater than one and thus none belongs to Fp.
This sufficient condition for the existence of (γn)n≥1 may also be necessary
but this remains a conjecture. Observe that if this conjecture is true and if
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the base field is prime then the continued fraction can only be perfect in case
(III1). We will make a more precise conjecture in that direction at the end
of this section. Before going further on, we need to point out the similarity
with the problem discussed in [LR], particularly on pages 562–565. In this
older work we investigated the existence of algebraic continued fractions
with linear partial quotients, and this matches the case 2k = r − 1 in the
present work. The approach in [LR] was singular and completely different,
and forced us to make the restriction l ≥ r.

Now we want to illustrate the occurrence of case (III2) if the base field
is Fq, where q = pm and m is not a power of two. We take p = 3, q = 27
and r = 3, with l = 1 and k = 1. Since 2k = r − 1, if the expansion is
perfect then all partial quotients are linear. The elements of the finite field
F27 will be represented by means of a root u of the irreducible polynomial
P (X) = X3 +X2 −X + 1 over F3. Then u13 = −1 and

F27 = {0,±ui : 0 ≤ i ≤ 12}.

We have the following corollary.

Corollary C. Define the sequences (γn)n≥1 and (δn)n≥1 in F∗27 as fol-
lows. The first is defined recursively by γ1 = u and

γ3n−1 =
γ3

n

1 + γ3
n

, γ3n =
γ3

n

1− γ6
n

, γ3n+1 =
γ3

n

1− γ3
n

for n ≥ 1.

The second , based on the first , is defined recursively by δ1 = u4 and

δ3n−1 = u5(−1)n
δ3n(1 + γ3

n), δ3n =
γ3

n − 1
δ3n−1

, δ3n+1 =
δ3n−1

1− γ6
n

for n ≥ 1.

Consider the following algebraic equation with coefficients in F27[T ]:

(E) X4 − TX3 − u3TX + uT 2 − u6 = 0.

This equation has a unique root α in F(27) which can be expanded as an
infinite continued fraction

α = [T, u7T, u2T, u11T,−uT, . . . ] = [λ1T, . . . , λnT, . . . ],

where the sequence (λn)n≥1 in F∗27 is defined recursively by λ1 = 1 and

λ3n−1 = −u6(−1)n
λ3

n, λ3n = u6(−1)n+1
δ−1
n , λ3n+1 = −λ−1

3n for n ≥ 1.

Before concluding this section, we make a conjecture in connection with
the sequence (γn)n≥1 described in Theorem B. For brevity we take k = 1.
Let p be an odd prime. Consider the three elements of Fp(x) given by

h0(x) =
2x

2x− 1
, h1(x) =

4x
1− 4x2

, h2(x) =
−2x

2x+ 1
.
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We define recursively a sequence (un)n≥1 of rational functions in Fp(x) by

u1(x) = x, u3n+i−1(x) = hi(un(x)) for 0 ≤ i ≤ 2 and n ≥ 1.

Let P(p) ⊂ Fp[x] be the subset of all monic polynomials irreducible over Fp

which appear as prime factors of the numerator or denominator of un(x)
for some n ≥ 1. Let P2(p) ⊂ Fp[x] be the subset of all monic polynomials
irreducible over Fp of degree 2k for k ≥ 0. Then the arguments developed
after Theorem B show that P(p) ⊂ P2(p). We conjecture that P(p) = P2(p)
for all odd primes p.

5. Proofs of Theorem B and Corollary C. In this section p, q and
r are as above. We consider an integer k ∈ E(r) and an integer l ≥ 1.
Moreover the numbers θk, ωk ∈ F∗p and the natural integers f(n), i(n) for
n ≥ 1 are defined as above. The proof of Theorem B will be divided into
several steps.

Lemma 5.1. Let α = [λ1T, . . . , λlT, αl+1] ∈ F(q) be a continued fraction
of type (r, l, k) for the pair (ε1, ε2) ∈ (F∗q)2. Then there exists a sequence
(λn)n≥1 in F∗q such that we have

(I) an = λnAi(n) for n ≥ 1

if and only if there exists a sequence (δn)n≥0 in F∗q such that

(LD) λf(n) = ε
(−1)n

1 λr
n, λf(n)+i = −vi,kε

(−1)n+i

1 δ(−1)i

n

for 1 ≤ i ≤ 2k and n ≥ 1, with

(D1) δn = 2kθi(n)
k λr

n − (ωkδn−1)−1 for n ≥ 1,

where δ0 = −(ωkε2)−1.

This lemma, which is the first and main step in the proof of Theorem B,
is a direct consequence of [L1, Prop. 4.6, p. 347]. There we proved that
an expansion of type (r, l, k) for an arbitrary pair (ε1, ε2) ∈ (F∗q)2 has the
pattern given by (I), where (λn)n≥1 is described by (D1) and (LD), but only
up to a certain rank (if δn ever vanishes in (D1)). Note that in the proof
of Proposition 4.6 of [L1] we made the restriction 2k < p. This condition
was sufficient to have in Fp(T ) the identity (1) of Section 2 which is the
foundation of the proof. But, according to Lemma 1 of Section 2, we may
replace this condition by k ∈ E(r) and this does not affect the proof of the
proposition. Now to separate the sequence (δn)n≥0 from (λn)n≥1, we have
the following lemma.

Lemma 5.2. Let (λn)n≥1 and (δn)n≥0 be two sequences in F∗q. Assume
that they satisfy (LD). Then they satisfy (D1) if and only if

(II0) δn = 2kθk[λr
n, . . . , λ

r
1, δ0/(2kθk)] for 1 ≤ n ≤ l,
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(D2) δf(n) + (ωkδf(n)−1)−1 = θkε
r(−1)n

1 (δr
n + (ωkδn−1)−r) for n ≥ 1

and

(D3) δf(n)+i + (ωkδf(n)+i−1)−1 = −2kθkvi,kε
r(−1)n+i

1 δr(−1)i

n

for 1 ≤ i ≤ 2k and n ≥ 1.

Proof. First we assume that (D1) holds for n ≥ 1. For 1 ≤ n ≤ l we have
i(n) = 1. By (3) from Section 2, we have ωk = −(2kθk)−2, and consequently
(D1) for 1 ≤ n ≤ l can be written as

δn = 2kθkλ
r
n + (2kθk)2δ−1

n−1.

By induction, it is clear that (D1) for 1 ≤ n ≤ l is equivalent to (II0).
Now for 1 ≤ j ≤ 2k and n ≥ 1 we have i(f(n) + j) = 1, and consequently,
taking into account (LD), we have the equivalence between (D3) and (D1)
at rank f(n) + j. Observing that for n ≥ 1 we have i(f(n)) = i(n) + 1, and
taking into account (LD), we see that (D1) at rank f(n) and n implies (D2).
Conversely, suppose (II0), (D2) and (D3) are satisfied. Then (D1) holds for
1 ≤ n ≤ l and also at rank f(n) + i for n ≥ 1 and 1 ≤ i ≤ 2k. On the
other hand, if (D1) and (D2) hold at rank n ≥ 1, then taking into account
(LD), (D1) holds at rank f(n). Hence, with the cases already established
and using induction, we see that (D1) holds for n ≥ 1. This completes the
proof of the lemma.

In the next lemma we introduce a new sequence (γn)n≥1 in Fq which is
linked to (δn)n≥0.

Lemma 5.3. Let (gi)0≤i≤2k be the sequence of functions in Fp(X) defined
by (G) in Section 2. Let (δn)n≥0 be a sequence in F∗q with δ0, δ1, . . . , δl given.
Then (δn)n≥0 satisfies (D2) and (D3) if and only if there exists a sequence
(γn)n≥1 in Fq such that

(D) δf(n)+i = ε
r(−1)n+i

1 δr(−1)i

n gi(γr
n) for 0 ≤ i ≤ 2k and n ≥ 1,

with

γr
1 = (θkδ

−r
0 − ε

r
1δ
−1
l )(ωkδ1)−r,(Γ1)

γn = γn−1(δnδn−1ωk)−1 for n ≥ 2.(Γ2)

Proof. First we prove that the sequence (gi)0≤i≤2k in Fp(X), described
in (G), can also be defined recursively by g0(X) = θk +X and

(6) gi+1(X) = 2kθk(−vi+1,k + 2kθk/gi(X)) for 0 ≤ i ≤ 2k − 1.

For i = 0, (6) becomes

g1(X) = 2kθk(−v1,k + 2kθk/(θk +X)).

Since v1,k = 2k − 1, this equality implies

g1(X) = 2kθk(θk − (2k − 1)X)/(θk +X).
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This is in agreement with (G) for i = 1. Now we use induction on i. Let
1 ≤ i < 2k−1 and assume that gi(X) is as stated in (G). Then, by (2) from
Section 2, we have

(7) 2kθk/gi(X) =
(2k − i)vi+1,k

2k − 2i− 1
θk + wi−1,kX

θk + wi,kX
.

Moreover, a direct computation shows that, for 1 ≤ i < 2k − 1,

(8) (2k − i)wi−1,k − (2k − 2i− 1)wi,k = (i+ 1)wi+1,k.

Combining (6)–(8), we get gi+1(X) as stated in (G). It remains to compute
g2k(X). From (6) and (7) for i = 2k − 1, we obtain

(9) g2k(X) = 2kθk

(
−v2k,k −

v2k,k

2k − 1
θk + (2k − 1)X

θk −X

)
.

Recalling (3) and (4) from Section 2, we also have v2k,k = v1,kωk, and
consequently

(10) v2k,k = −(2k − 1)(2kθk)−2.

Finally, combining (9) and (10), we get g2k(X) = 1/(θk −X), and this is in
agreement with (G) for i = 2k.

We now set

(11) gi,n = δf(n)+i/(ε
r(−1)n+i

1 δr(−1)i

n ) for 0 ≤ i ≤ 2k and n ≥ 1.

Then we define the sequence (γn)n≥1 ⊆ Fq from (δn)n≥1 ⊆ F∗q by

(12) γr
n = g0,n − θk for n ≥ 1.

By definition, (12) becomes g0,n = g0(γr
n), thus (11) implies (D) for i = 0.

Now we prove that (D3) is equivalent to (D) for 1 ≤ i ≤ 2k. According to
(11), we need to prove that (D3) is equivalent to gi,n = gi(γr

n) for 1 ≤ i ≤ 2k
and n ≥ 1. If we use (11) and again ωk = −(2kθk)−2, (D3) can be written
as

gi,n = 2kθk(−vi,k + 2kθk/gi−1,n) for 1 ≤ i ≤ 2k.

Since g0,n = g0(γr
n), with the recursive definition of (gi)1≤i≤2k, we see that

(D3) is equivalent to gi,n = gi(γr
n) for 1 ≤ i ≤ 2k. Now we shall see that

(D2) and (D3) imply (Γ1) and (Γ2). Hence, with (γn)n≥1 defined by (12),
we have (D). For n = 1, (D2) becomes

(13) δl+1 + (ωkδl)−1 = θkε
−r
1 (δr

1 + (ωkδ0)−r).

But, using (D) for n = 1 and i = 0, we also have

(14) δl+1 = ε−r
1 δr

1(θk + γr
1).

Combining (13) and (14), we obtain the value for γr
1 stated in (Γ1). Now we

assume that n ≥ 2 and we recall that f(n)−1 = f(n−1)+2k. Consequently,
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by (D) for i = 0 and for i = 2k, and by (11), (D2) implies

(15) g0(γr
n)δr

n + (ωkg2k(γr
n−1)δr

n−1)−1 = θk(δr
n + (ωkδn−1)−r).

Since, by (G), g0(γr
n) = θk + γr

n and g2k(γr
n−1) = 1/(θk − γr

n−1), (15) gives

(γnδn − ω−1
k γn−1δ

−1
n−1)r = 0,

which is (Γ2). Conversely, we assume that both sequences satisfy (D), (Γ1)
and (Γ2). First, as we have seen above, (D3) holds for 1 ≤ i ≤ 2k and n ≥ 1.
Then (D) for n = 1 and i = 0 implies θk + γr

1 = δl+1ε
r
1δ
−r
1 . If we take (Γ1)

into account, this implies (D2) for n = 1. Finally, for n ≥ 2, we have seen
that (Γ2) implies (15). Using (D) for i = 0 and for i = 2k shows that (15)
is equivalent to (D2). The proof of the lemma is complete.

In the last lemma we describe the sequence (γn)n≥1, if it is not identically
zero.

Lemma 5.4. Let (hi)0≤i≤2k be the sequence of functions in Fp(X) defined
by (H) in Section 2. Let (δn)n≥1 and (γn)n≥1 be two sequences in F∗q with
δ1, . . . , δl and γ1 given. Assume that they satisfy (D). Then they satisfy (Γ2)
if and only if

(Γ ′2) γn = γn−1(δnδn−1ωk)−1 for 2 ≤ n ≤ l

and

(Γ3) γf(n)+i = C0hi(γr
n) for 0 ≤ i ≤ 2k and n ≥ 1,

where
C0 = γlε

r
1(δ1γ1)−r(δlωk)−1 ∈ F∗q .

Proof. First we prove that (Γ2) implies (Γ3). We will use the connection
between (gi)0≤i≤2k and (hi)0≤i≤2k in Fp(X). Indeed, from (G) and (H), an
elementary calculation shows that

(16) gi(X)gi−1(X)ωk = hi−1(X)/hi(X) for 1 ≤ i ≤ 2k.

We also have

(17) g0(X)h0(X) = X and h2k(X) = Xg2k(X).

For 1 ≤ i ≤ 2k and n ≥ 1, using (D) and (16), we have

(18) ωkδf(n)+iδf(n)+i−1 = hi−1(γr
n)/hi(γr

n).

By (Γ2) at rank f(n) + i, (18) implies

(19) γf(n)+i/γf(n)+i−1 = hi(γr
n)/hi−1(γr

n).

Clearly, for 0 ≤ i ≤ 2k and n ≥ 1, from (19) we obtain

(20) γf(n)+i = γf(n)hi(γr
n)/h0(γr

n).
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We now assume that n ≥ 2. Recalling that f(n)−1 = f(n−1) + 2k, by (D)
for i = 0 and i = 2k and (17), we also have

(21) δf(n)δf(n)−1 = (δnδn−1)r(γn/γn−1)rh2k(γr
n−1)/h0(γr

n).

By (Γ2) at rank n, (21) becomes

(22) ωkδf(n)δf(n)−1 = h2k(γr
n−1)/h0(γr

n).

By (Γ2) at rank f(n), (22) implies

(23) γf(n) = γf(n)−1h0(γr
n)/h2k(γr

n−1).

By (20) we also have

(24) γf(n)−1 = γf(n−1)+2k = γf(n−1)h2k(γr
n−1)/h0(γr

n−1).

Combining (23) and (24), we obtain

(25) γf(n) = γf(n−1)h0(γr
n)/h0(γr

n−1).

Consequently, by (25), for n ≥ 1 we have

(26) γf(n)/h0(γr
n) = C0 = γf(1)/h0(γr

1).

To compute C0, we apply (Γ2) at rank f(1) = l + 1 and (D) for n = 1 and
i = 0. We obtain

C0 = γlε
r
1(δ1γ1)−r(δlωk)−1.

Finally, combining (20) and (26), we get (Γ3). We now prove that (Γ ′2) and
(Γ3) imply (Γ2). Hence (Γ2) holds for 2 ≤ n ≤ l. Moreover, we obtain (19)
directly from (Γ3). Together with (18), this proves that (Γ2) holds at rank
f(n) + i for n ≥ 1 and 1 ≤ i ≤ 2k. We observe that (Γ2) also holds for l+ 1.
Indeed, applying (Γ3) for n = 1 and i = 0, together with the value of C0,
we obtain (Γ2) for l + 1. Now we assume that n ≥ 2 and we apply (Γ3) for
i = 0 and for i = 2k. We have

(27) γf(n)/γf(n)−1 = h0(γr
n)/h2k(γr

n−1).

Combining (21) and (27) we obtain

γf(n)/γf(n)−1 = (δnδn−1)r(γn/γn−1)r(δf(n)δf(n)−1)−1.

This shows that if (Γ2) holds at rank n ≥ 2 then it holds at rank f(n).
Consequently, with the cases already established and using induction, we
see that (Γ2) holds for all n ≥ 2. The proof of the lemma is complete.

Proof of Theorem B. Let α ∈ F(q) be a continued fraction of type (r, l, k)
defined by the l-tuple λ1, . . . , λl ∈ (F∗q)l and the pair (ε1, ε2) ∈ (F∗q)2. Accord-
ing to Lemmas 5.1 and 5.2, the sequence of partial quotients for α satisfies
(I) if and only if there exists a sequence (δn)n≥0 in F∗q satisfying (II0), (D2)
and (D3), where the sequence (λn)n≥1 is based on (δn)n≥0 by (LD). Given
the value for δ0 in Lemma 5.1, the existence of this sequence requires condi-
tion (II) of Theorem B. According to Lemma 5.3, this sequence does exist
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if and only if there exists a sequence (γn)n≥1 satisfying (D), (Γ1) and (Γ2).
Now distinguish two cases: either εr2δl−4k2θkε

r
1 = 0 or εr2δl−4k2θkε

r
1 6= 0. In

the first case, which is case (III1) of Theorem B, by (Γ1) and according to
the previous value for δ0, we have γ1 = 0 and also, by (Γ2), γn = 0 for n ≥ 2.
In the second case, which is case (III2) of Theorem B, again by (Γ1) and
(Γ2), the sequence (γn)n≥1 is in F∗q , and consequently, in view of Lemma 5.4,
it can be described by the formulas (Γ ) of Theorem B. In both cases, the
sequence (δn)n≥0 is determined recursively from δ1, . . . , δl and by (D) from
(γn)n≥1, identically zero or not. So the proof of the theorem is complete.

Proof of Corollary C. First, looking at the degrees of the polynomial
coefficients of equation (E), we observe that if this equation has a root α in
F(27) then we must have |α| = |T |. Now, with Proposition A, we consider
the continued fraction of type (3, 1, 1) in F(27) defined by λ1 = 1 and the
pair (−u6, u3) ∈ (F∗27)2. So we have α3 = −u6(T 2 − 1)α2 + u3T , where
α2 = 1/(α − T ). Hence this continued fraction satisfies equation (E). This
proves that (E) has no other root in F(27) (and consequently this root
is algebraic over F27(T ) of degree four). Now we need to prove that the
expansion for α is perfect. Here we have k = 1 and l = 1, and consequently
θ1 = 1 and f(n) = 3n−1 for n ≥ 1. From Lemma 5.1, we also have δ0 = u−3

and δ1 = −λ3
1 + ε2 = −1 + u3 = u4 ∈ F∗27. So (II) holds.

We now compute γ1. We have γ3
1 = (4θ1ε31δ

−3
1 − ε32)θ1δ−3

1 = u3 6= 0.
We are in case (III2) if the sequence (γn)n≥1 can be defined. First we com-
pute C0. We have C0 = −δ−1

1 (γ1ε
3
1)(δ1γ1)−3 = 1. Applying the formulas

in (Γ ) with the triplet (h0, h1, h2) in (F3(X))3 stated in (H), we obtain the
recursive definition given in the corollary for (γn)n≥1. As γ1 = u has de-
gree 3 over F3, by induction all the terms have the same degree over F3, and
therefore (γn)n≥1 is well defined. Applying the formulas (D) with the triplet
(g0, g1, g2) in (F3(X))3 stated in (G), we obtain the recursive definition for
(δn)n≥1 from (γn)n≥1 as stated in the corollary. Finally, by the formulas
(LD), the sequence (λn)n≥1 satisfies the recursive definition indicated in
the corollary. This completes the proof.

References

[BS] L. Baum and M. Sweet, Continued fractions of algebraic power series in charac-
teristic 2, Ann. of Math. 103 (1976), 593–610.

[BL] A. Bluher and A. Lasjaunias, Hyperquadratic power series of degree four, Acta
Arith. 124 (2006), 257–268.

[L1] A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
field, Finite Fields Appl. 14 (2008), 329–350.

[L2] —, On Robbins’ example of a continued fraction expansion for a quartic power
series over F13, J. Number Theory 128 (2008), 1109–1115.



Algebraic continued fractions 265

[LR] A. Lasjaunias and J.-J. Ruch, On a family of sequences defined recursively in F∗
q

(II ), Finite Fields Appl. 10 (2004), 551–565.
[MR] W. Mills and D. Robbins, Continued fractions for certain algebraic power series,

J. Number Theory 23 (1986), 388–404.
[S] W. Schmidt, On continued fractions and diophantine approximation in power se-

ries fields, Acta Arith. 95 (2000), 139–166.

C.N.R.S.-UMR 5251
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