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Large gaps between consecutive zeros
of the Riemann zeta-function. II
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H. M. Bui (Zürich and Bristol)

1. Introduction. Subject to the truth of the Riemann Hypothesis (RH),
the nontrivial zeros of the Riemann zeta-function can be written as ρ =
1/2+iγ, where γ ∈ R. Denoting consecutive ordinates of zeros by 0 < γ ≤ γ′,
we define the normalized gap

δ(γ) := (γ′ − γ)
log γ

2π
.

It is well-known that

N(T ) :=
∑

0<γ≤T
1 =

T

2π
log

T

2π
− T

2π
+O(log T )

for T ≥ 10. Hence δ(γ) is 1 on average. It is expected that there are ar-
bitrarily large and arbitrarily small (normalized) gaps between consecutive
zeros of the Riemann zeta-function on the critical line, i.e.

λ := lim sup
γ

δ(γ) =∞ and µ := lim inf
γ

δ(γ) = 0.

In this article, we focus only on the large gaps, and prove the following
theorem.

Theorem 1.1. Assume RH. Then λ > 2.9.

Very little is known about λ unconditionally. Selberg [15] remarked that
he could prove λ > 1. Conditionally, Bredberg [2] showed that λ > 2.766
under the assumption of RH (see also [13, 12, 7, 11, 6] for work in this
direction), and under the Generalized Riemann Hypothesis (GRH) it is
known that λ > 3.072 ([10]; see also [8, 14, 3]). These results either use
Hall’s approach using Wirtinger’s inequality, or exploit the following idea of
Mueller [13]:
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Let H : C→ C and consider the functions

M1(H,T ) =

T�

0

∣∣H(12 + it
)∣∣2 dt

and

M2(H,T ; c) =

c/L�

−c/L

∑
0<γ≤T

∣∣H(12 + i(γ + α)
)∣∣2 dα,

where L = log T
2π . We note that if

h(c) :=
M2(H,T ; c)

M1(H,T )
< 1

as T →∞, then λ > c/π, and if h(c) > 1 as T →∞, then µ < c/π.

Mueller [13] applied this idea to H(s) = ζ(s). Using

H(s) =
∑

n≤T 1−ε

d2.2(n)

ns
,

where dk(n) are the coefficients of ζ(s)k, Conrey, Ghosh and Gonek [7]
showed that λ > 2.337. Later [8], assuming GRH and applying

H(s) = ζ(s)
∑

n≤T 1/2−ε

n−s,

they obtained λ > 2.68. By considering a more general choice

H(s) = ζ(s)
∑

n≤T 1/2−ε

dr(n)P
( log y/n

log y

)
ns

,

where P (x) is a polynomial, Ng [14] improved that result to λ > 3 (using
r = 2 and P (x) = (1− x)30). In the last two papers, GRH is needed to esti-
mate certain exponential sums resulting from the evaluation of the discrete
mean value over the zeros in M2(H,T ; c). Recently, Bui and Heath-Brown
[5] showed how one can use a generalization of the Vaughan identity and
the hybrid large sieve inequality to circumvent the assumption of GRH for
such exponential sums. In the present paper we use that idea to obtain
a weaker version of Ng’s result without invoking GRH. It is possible that
Feng and Wu’s result λ > 3.072 can also be obtained by this method just
assuming RH. However, we opt to work on Ng’s result for simplicity.

Instead of using the divisor function d(n) = d2(n), we choose

H(s) = ζ(s)
∑
n≤y

h(n)P
( log y/n

log y

)
ns

,
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where y = T ϑ, P (x) is a polynomial and h(n) is a multiplicative function
satisfying

(1.1) h(n) =

{
d(n) if n is square-free,

0 otherwise.

In Sections 3 and 4 we shall prove the following two key lemmas.

Lemma 1.2. Suppose 0 < ϑ < 1/2. Then

M1(H,T ) =
AT (log y)9

6

1�

0

(1− x)3(ϑ−1P1(x)2 − 2P1(x)P2(x)) dx

+O(TL8),

where

A =
∏
p

(
1 +

8

p

)(
1− 1

p

)8

and Pr(x) =

x�

0

trP (x− t) dt.

Lemma 1.3. Suppose 0 < ϑ < 1/2 and P (0) = P ′(0) = 0. Then∑
0<γ≤T

H(ρ+ iα)H(1− ρ− iα)

=
ATL(log y)9

6π

1�

0

(1− x)3 Re
{ ∞∑
j=1

(iα log y)jB(j;x)
}
dx+Oε(TL

9+ε)

uniformly for α� L−1, where

B(j;u) = −2P1(u)Pj+2(u)

(j + 2)!
+

2ϑP2(u)Pj+2(u)

(j + 2)!
+

4ϑP1(u)Pj+3(u)

(j + 3)!

− ϑ

(j + 2)!

u�

0

t(ϑ−1 − t)j+2P1(u)P (u− t) dt

+
ϑ

(j + 1)!

u�

0

t(ϑ−1 − t)j+1P2(u)P (u− t) dt

− ϑ

6j!

u�

0

t(ϑ−1 − t)jP3(u)P (u− t) dt.

Proof of Theorem 1.1. We take ϑ = (1/2)−. On RH we have∑
0<γ≤T

∣∣H(12 + i(γ + α)
)∣∣2 =

∑
0<γ≤T

H(ρ+ iα)H(1− ρ− iα).

Note that this is the only place we need to assume RH. Lemma 1.3 then
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implies that

c/L�

−c/L

∑
0<γ≤T

∣∣H(12 + i(γ + α)
)∣∣2dα

∼ AT (log y)9

6π

∞∑
j=1

(−1)jc2j+1

22j−1(2j + 1)

1�

0

(1− x)3B(2j;x) dx.

Hence

h(c) =
1

2π

∑∞
j=1

(−1)jc2j+1

22j−1(2j+1)

	1
0(1− x)3B(2j;x) dx

	1
0(1− x)3(P1(x)2 − P1(x)P2(x)) dx

+ o(1)

as T → ∞. Consider the polynomial P (x) =
∑M

j=2 cjx
j . Choosing M = 6

and running Mathematica’s Minimize command, we obtain λ > 2.9. Pre-
cisely, with

P (x) = 1000x2 − 9332x3 + 30134x4 − 40475x5 + 19292x6,

we have
h(2.9π) = 0.99725 . . . < 1,

and this proves the theorem.

Remark 1.4. The above lemmas are unconditional. We note that in
the case r = 2, apart from the arithmetical factor a3 being replaced by A,
Lemma 1.2 is the same as [14, Lemma 2.1] (see also [3, Lemma 2.3]), while
Lemma 1.3, under the additional condition P (0) = P ′(0) = 0, recovers The-
orem 2 of Ng [14] (and also Lemma 2.6 of Bui [3]) without assuming GRH,
though Ng’s theorem and Bui’s lemma are written in a slightly different and
more complicated form. This is as expected because replacing the divisor
function d(n) by the arithmetic function h(n) (as defined in (1.1)) in the
definition of H(s) only changes the arithmetical factor in the resulting mean
value estimates. This substitution, however, makes our subsequent calcula-
tions much easier. Our arguments also work if we set h(n) = dr(n) when n
is square-free for some r ∈ N without much change, but we choose r = 2 to
simplify various statements and expressions in the paper.

Remark 1.5. In the course of evaluatingM2(H,T ; c), we encounter an
exponential sum of type (see Section 4.2)∑

n≤y

h(n)P
( log y/n

log y

)
n

∑
m≤nT/2π

a(m)e

(
−m
n

)
for some arithmetic function a(m). At this point, assuming GRH, Ng [14]
applied Perron’s formula to the sum over m, and then moved the line of
integration to Re(s) = 1/2 + ε. The main term arises from the residue at
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s = 1 and the error terms in this case are easy to handle. To avoid being
subject to GRH, we instead use the ideas of [9] and [5]. That leads to a sum
of the type ∑

n≤y

µ(n)h(n)P
( log y/n

log y

)
n

.

This is essentially a variation of the prime number theorem, and here the
polynomial P (x) is required to vanish with order at least 2 at x = 0 (see
Lemma 2.6). As a result, we cannot make the choice P (x) = (1 − x)30

as in [14]. Here it is not clear how to choose a “good” polynomial P (x).
Our theorem is obtained by numerically optimizing over polynomials P (x)
with degree less than 7. It is probable that by considering higher degree
polynomials, we can establish Ng’s result λ > 3 under RH only.

Notation. Throughout the remainder of the paper, we write

[n]y :=
log y/n

log y
.

For Q,R ∈ C∞([0, 1]) we define

Qr(x) =

x�

0

trQ(x− t) dt and Rr(x) =

x�

0

trR(x− t) dt.

We let ε > 0 be an arbitrarily small positive number, which can change from
occurrence to occurrence.

2. Various lemmas. The following two lemmas are [9, Lemmas 2
and 3].

Lemma 2.1. Suppose that A(s) =
∑∞

m=1 a(m)m−s, where a(m)�ε m
ε,

and B(s) =
∑

n≤y b(n)n−s, where b(n)�ε n
ε. Then

1

2πi

a+iT�

a+i

χ(1− s)A(s)B(1− s) ds

=
∑
n≤y

b(n)

n

∑
m≤nT/2π

a(m)e

(
−m
n

)
+Oε(yT

1/2+ε),

where a = 1 + L−1.

Lemma 2.2. Suppose that Aj(s) =
∑∞

n=1 aj(n)n−s is absolutely conver-
gent for σ > 1, 1 ≤ j ≤ k, and that

A(s) =
∞∑
n=1

a(n)

ns
=

k∏
j=1

Aj(s).
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Then for any l ∈ N, we have

∞∑
n=1

a(ln)

ns
=

∑
l=l1...lk

k∏
j=1

( ∑
n≥1

(n,
∏
i<j li)=1

aj(ljn)

ns

)
.

We shall need estimates for various divisor-like sums. Throughout the
paper, we let

Fτ (n) =
∏
p|n

(1 +O(p−τ ))

for τ > 0, and the implicit constant in the O-term is independent of τ .

Lemma 2.3. For any Q ∈ C∞([0, 1]), there exists an absolute constant
τ0 > 0 such that

(i)
∑
an≤y

h(an)Q([an]y)

n

= C(log y)2h(a)
∏
p|a

(
1 +

2

p

)−1
Q1([a]y) +O(d(a)Fτ0(a)L),

(ii)
∑
an≤y

h(an)Q([an]y) log n

n

= C(log y)3h(a)
∏
p|a

(
1 +

2

p

)−1
Q2([a]y) +O(d(a)Fτ0(a)L2),

where

C =
∏
p

(
1 +

2

p

)(
1− 1

p

)2

.

Proof. By a method of Selberg [15] we have∑
n≤t

h(an)

n
=
C(log t)2

2
h(a)

∏
p|a

(
1 +

2

p

)−1
+O(d(a)Fτ0(a)L)

for any t ≤ T . The first statement then follows by partial summation.
The second statement is an easy consequence of the first one.

Lemma 2.4. For any Q ∈ C∞([0, 1]), we have∑
n≤y

h(n)2ϕ(n)Q([n]y)

n2

∏
p|n

(
1 +

2

p

)−2
=
D(log y)4

6

1�

0

(1− x)3Q(x) dx+O(L3),



Large gaps between zeros 107

where

D =
∏
p

[
1 +

4(p− 1)

p2

(
1 +

2

p

)−2](
1− 1

p

)4

.

Proof. The proof is similar to that of the above lemma.

We need a lemma concerning the size of the function Fτ0(n) on average.

Lemma 2.5. Suppose −1 ≤ σ ≤ 0. Then∑
n≤y

dk(n)Fτ0(n)

n

(
y

n

)σ
�k L

k−1 min
{
|σ|−1, L

}
.

Proof. By [4, Lemma 4.6],∑
n≤y

dk(n)

n

(
y

n

)σ
�k L

k−1 min{|σ|−1, L}.

We have

Fτ0(n) ≤
∏
p|n

(1 +Ap−τ0) =
∑
l|n

l−τ0Aw(l)

for some A > 0, where w(n) is the number of prime factors of n. Hence∑
n≤y

dk(n)Fτ0(n)

n

(
y

n

)σ
�
∑
l≤y

dk(l)A
w(l)

l1+τ0

∑
n≤y/l

dk(n)

n

(
y/l

n

)σ
�k L

k−1 min{|σ|−1, L},

since dk(l)A
w(l) � lτ0/2 for sufficiently large l.

Lemma 2.6. Let F (n) = F (n, 0), where

F (n, α) =
∏
p|n

(
1− 1

p1+α

)
.

For any Q ∈ C∞([0, 1]) satisfying Q(0) = Q′(0) = 0, there exist an absolute
constant τ0 > 0 and some ν � (log log y)−1 such that

A1(y,Q; a, b, α) :=
∑
an≤y
(n,b)=1

µ(n)h(n)Q([an]y)

ϕ(n)nα1
F (n, α2)F (n, α3)(2.1)

= U1V1(b)

(
Q′′([a]y)

(log y)2
+

2α1Q
′([a]y)

log y
+ α2

1Q([a]y)

)
+O(Fτ0(b)L−3) +Oε

(
Fτ0(b)

(
y

a

)−ν
L−2+ε

)
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uniformly for αj � L−1, 1 ≤ j ≤ 3, where U1 = U1(0, 0) and V1(n) =
V1(0, n, 0), with

U1(s, α) =
∏
p

[
1− 2F (p, α2)F (p, α3)

ϕ(p)ps+α1

](
1− 1

p1+s+α1

)−2
,

V1(s, n, α) =
∏
p|n

[
1− 2F (p, α2)F (p, α3)

ϕ(p)ps+α1

]−1
.

Remark 2.7. For Q(x) = xj , j ≥ 0, the argument below shows that the
last error term in (2.1) should be replaced by Oε(Fτ0(b)(y/a)−νL−j+ε) (see
(2.2)). To ensure that the contribution of this, averaging over a, is smaller
than that of the main term we need j ≥ 2, i.e. Q(0) = Q′(0) = 0.

Proof of Lemma 2.6. This is essentially a variation of the prime number
theorem.

It suffices to consider Q(x) =
∑

j≥2 ajx
j . We have

A1(y,Q; a, b, α)

=
∑
j≥2

ajj!

(log y)j

∑
(n,b)=1

1

2πi

�

(2)

(
y

a

)s µ(n)h(n)

ϕ(n)ns+α1
F (n, α2)F (n, α3)

ds

sj+1
.

The sum over n converges absolutely. Hence

A1(y,Q; a, b, α)

=
∑
j≥2

ajj!

(log y)j
1

2πi

�

(2)

(
y

a

)s ∑
(n,b)=1

µ(n)h(n)

ϕ(n)ns+α1
F (n, α2)F (n, α3)

ds

sj+1
.

The sum in the integrand equals∏
p-b

(
1− 2F (p, α2)F (p, α3)

ϕ(p)ps+α1

)
=
U1(s, α)V1(s, b, α)

ζ(1 + s+ α1)2
.

Let Y = o(T ) be a large parameter to be chosen later. By Cauchy’s
theorem, A1(y,Q; a, b, α) is equal to the residue at s = 0 plus integrals over
the line segments C1 = {s = it : t ∈ R, |t| ≥ Y }, C2 = {s = σ ± iY :
−c/log Y ≤ σ ≤ 0}, and C3 = {s = −c/log Y + it : |t| ≤ Y }, where c is some
fixed positive constant such that ζ(1 + s+α1) has no zeros in the region on
the right hand side of the contour determined by the Cj ’s. Furthermore, we
require that for such c we have 1/ζ(σ + it)� log(2 + |t|) in this region [16,
Theorem 3.11]. Then the integral over C1 is

� Fτ0(b)L−j(log Y )2/Y j �ε Fτ0(b)L−2Y −2+ε,

since j ≥ 2. The integral over C2 is

� Fτ0(b)L−j(log Y )/Y j+1 �ε Fτ0(b)L−2Y −3+ε.
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Finally, the contribution from C3 is

(2.2) � Fτ0(b)L−j(log Y )j
(
y

a

)−c/ log Y
�ε Fτ0(b)

(
y

a

)−c/ log Y
L−2+ε.

Choosing Y � L gives an error so far of size Oε(Fτ0(b)(y/a)−νL−2+ε) +
Oε(Fτ0(b)L−4+ε).

For the residue at s = 0, we write it as∑
j≥2

ajj!

(log y)j
1

2πi

�(y
a

)sU1(s, α)V1(s, b, α)

ζ(1 + s+ α1)2
ds

sj+1
,

where the contour is a circle of radius � L−1 around the origin. This integral
is trivially bounded by O(L−2), so that taking the first term in the Taylor
series of ζ(1 + s+ α1) finishes the proof.

Lemma 2.8. For any Q,R ∈ C∞([0, 1]), there exists an absolute constant
τ0 > 0 such that

A2(y,Q,R; a1, a2, α1)

:=
∑

a1a2l≤y
a1m≤y

h(a1a2l)h(a1m)Q([a1m]y)R([a1a2l]y)V1(a1a2lm)

lm1+α1

= U2(log y)4h(a1a2)h(a1)V1(a1a2)V2(a1)V3(a2)V4(a1a2)

×
[a1]y�

0

y−α1ttQ([a1]y − t)R1([a1a2]y)dt+O(d4(a1)d(a2)Fτ0(a1a2)L
3)

uniformly for α1 � L−1, where

U2 =
∏
p

(
1 +

2V1(p)

p

)[
1 +

2V1(p)

p

(
1 +

2

p

)(
1 +

2V1(p)

p

)−1](
1− 1

p

)4

,

V2(n) =
∏
p|n

(
1 +

2V1(p)

p

)−1
, V3(n) =

∏
p|n

(
1 +

2

p

)(
1 +

2V1(p)

p

)−1
,

V4(n) =
∏
p|n

[
1 +

2V1(p)

p

(
1 +

2

p

)(
1 +

2V1(p)

p

)−1]−1
.

Proof. Use Selberg’s method [15] similarly to the proof of Lemma 2.3.
One first executes the sum over m, and then the sum over l.
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Lemma 2.9. For any Q,R ∈ C∞([0, 1]), we have

(i)
∑
l1l2≤y

h(l1l2)h(l1)Q([l1]y)R([l1l2]y)

l1l
1+α1
2

× F (l1, α2)F (l1l2, α3)V1(l1l2)V2(l1)V3(l2)V4(l1l2)

=
W (log y)6

6

1�

0

x�

0

(1− x)3y−α1t1t1Q(x)R(x− t1) dt1 dx+O(L5),

(ii)
∑

pl1l2≤y

log p

(p1+α4 − 1)pα5

h(pl1l2)h(l1)Q([l1]y)R([pl1l2]y)

l1l
1+α1
2

× F (pl1, α2)F (pl1l2, α3)V1(pl1l2)V2(l1)V3(pl2)V4(pl1l2)

=
W (log y)7

3

1�

0

�

tj≥0
t1+t2≤x

(1− x)3y−α1t1−(α4+α5)t2t1

×Q(x)R(x− t1 − t2) dt1 dt2 dx+O(L6)

uniformly for αj � L−1, 1 ≤ j ≤ 5, where

W =
∏
p

(
1 +

2F (p)V1(p)V3(p)V4(p)

p
+

4F (p)2V1(p)V2(p)V4(p)

p

)(
1− 1

p

)6

.

Proof. We begin with the first statement. We start with the sum over l2
on the left hand side, which is∑

l2≤y/l1
(l2,l1)=1

h(l2)R([l1l2]y)

l1+α1
2

F (l2, α3)V1(l2)V3(l2)V4(l2).

As in the proof of Lemma 2.3, this equals

(2.3)
∏
p

{
W1(p)

−1
(

1− 1

p

)2}
(log y)2W1(l1)

×
[l1]y�

0

y−α1t1t1R([l1]y − t1) dt1 +O(L),

where

W1(n) =
∏
p|n

(
1 +

2F (p)V1(p)V3(p)V4(p)

p

)−1
.
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Hence the required expression is

(2.4)
∏
p

{
W1(p)

−1
(

1− 1

p

)2}
(log y)2

∑
l1≤y

h(l1)
2Q([l1]y)

l1
F (l1, α2)F (l1, α3)

× V1(l1)V2(l1)V4(l1)W1(l1)

[l1]y�

0

y−α1t1t1R([l1]y − t1)dt1 +O(L5).

Using Selberg’s method [15] again we have∑
l1≤t

h(l1)
2

l1
F (l1, α2)F (l1, α3)V1(l1)V2(l1)V4(l1)W1(l1)

=
∏
p

{
W2(p)

−1
(

1− 1

p

)4}(log t)4

24
+O(L3)

for any t ≤ T , where

W2(n) =
∏
p|n

{
1 +

4F (p)2V1(p)V2(p)V4(p)W1(p)

p

}−1
.

Partial summation then implies that (2.4) is equal to

∏
p

{
W1(p)

−1W2(p)
−1
(

1− 1

p

)6}(log y)4

6

×
1�

0

x�

0

(1− x)3y−α1t1t1Q(x)R(x− t1) dt1 dx+O(L5).

It is easy to check that the arithmetical factor is W , and we obtain the first
statement.

For the second statement, we first notice that the contribution of the
terms involving p−s with Re(s) > 1 is O(L6). Hence the left hand side of (ii)
is

2
∑
l1l2≤y

h(l1l2)h(l1)Q([l1]y)

l1l
1+α1
2

F (l1, α2)F (l1l2, α3)V1(l1l2)V2(l1)V3(l2)V4(l1l2)

×
∑

p≤y/l1l2
(p,l1l2)=1

(log p)R([pl1l2]y)

p1+α4+α5
+O(L6).

The same argument shows that we can include the terms p | l1l2 in the in-
nermost sum with an admissible error O(L6), so that the above expression
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is equal to

2
∑
p≤y

log p

p1+α4+α5

∑
l1l2≤y/p

h(l1l2)h(l1)Q([l1]y)R([pl1l2]y)

l1l
1+α1
2

× F (l1, α2)F (l1l2, α3)V1(l1l2)V2(l1)V3(l2)V4(l1l2) +O(L6).

We have ∑
p≤t

log p

p
= log t+O(1).

The result follows by using (i) and partial summation.

3. Proof of Lemma 1.2. To evaluate M1(H,T ), we first appeal to
Theorem 1 of [1] and obtain

M1(H,T ) = T
∑
m,n≤y

h(m)h(n)P ([m]y)P ([n]y)(m,n)

mn

×
(

log
T (m,n)2

2πmn
+ 2γ − 1

)
+OB(TL−B) +Oε(y

2T ε)

for any B > 0, where γ is the Euler constant. Using the Möbius inversion
formula

f((m,n)) =
∑
l|m
l|n

∑
d|l

µ(d)f

(
l

d

)
,

we can write the above as

T
∑
l≤y

∑
d|l

µ(d)

dl

∑
m,n≤y/l

h(lm)h(ln)P ([lm]y)P ([ln]y)

mn

×
(

log
T

2πd2mn
+ 2γ − 1

)
+OB(TL−B).

We next replace the term in the bracket by log T
2πmn . This produces an error

of size

� T
∑
l≤y

d(l)2

l

( ∑
n≤y/l

d(n)

n

)2∑
d|l

log d

d
� TL8.

Hence M1(H,T ) equals
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T
∑
l≤y

ϕ(l)

l2

∑
m,n≤y/l

h(lm)h(ln)P ([lm]y)P ([ln]y)

mn
(L− logm− log n) +O(TL8)

= TL
∑
l≤y

ϕ(l)

l2

( ∑
n≤y/l

h(ln)P ([ln]y)

n

)2

− 2T
∑
l≤y

ϕ(l)

l2

∑
m,n≤y/l

h(lm)h(ln)P ([lm]y)P ([ln]y) log n

mn
+O(TL8).

The result follows by Lemmas 2.3–2.5. Here we use the fact (easy to verify)
that C2D = A.

4. Proof of Lemma 1.3. We define H(s) = ζ(s)G(s), i.e.

G(s) =
∑
n≤y

h(n)P ([n]y)

ns
.

By Cauchy’s theorem we have∑
0<γ≤T

H(ρ+ iα)H(1− ρ− iα)

=
1

2πi

�

C

ζ ′

ζ
(s)ζ(s+ iα)ζ(1− s− iα)G(s+ iα)G(1− s− iα) ds,

where C is the positively oriented rectangle with vertices at 1− a+ i, a+ i,
a+ iT and 1−a+ iT . Here a = 1+L−1 and T is chosen so that the distance
from T to the nearest γ is � L−1. It is standard that the contribution from
the horizontal segments of the contour is Oε(yT

1/2+ε).
We denote the contribution from the right edge by N1, where

(4.1) N1 =
1

2πi

a+iT�

a+i

χ(1− s− iα)
ζ ′

ζ
(s)ζ(s+ iα)2G(s+ iα)G(1− s− iα) ds.

From the functional equation we have
ζ ′

ζ
(1− s) =

χ′

χ
(1− s)− ζ ′

ζ
(s).

Hence the contribution from the left edge, upon replacing s by 1− s, is

1

2πi

a−iT�

a−i

ζ ′

ζ
(1− s)ζ(1− s+ iα)ζ(s− iα)G(1− s+ iα)G(s− iα) ds

=
1

2πi

a−iT�

a−i

(
χ′

χ
(1− s)− ζ ′

ζ
(s)

)
ζ(1− s+ iα)ζ(s− iα)G(1− s+ iα)G(s− iα) ds

= −N2 +N1 +Oε(yT
1/2+ε),
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where

(4.2)

N2 =
1

2πi

a+iT�

a+i

χ′

χ
(1− s)ζ(1− s+ iα)ζ(s− iα)G(1− s+ iα)G(s− iα) ds.

Thus

(4.3)
∑

0<γ≤T
H(ρ+ iα)H(1− ρ− iα) = 2Re

(
N1

)
−N2 +Oε(yT

1/2+ε).

4.1. Evaluation of N2. We move the line of integration in (4.2) to the
1
2 -line. As before, this produces an error of size Oε(yT

1/2+ε). Hence we get

N2 =
1

2π

T−α�

1−α

χ′

χ

(
1
2 − it− iα

)∣∣H(12 + it
)∣∣2 dt+Oε(yT

1/2+ε).

From Stirling’s approximation we have

χ′

χ

(
1
2 − it

)
= − log

t

2π
+O(t−1) (t ≥ 1).

Combining this with Lemma 1.2 and integration by parts, we easily obtain

N2 = −ATL(log y)9

12π
(4.4)

×
1�

0

(1− x)3(ϑ−1P1(x)2 − 2P1(x)P2(x)) dx+O(TL9).

4.2. Evaluation of N1. It is easier to start with a more general sum

N1(β, γ) =
1

2πi

a+i(T+α)�

a+i(1+α)

χ(1− s)ζ
′

ζ
(s+ β)ζ(s+ γ)ζ(s)

×
(∑
m≤y

h(m)P ([m]y)

ms

)(∑
n≤y

h(n)P ([n]y)

n1−s

)
ds,

so that N1 = N1(−iα, 0). From Lemma 2.1, we obtain

N1(β, γ) =
∑
n≤y

h(n)P ([n]y)

n

∑
m≤nT/2π

a(m)e

(
−m
n

)
+Oε(yT

1/2+ε),

where the arithmetic function a(m) is defined by

(4.5)
ζ ′

ζ
(s+ β)ζ(s+ γ)ζ(s)

∑
m≤y

h(m)P ([m]y)

ms
=
∞∑
m=1

a(m)

ms
.
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Following the methods of Conrey, Ghosh and Gonek [9, Sections 5–6 and
(8.2)], and of Bui and Heath-Brown [5], we can write

N1(β, γ) = Q(β, γ) + E +Oε(yT
1/2+ε),

where

(4.6) Q(β, γ) =
∑
ln≤y

h(ln)P ([ln]y)

ln

µ(n)

ϕ(n)

∑
m≤nT/2π
(m,n)=1

a(lm)

and

E �B,ε TL
−B + y1/3T 5/6+ε

for any B > 0.

Let

(4.7)
ζ ′

ζ
(s+ β)ζ(s+ γ)ζ(s) =

∞∑
n=1

g(n)

ns
.

From (4.5) and Lemma 2.2 we have

a(lm) =
∑
l=l1l2

m=m1m2
l1m1≤y

(m2,l1)=1

h(l1m1)P ([l1m1]y)g(l2m2).

Hence

(4.8) Q(β, γ) =
∑

l1l2n≤y

h(l1l2n)P ([l1l2n]y)

l1l2n

µ(n)

ϕ(n)

×
∑

l1m1≤y
(m1,n)=1

h(l1m1)P ([l1m1]y)
∑

m2≤nT/2πm1

(m2,l1n)=1

g(l2m2).

Lemma 4.1. Suppose a and b are coprime, square-free integers. Then

G(x; a, b) :=
∑
n≤x

(n,b)=1

g(an)

= − x
1−β

1− β
∑

a=a2a3

1

aγ2
ζ(1− β + γ)ζ(1− β)F (b,−β + γ)F (a2b,−β)

+
x1−γ

1− γ
∑

a=a2a3

1

aγ2

(
ζ ′

ζ
(1 + β − γ) +

∑
p|b

log p

p1+β−γ − 1

)
× ζ(1− γ)F (b)F (a2b,−γ)
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− x1−γ

1− γ
∑

a=pa2a3

1

pβaγ2

log p

1− p−(1+β−γ)
ζ(1− γ)F (pb)F (pa2b,−γ)

+ x
∑

a=a2a3

1

aγ2

(
ζ ′

ζ
(1 + β) +

∑
p|b

log p

p1+β − 1

)
ζ(1 + γ)F (b, γ)F (a2b)

− x
∑

a=pa2a3

1

pβaγ2

log p

1− p−(1+β)
ζ(1 + γ)F (pb, γ)F (pa2b)

+OB,ε((log ab)1+εx(log x)−B).

Proof. An argument similar to that for the prime number theorem im-
plies that, up to an error term of size OB,ε((log ab)1+εx(log x)−B) for any
B > 0, G(x; a, b) is the sum of the residues at s = 1−β, s = 1−γ and s = 1
of

xs

s

∑
(n,b)=1

g(an)

ns
.

Combining (4.7) and Lemma 2.2 shows that the above expression is

xs

s

∑
a=a1a2a3

(
−
∑

(n,b)=1

Λ(a1n)

(a1n)βns

)( ∑
(n,a1b)=1

1

(a2n)γns

)( ∑
(n,a1a2b)=1

1

ns

)

=
xs

s

∑
a=a1a2a3

1

aβ1a
γ
2

(
−

∑
(n,b)=1

Λ(a1n)

ns+β

)
× ζ(s+ γ)ζ(s)F (a1b, s+ γ − 1)F (a1a2b, s− 1).

We have

−
∑

(n,b)=1

Λ(a1n)

ns+β
=


ζ′

ζ (s+ β) +
∑

p|b
log p

ps+β−1 if a1 = 1,

− log p
1−p−(s+β) if a1 = p,

0 otherwise.

The result follows.

In view of the above definition, the innermost sum in (4.8) is

G(nT/2πm1; l2, l1n).

We then write

Q(β, γ) =

6∑
j=1

Qj(β, γ)

corresponding to the decomposition of G(x; a, b) in Lemma 4.1.
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We begin with Q1(β, γ). Writing l2l3 for l2, and m for m1, we have

Q1(β, γ) = −(T/2π)1−β

1− β
ζ(1− β + γ)ζ(1− β)

×
∑

l1l2l3≤y
l1m≤y

h(l1l2l3)h(l1m)P ([l1m]y)

l1l
1+γ
2 l3m1−β

F (l1,−β + γ)F (l1l2,−β)

×
∑

n≤y/l1l2l3
(n,l1l2l3m)=1

µ(n)h(n)P ([l1l2l3n]y)

ϕ(n)nβ
F (n,−β + γ)F (n,−β).

From Lemma 2.6, the innermost sum is

U1V1(l1l2l3m)

(
P ′′([l1l2l3]y)

(log y)2
+

2βP ′([l1l2l3]y)

log y
+ β2P ([l1l2l3]y)

)
+O(Fτ0(l1l2l3m)L−3) +Oε

(
Fτ0(l1l2l3m)

(
y

l1l2l3

)−ν
L−2+ε

)
.

By Lemma 2.5, the contribution of the O-terms to Q1(β, γ) is Oε(TL
9+ε).

Hence

Q1(β, γ) = −U1(T/2π)1−βζ(1− β + γ)ζ(1− β)

×
∑
l1l2≤y

F (l1,−β + γ)F (l1l2,−β)

l1l
1+γ
2

(
A2(y, P, P

′′; l1, l2,−β)

(log y)2

+
2βA2(y, P, P

′; l1, l2,−β)

log y
+ β2A2(y, P, P ; l1, l2,−β)

)
+Oε(TL

9+ε).

Using Lemmas 2.8–2.9 we obtain

(4.9) Q1(β, γ) = −A(T/2π)1−β(log y)10

6
ζ(1− β + γ)ζ(1− β)

×
1�

0

x�

0

x�

0

(1− x)3yβt−γt1tt1P (x− t)

×
(
P (x− t1)
(log y)2

+
2βP0(x− t1)

log y
+ β2P1(x− t1)

)
dt dt1 dx+Oε(TL

9+ε).

Here we have used the easily verified fact that U1U2W = A.



118 H. M. Bui

For Q2(β, γ), we write the sum
∑

p|l1n as
∑

p|l1 +
∑

p|n, since the function

h(n) is supported on square-free integers. In doing so we have

(4.10) Q2(β, γ) =
(T/2π)1−γ

1− γ
ζ(1− γ)

×
∑

l1l2l3≤y
l1m≤y

h(l1l2l3)h(l1m)P ([l1m]y)

l1l
1+γ
2 l3m1−γ

F (l1)F (l1l2,−γ)

×
(
ζ ′

ζ
(1 + β − γ) +

∑
p|l1

log p

p1+β−γ − 1

)

×
∑

n≤y/l1l2l3
(n,l1l2l3m)=1

µ(n)h(n)P ([l1l2l3n]y)

ϕ(n)nγ
F (n)F (n,−γ)

+
(T/2π)1−γ

1− γ
ζ(1− γ)

∑
l1l2l3≤y
l1m≤y

h(l1l2l3)h(l1m)P ([l1m]y)

l1l
1+γ
2 l3m1−γ

F (l1)F (l1l2,−γ)

×
∑
p|n

n≤y/l1l2l3
(n,l1l2l3m)=1

log p

p1+β−γ − 1

µ(n)h(n)P ([l1l2l3n]y)

ϕ(n)nγ
F (n)F (n,−γ).

We consider the contribution from the terms
∑

p|l1 . From Lemma 2.6, the
sum over n is

� L−2 + Fτ0(l1l2l3m)L−3 +Oε

(
Fτ0(l1l2l3m)

(
y

l1l2l3

)−ν
L−2+ε

)
.

Hence the contribution of the terms
∑

p|l1 to Q2(β, γ) is

�ε TL
−1

∑
p|l1

l1l2l3≤y
l1m≤y

log p

p− 1

d4(l1)d(l2)d(l3)d(m)

l1l2l3m

×
(

1 + Fτ0(l1l2l3m)L−1 + Fτ0(l1l2l3m)

(
y

l1l2l3

)−ν
Lε
)

�ε TL
5
∑
p|l1
l1≤y

log p

p− 1

d4(l1)

l1

(
1 + Fτ0(l1)L

−1+ε)�ε TL
9+ε.

The same argument shows that the last term in (4.10) is also Oε(TL
9+ε).

The remaining terms are
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(T/2π)1−γ

1− γ
ζ ′

ζ
(1 + β − γ)ζ(1− γ)

∑
l1l2l3≤y
l1m≤y

h(l1l2l3)h(l1m)P ([l1m]y)

l1l
1+γ
2 l3m1−γ

× F (l1)F (l1l2,−γ)
∑

n≤y/l1l2l3
(n,l1l2l3m)=1

µ(n)h(n)P ([l1l2l3n]y)

ϕ(n)nγ
F (n)F (n,−γ).

Similarly to Q1(β, γ), we thus obtain

(4.11) Q2(β, γ) =
A(T/2π)1−γ(log y)10

6

ζ ′

ζ
(1 + β − γ)ζ(1− γ)

×
1�

0

x�

0

x�

0

(1− x)3yγ(t−t1)tt1P (x− t)

×
(
P (x− t1)
(log y)2

+
2γP0(x− t1)

log y
+ γ2P1(x− t1)

)
dt dt1 dx+Oε(TL

9+ε).

The fourth term Q4(β, γ) is in the same form as Q2(β, γ). Similar cal-
culations then yield

(4.12) Q4(β, γ) =
A(T/2π)(log y)8

6

ζ ′

ζ
(1 + β)ζ(1 + γ)

×
1�

0

x�

0

(1− x)3y−γt1t1P1(x)P (x− t1) dt1 dx+Oε(TL
9+ε).

To evaluate Q3(β, γ), we rearrange the sums and write Q3(β, γ) in the
form

−(T/2π)1−γ

1− γ
ζ(1− γ)

∑
pl1l2l3≤y
l1m≤y

log p

(p1+β−γ − 1)pγ
h(pl1l2l3)h(l1m)P ([l1m]y)

l1l
1+γ
2 l3m1−γ

× F (pl1)F (pl1l2,−γ)
∑

n≤y/pl1l2l3
(n,pl1l2l3m)=1

µ(n)h(n)P ([pl1l2l3n]y)

ϕ(n)nγ
F (n)F (n,−γ).

By Lemma 2.6, the innermost sum is

U1V1(pl1l2l3m)

(
P ′′([pl1l2l3]y)

(log y)2
+

2γP ′([pl1l2l3]y)

log y
+ γ2P ([pl1l2l3]y)

)
+O(Fτ0(pl1l2l3m)L−3) +Oε

(
Fτ0(pl1l2l3m)

(
y

pl1l2l3

)−ν
L−2+ε

)
.
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The contribution of the O-terms is Oε(TL
9+ε), by Lemma 2.5. The remain-

ing terms contribute

−U1(T/2π)1−γ

(1− γ)
ζ(1− γ)

∑
pl1l2≤y

log p

(p1+β−γ − 1)pγ
F (pl1)F (pl1l2,−γ)

l1l
1+γ
2

×
(
A2(y, P, P

′′; l1, pl2,−γ)

(log y)2
+

2γA2(y, P, P
′; l1, pl2,−γ)

log y

+ γ2A2(y, P, P ; l1, pl2,−γ)

)
.

In view of Lemma 2.8, this equals

− U1U2(T/2π)1−γ(log y)4ζ(1− γ)
∑

pl1l2≤y

log p

(p1+β−γ − 1)pγ
h(pl1l2)h(l1)

l1l
1+γ
2

× F (pl1)F (pl1l2,−γ)V1(pl1l2)V2(l1)V3(pl2)V4(pl1l2)

×
[l1]y�

0

yγttP ([l1]y − t)
(
P ([pl1l2]y)

(log y)2
+

2γP0([pl1l2]y)

log y

+ γ2P1([pl1l2]y)

)
dt+O(TL9).

From Lemma 2.9(ii) we obtain

Q3(β, γ) = −A(T/2π)1−γ(log y)11

3
ζ(1− γ)(4.13)

×
1�

0

�

t,tj≥0
t≤x

t1+t2≤x

(1− x)3yγ(t−t1)−βt2tt1P (x− t)

×
(
P (x− t1 − t2)

(log y)2
+

2γP0(x− t1 − t2)
log y

+ γ2P1(x− t1 − t2)
)
dt dt1 dt2 dx+Oε(TL

9+ε).

The termQ5(β, γ) is in the same form asQ3(β, γ). Therefore calculations
give

(4.14) Q5(β, γ) = −A(T/2π)(log y)9

3
ζ(1 + γ)

1�

0

�

tj≥0
t1+t2≤x

(1− x)3y−γt1−βt2t1

× P1(x)P (x− t1 − t2) dt1 dt2 dx+Oε(TL
9+ε).
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Finally, we have Q6(β, γ) = OB(TL−B) for any B > 0.

Collecting the estimates (4.3), (4.4), (4.9), (4.11)–(4.14), and letting

β = −iα, γ → 0,

we obtain Lemma 1.3.
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