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1. Introduction. Quaternion fields are special cases of central division
algebras. Let us recall that such an algebra F is a 4-dimensional algebra
over a number field K with basis (1, i, j, k) such that i2 = a, j2 = b and
k = ij = −ji, where a, b are nonzero elements of K. This algebra is denoted
by
(a,b
K

)
. Let w = x+yi+zj+ tk ∈

(a,b
K

)
, where x, y, z, t ∈ K. We denote by

w the image of w under the canonical involution of
(a,b
K

)
, which is defined

by w = x − yi − zj − tk, and by nrdF/K(w) = ww its reduced norm.

The algebra
(a,b
K

)
is a division algebra if and only if the quadratic form

nrdF/K(x+ yi+ zj + tk) = x2 − ay2 − bz2 + abt2 represents zero on K only

trivially. In this case, we say that
(a,b
K

)
is a quaternion field.

Throughout this paper, F will be a quaternion field over a number
field K. We will denote by ZK the ring of integers of K, by Z×K its unit
group and by NK/Q the norm form. We will also write NK/Q for the norm of
an ideal (if I is a nonzero ideal of ZK , then NK/Q(I) = |ZK/I|) and nrdF/K
for the reduced norm of an ideal (if J is an ideal of F , then nrdF/K(J) is
the ideal of K generated by the nrdF/K(x), x ∈ J).

Definition 1.1. Let Λ be an order of F . We say that Λ is right-Eucli-
dean if there exist a well-ordered set W and a map Φ : Λ → W such that
for every (a, b) ∈ Λ× Λ \ {0} there exists some q ∈ Λ satisfying

(1) Φ(a− bq) < Φ(b).

We will also say that Φ is a right-Euclidean stathm for Λ.

Let us denote by N : F → Q≥0 the absolute value of the reduced norm
map nrdF/Q : F → Q defined by nrdF/Q = NK/Q ◦ nrdF/K . The map N
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is multiplicative and for any order Λ of F , it satisfies N(Λ) ⊆ Z≥0. So N ,
with W = Z≥0, is a natural and practical candidate for checking whether Λ
is right-Euclidean, which leads to the following, more precise definition.

Definition 1.2. An order Λ of F is right-norm-Euclidean if for any
(a, b) ∈ Λ× Λ \ {0}, there exists some q ∈ Λ such that

(2) N(a− bq) < N(b).

We can similarly define left-Euclidean orders and left-norm-Euclidean
orders by replacing bq by qb in (1) and (2). In fact, the left and right
variants are equivalent, which allows one to speak of Euclidean and norm-
Euclidean orders (see [3]). Moreover, if F admits a Euclidean (respectively
norm-Euclidean) order Λ, then Λ is maximal and every maximal order of F
is also Euclidean (respectively norm-Euclidean), which enables us to speak of
Euclidean (respectively norm-Euclidean) quaternion fields, that is, quater-
nion fields admitting a Euclidean (respectively norm-Euclidean) maximal
order. All these considerations are developed in [3] and will be recalled in
Section 2.

Our main results are the following theorems which deal with totally in-
definite quaternion fields, i.e. quaternion fields in which no infinite place is
ramified.

Theorem 3.4. Let F be a totally indefinite quaternion field over a num-
ber field K. Then:

(i) If K is Euclidean, then F is Euclidean.
(ii) If K is norm-Euclidean, then F is norm-Euclidean.

(iii) If the class number of K is equal to 1, then for any maximal order
Λ of F , we have M(Λ) ≤M(K).

We refer the reader to Section 2 for the definitions of the Euclidean
minima M(Λ) and M(K). The above theorem will enable us to find an
example of Euclidean quaternion field which is not norm-Euclidean (see
Proposition 3.8).

Eichler [6, Section IV] had already studied a variation of the norm-
Euclidean property for quaternion fields satisfying the so-called Eichler con-
dition (1) (which is satisfied by any totally indefinite quaternion field). He
proved a statement similar to Theorem 3.4(ii), but his proof (as some others
in the literature) seems to be incomplete. See Section 3 for details.

Theorem 4.1. Let K = Q(
√
−d) (where d is a squarefree positive in-

teger) be an imaginary quadratic number field. Let F be a quaternion field

(1) A quaternion field F over a number field K satisfies the Eichler condition if there
exists at least one infinite place of K which is not ramified in F .
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over K. Then F is norm-Euclidean if and only if d ∈ {1, 2, 3, 7, 11} or
F =

( −2,−5
Q(
√
−19)

)
.

Eichler asked a question that can be reformulated in our context as
follows. Let F be a totally indefinite (2) quaternion field over a number
field K. Suppose that F is norm-Euclidean. Does this imply that K is norm-
Euclidean? The last quaternion field of Theorem 4.1 provides a negative
answer to this question. It is norm-Euclidean while the field Q(

√
−19) is

not norm-Euclidean, and even not Euclidean.

The organization of the paper is as follows. In Section 2, we give basic
definitions and recall some properties of totally indefinite quaternion fields
and Euclidean quaternion fields. Then Sections 3 and 4 are respectively
devoted to proving Theorem 3.4 and Theorem 4.1.

2. First definitions

2.1. Orders, ideals. We first recall some definitions and basic prop-
erties. The reader may refer to [5], [10] and [11] for more details. Let v be
a place of K and Kv be the completion of K at v. We say that v is ram-
ified in F if Fv = F ⊗K Kv is a skew field. An infinite place of K which
is ramified in F is necessarily real. The set of places (finite and infinite)
which are ramified in F is nonempty (since F is a field), of even cardinality,
and uniquely characterizes F up to K-algebra isomorphism. If no infinite
place is ramified, we say that F is totally indefinite. As a consequence, if K
is totally complex, any quaternion field over K is totally indefinite. In this
case, the number of finite places of K which ramify in F is a positive even
number.

An ideal I of a quaternion field F is a full ZK-lattice in F , i.e. KI = F .
An order of F is an ideal which is also a subring of F . Equivalently, an
order Λ of F is a subring of F containing ZK such that KΛ = F and whose
elements are integral over ZK . An order is maximal if it is not properly
contained in another order. An ideal I defines two orders, its right order
and its left order, respectively given by Or(I) = {x ∈ F ; Ix ⊆ I} and
Ol(I) = {x ∈ F ; xI ⊆ I}.

Two ideals I, J are left-equivalent if there exists some x ∈ F \ {0} such
that I = xJ . The classes of ideals with right order Λ are called the right
classes of Λ. In the same way we define the left classes of Λ. If Λ is a
maximal order of F , then the number of right classes of Λ is finite and equal
to the number of left classes of Λ. Moreover this number is independent

(2) Actually, he only asked for F to satisfy the Eichler condition, which is looser
in general. If K is an imaginary quadratic field, then F is totally indefinite, and as a
consequence, it satisfies the Eichler condition.
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of the choice of Λ. It is called the class number of F and will be denoted
by hF .

Two orders Λ and Λ′ of F are of the same type (or conjugate) if there
exists some x ∈ F \ {0} such that Λ′ = x−1Λx. This defines an equivalence
relation over the set of maximal orders in F . The number of classes for this
relation in the set of maximal orders is called the type number of F and will
be denoted by tF . We have tF ≤ hF .

An ideal I is two-sided if Or(I) = Ol(I), normal if both Or(I) and Ol(I)
are maximal orders, and integral if it is normal and I ⊆ Or(I). In the latter
case, we also have I ⊆ Ol(I). For instance, if Λ is a maximal order and if
b ∈ Λ \ {0}, then bΛ is an integral ideal with right order Λ and left order its
conjugate bΛb−1.

Let Λ be a maximal order. A prime ideal P of Λ is a proper integral
two-sided ideal with right order Λ such that for every pair of two-sided
ideals S, T , with the same properties, if ST ⊆ P then S ⊆ P or T ⊆ P. For
every prime ideal P of a maximal order Λ, there exists a unique prime ideal
p of ZK such that p ⊆ P and p = P ∩ ZK . Conversely, if Λ is a maximal
order, then for every prime ideal p of ZK , there exists a unique prime ideal
of Λ such that p ⊆ P. With this notation, if the prime p is ramified in F ,
then pΛ = P2.

A maximal ideal N is a maximal element in the set of proper integral
ideals with right order Or(N). In this case, N is also maximal in the set of
proper integral ideals with left order Ol(N).

Remark 2.1. Assume that Λ is a maximal order and that N is a max-
imal ideal with right order Λ. In contrast to the commutative case, we can
find x, y ∈ Λ such that xy ∈ N but neither x nor y belongs to N. For in-
stance, take F =

(−1,−1
Q
)

and Λ = Z+ iZ+ jZ+ 1+i+j+k
2 Z, respectively the

Hamilton quaternion field and the Hurwitz quaternion ring. Set α = 1+i+j
and N = αΛ, which is a maximal ideal with right order Λ. Then x = 1+i+k
and y = x satisfy xy = 3 ∈ N and neither x ∈ N nor y ∈ N.

For every maximal ideal N with right maximal order Λ, there is a unique
prime ideal P of Λ such that P ⊆ N, and we have P = {x ∈ Λ; Λx ⊆ N}.
Then, with the previous notation, N∩ZK = P∩ZK = p and nrdF/K(N) = p.

A proper product of ideals is a product N1 · · ·Nl where for every 1 ≤
i ≤ l − 1, Or(Ni) = Ol(Ni+1). Every proper integral ideal I admits a de-
composition into a proper product of maximal ideals I = N1 · · ·Nl where
Ol(I) = Ol(N1) and Or(I) = Or(Nl) (see [10, Theorem 22.18]). Then, as
seen in [3, Lemma 2.2], we have

nrdF/K(I) = nrdF/K(N1) · · · nrdF/K(Nl).
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Lemma 2.2. Let Λ be a maximal order of F and let p be a nonzero prime
ideal of ZK .

(i) If p is ramified in F , then there exists a unique maximal ideal N of
F such that p ⊆ N. Moreover, N is two-sided.

(ii) Let x ∈ Λ and y ∈ pΛ. Then nrdF/K(x+ y) = nrdF/K(x) mod p.
(iii) Suppose that a∈Λ \ {0} satisfies nrdF/K(a)∈ p. Then there exists

a maximal ideal N with right order Λ such that a ∈ N and
N ∩ ZK = p.

Proof. (i) See [3, Lemma 2.2].

(ii) There are a positive integer r, (pj)1≤j≤r ∈ pr, and (λj)1≤j≤r ∈ Λr
such that y =

∑r
j=1 pjλj . We compute nrdF/K(x + y) = nrdF/K(x) +

nrdF/K(y) + trdF/K(xy). First,

nrdF/K(y) =
∑

1≤j<k≤r
trdF/K(pjλjpkλk) +

r∑
j=1

nrdF/K(pjλj)

=
∑

1≤j<k≤r
pjpktrdF/K(λjλk) +

r∑
j=1

p2j nrdF/K(λj).

That proves that nrdF/K(y) ∈ p. Likewise,

trdF/K(xy) =

r∑
j=1

trdF/K(xλj)pj ∈ p.

(iii) Consider the integral ideal I = aΛ+pΛ. Its right order is Λ. Assum-
ing I ( Λ, there exists a maximal ideal N with right order Λ containing I.
As p is included in N, we have N ∩ ZK = p. By construction, we also have
a ∈ N.

It remains to prove that I ( Λ. Let us assume that I = Λ. Then there
exist λ ∈ Λ and µ ∈ pΛ such that

1 = aλ+ µ.

But then 1 = nrdF/K(aλ+ µ) = nrdF/K(a) nrdF/K(λ) mod p thanks to (ii).
As nrdF/K(a) ∈ p, this proves that 1 ∈ p, which is obviously false. Thus,
I ( Λ.

Lemma 2.3. Let Λ be a maximal order of F . Then, for any a, b ∈ Λ such
that aΛ+bΛ = Λ, there exists c ∈ Λ such that nrdF/K(a+bc) and nrdF/K(b)

are coprime (3).

(3) Let x, y ∈ ZK . We say that x and y are coprime, or that x is coprime to y, when
the ideals xZK and yZK are coprime.
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Such a lemma was stated by Eichler and used without proof [6, p. 241].
Vignéras gave an unconvincing proof [11, p. 91] (4).

Remark 2.4. If hF = 1, we can obtain a similar decomposition to that
in Lemma 2.3, even without the assumption that aΛ + bΛ = Λ. Indeed, as
aΛ+ bΛ is an ideal with right order Λ and hF = 1, there exists a µ ∈ Λ such
that aΛ + bΛ = µΛ. Then we can consider µ−1a and µ−1b, which satisfy
the hypotheses of the lemma. Therefore, there exist α, β, τ ∈ Λ such that
nrdF/K(α) and nrdF/K(β) are coprime and

a = µα+ µβτ, b = µβ.

Proof of Lemma 2.3. If b is zero or a unit, the lemma is clear, so we may
assume from now on that nrdF/K(b) is neither zero nor a unit. Let P be the
set of nonzero prime ideals of ZK dividing nrdF/K(b).

First, we want to prove that for any p ∈ P, there exists some τp ∈ Λ
such that

nrdF/K(a+ bτp) /∈ p or trdF/K(a+ bτp) /∈ p.

Obviously, if nrdF/K(a) /∈ p or trdF/K(a) /∈ p, we may take τp = 0. Let us as-
sume then that nrdF/K(a) ∈ p and trdF/K(a) ∈ p. Thanks to Lemma 2.2(iii),
there exists a maximal ideal N such that a ∈ N and N ∩ ZK = p. As
aΛ + bΛ = Λ, we have b /∈ N, therefore N + bΛ = Λ. Consequently, there
exist m ∈ N and τp ∈ Λ such that

1 = m+ bτp.

Hence, 1− bτp ∈ N. But 1− bτp = 1− trdF/K(bτp) + τp · b. If trdF/K(bτp) ∈
p ⊆ N, then 1 + τp · b ∈ N. By multiplying on the right by b ∈ Λ =
Or(N), as nrdF/K(b) ∈ p we obtain b ∈ N, which is impossible. Therefore,
trdF/K(bτp) /∈ p and, as required,

trdF/K(a+ bτp) /∈ p.

Now, we prove that for any p ∈ P, there exists some cp ∈ Λ with

nrdF/K(a+ bcp) /∈ p.

Fix any p ∈ P. If τp is such that nrdF/K(a+ bτp) /∈ p, then take cp = τp. If
not, then we have nrdF/K(a+ bτp) ∈ p and trdF/K(a+ bτp) /∈ p. Let us take

(4) Her proof relied on the following property. Let Λ be a maximal order and let
N be a maximal ideal with right order Λ. Let x, y ∈ Λ be such that xy ∈ N. Then
x ∈ N or y ∈ N. We have seen in Remark 2.1 that this is incorrect, and even in the
totally indefinite case, it is still false. As an example, which we will study later, take
F = ( −2,−5

Q(
√
−19)

), Λ = ZK ⊕ iZK ⊕ 1+i+j
2

ZK ⊕ 2−i+k
4

ZK , α = 1 + i, and N = αΛ. Then

x = 1 + 2−i+k
4

and y = x satisfy xy = 3 = nrdF/K(α) ∈ N. On the one hand, since
hF = 1 and nrdF/K(α) = 3, it is easy to see that N is maximal. On the other hand,
trdF/K(α−1x) = 2

3
6∈ ZK and trdF/K(α−1y) = 4

3
/∈ ZK , which implies that neither x ∈ N

nor y ∈ N.
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any nonzero prime ideal q 6= p of ZK . Then p and q are coprime, so there
exist s ∈ p and t ∈ q such that

1 = s+ t.

Moreover, as (a+ bτp)Λ+ bΛ = Λ, there exist λ, µ ∈ Λ such that

1 = (a+ bτp)λ+ bµ.

Then set cp = τp + µt. We have

nrdF/K(a+ bcp) = nrdF/K(a+ bτp) + nrdF/K(bµt)(3)

+ trdF/K((a+ bτp)bµt).

But nrdF/K(a+ bτp) ∈ p, nrdF/K(bµt) = nrdF/K(b) nrdF/K(µt) ∈ p and

trdF/K((a+ bτp)bµt) = trdF/K((a+ bτp)1− (a+ bτp)λ)t

= trdF/K(a+ bτp)t− trdF/K((a+ bτp) · λ · a+ bτp)t

=
(
trdF/K(a+ bτp)− nrdF/K(a+ bτp)trdF/K(λ)

)
t.

Therefore, (3) shows that nrdF/K(a+ bcp) = trdF/K(a+ bτp) mod p, and so
nrdF/K(a+ bcp) /∈ p, as expected.

Finally, we prove that there exists some c ∈ Λ such that for any p ∈ P,
nrdF/K(a+ bc) /∈ p. If |P| = 1, this is clear. If not, let us fix p ∈ P. Then

p +
∏
q∈P
q6=p

q = ZK .

So there exist rp ∈ p and sp ∈
∏

q∈P, q 6=p q such that

rp + sp = 1.

Put c =
∑

q∈P sqcq. Then, for any p ∈ P,

c− cp =
∑
q∈P
q6=p

sqcq − rpcp.

As a result, c− cp ∈ pΛ. Therefore, by Lemma 2.2(ii),

nrdF/K(a+ bc) = nrdF/K(a+ bcp) mod p.

Consequently, nrdF/K(a+ bc) /∈ p for any p ∈ P.

2.2. The Euclidean property. We recall the main properties of Eu-
clidean quaternionic orders given in [3, 2.3].

Proposition 2.5. Let Λ be an order of F .

(i) Λ is left-Euclidean if and only if Λ is right-Euclidean. Therefore,
Λ will be said to be Euclidean if it is left- or right-Euclidean. How-
ever, this does not necessarily mean that Λ admits a function which
is both a left and right-Euclidean stathm.
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(ii) If Λ is Euclidean, then Λ is maximal.
(iii) If Λ is Euclidean, then hF = 1.
(iv) If Λ is Euclidean, then every maximal order of F is Euclidean.

These properties lead to the following definition: A Euclidean quaternion
field is a quaternion field admitting a Euclidean order, or equivalently such
that every maximal order is Euclidean.

2.3. When the stathm is the norm. Let us denote by mK the local
Euclidean minimum map of K (for the norm form) defined by mK(x) =
infX∈ZK

|NK/Q(x − X)| for x ∈ K. Let M(K) = supx∈K mK(x) be the
Euclidean minimum of K. In the same way, let us introduce the notions of
local (and global) Euclidean minima of an order Λ of F .

Definition 2.6. For any ξ ∈ F , we set

mΛ(ξ) = inf
λ∈Λ

N(ξ − λ),

and we call it the local Euclidean minimum of Λ at ξ. We define the Euclidean
minimum of Λ by

M(Λ) = sup
ξ∈F

mΛ(ξ).

Let us notice that this supremum is a well-defined positive real number
and that for every ξ ∈ F there exists a λ ∈ Λ such that mΛ(ξ) = N(ξ − λ)
(see [4] and [1]).

Proposition 2.7. The following three statements are equivalent:

(i) Λ is left-norm-Euclidean.
(ii) Λ is right-norm-Euclidean.
(iii) For all ξ ∈ F , mΛ(ξ) < 1.

Proof. See [3, Proposition 2.13].

This allows us to speak of a norm-Euclidean order without specifying
whether it is left-norm-Euclidean or right-norm-Euclidean. Obviously, with
the above notation, if M(Λ) < 1, then Λ is norm-Euclidean. From Propo-
sition 2.5(iii) we know that a norm-Euclidean order is necessarily maximal,
and, as in the general case, we also have:

Proposition 2.8. If F admits a norm-Euclidean (necessarily maximal)
order Λ, then every maximal order Λ′ of F is norm-Euclidean. Moreover,
M(Λ′) = M(Λ).

Proof. See [3, Proposition 2.14].

Remark 2.9. Note that the latter equality is true as soon as tF = 1.
For a counterexample when tF > 1, see [3, Remark 2.15].
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Proposition 2.8 allows us to speak of norm-Euclidean quaternion fields
without any reference to the maximal order that we consider. A norm-
Euclidean quaternion field is a quaternion field admitting a norm-Euclidean
order, or equivalently such that every maximal order is norm-Euclidean.
Moreover if tF = 1, in particular if F is norm-Euclidean, we can speak
without any ambiguity of its Euclidean minimum: M(F ) = M(Λ) for any
maximal order Λ of F .

Let us summarize:

• If we want to prove that F is norm-Euclidean, it is sufficient to choose
a maximal order Λ of F and to prove that Λ is right-norm-Euclidean
(or left-norm-Euclidean).
• If we want to prove that F is not Euclidean, we have to find a maximal

order Λ that is not right-Euclidean (or not left-Euclidean).

3. Euclidean totally indefinite quaternion fields. In this section,
F is a totally indefinite quaternion field over K, that is, no infinite place of
K is ramified. This condition has important consequences for the properties
of the reduced norm map nrdF/K . The following lemma summarizes them.

Lemma 3.1. With the above notation, let Λ be a maximal order of F .
Then:

(i) nrdF/K(F ) = K.
(ii) nrdF/K(Λ) = ZK .
(iii) For any x ∈ Λ and any integral two-sided ideal I of Λ such that

nrdF/K(x)ZK and nrdF/K(I) are coprime, we have

nrdF/K(x+ I) = nrdF/K(x) + I ∩ ZK .

These properties are usually stated under the Eichler condition, but such
a generality is needless for us. Statement (iii) is Eichler’s Norm Theorem
for the arithmetic progression [6, Satz 5]; it implies (ii) which is also due
to Eichler. In turn, (ii) implies (i), which is a special case of the Hasse–
Schilling–Maaß Norm Theorem.

These properties have consequences for the class number hF of F .

Lemma 3.2. Under the above hypotheses, hF = hK .

Proof. Under the more general Eichler condition, hF is equal to the
order of the ray class group of K modulo the infinite ramified places, which
coincides with the class group of K as no infinite place of K is ramified. See
[10, Section 35].

Remark 3.3. In particular, if F is Euclidean, then hF = 1, thus hK = 1.
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Now we can link the Euclidean properties of the number field K and of
the quaternion field F .

Theorem 3.4. Let F be a totally indefinite quaternion field over a num-
ber field K.

(i) If K is Euclidean, then F is Euclidean.
(ii) If K is norm-Euclidean, then F is norm-Euclidean.
(iii) Suppose that hK = 1. Then for any maximal order Λ of F , we have

M(Λ) ≤M(K).

Proof. We start by proving (i) and (ii). Let us assume that K is Eu-
clidean, which implies hF = hK = 1. Let ϕ : ZK → W be a Euclidean
stathm for some well-ordered set W . Set Λ to be a maximal order of F . We
put Φ = ϕ ◦ nrdF/K : Λ → W ; we will prove that Φ is a right-Euclidean
stathm.

Let α, β ∈ Λ. Then, using Lemma 2.3 and Remark 2.4, we can find
(µ, α′, β′, τ) ∈ Λ4 such that β = µβ′, α = µα′ + µβ′τ , and nrdF/K(α′)
and nrdF/K(β′) are coprime. Since ϕ is a Euclidean stathm, we can divide
nrdF/K(µ) nrdF/K(α′) by nrdF/K(µ) nrdF/K(β′) = nrdF/K(β) and there ex-
ists a c ∈ ZK such that

(4) ϕ(nrdF/K(µ) nrdF/K(α′)− nrdF/K(µ) nrdF/K(β′)c) < ϕ(nrdF/K(β)).

Now, notice that nrdF/K(α′)− nrdF/K(β′)c ∈ nrdF/K (α′) + nrdF/K(β′)ZK .
We may then apply Lemma 3.1(iii) with I = nrdF/K(β′)Λ and x = α′. We
obtain

nrdF/K(α′) + nrdF/K(β′)ZK = nrdF/K(α′ + nrdF/K(β′)Λ)

⊆ nrdF/K(α′ + β′Λ).

This allows us to write nrdF/K(α′)− nrdF/K(β′)c = nrdF/K(α′ − β′γ) for a
γ ∈ Λ. Consequently,

nrdF/K(µ) nrdF/K(α′)− nrdF/K(µ) nrdF/K(β′)c

= nrdF/K(µ) nrdF/K(α′ − β′γ),

and (4) can be rewritten as

ϕ
(
nrdF/K(α− β(τ + γ))

)
< ϕ(nrdF/K(β)),

which completes the proof of (i).
If we assume that K is norm-Euclidean, then we can take ϕ = |NK/Q| :

ZK → Z≥0. We have proved above that Φ = N is a right-Euclidean stathm
for Λ, that is, F is norm-Euclidean. That proves (ii).

Now, we prove (iii). Take ξ ∈ F . Since hK = 1 we also have hF = 1 by
Lemma 3.2, and thanks to Lemma 2.3 and Remark 2.4, ξ can be written as
ξ = β−1α+ τ for some α, β, τ ∈ Λ such that nrdF/K(α) and nrdF/K(β) are
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coprime. Then, we can take a c ∈ ZK such that

(5) |NK/Q(nrdF/K(β−1α)− c)| = mK(nrdF/K(β−1α)).

As before, Lemma 3.1(iii) proves that

nrdF/K(α) + nrdF/K(β)ZK = nrdF/K(α+ nrdF/K(β)Λ)

⊆ nrdF/K(α+ βτ + βΛ).

We deduce that there exists a γ ∈ Λ such that

nrdF/K(α)− nrdF/K(β)c = nrdF/K(α+ βτ − βγ).

Dividing by nrdF/K(β) and using (5), we find

|NK/Q(nrdF/K(ξ − γ))| = mK(nrdF/K(β−1α)).

Therefore, mΛ(ξ) ≤ mK(nrdF/K(β−1α)) ≤ M(K), from which we easily
deduce (iii).

Now, we can complete the list of Euclidean and norm-Euclidean quater-
nion fields over Q.

Corollary 3.5. Let F be a quaternion field over Q. Then F is Eu-
clidean if and only if F is norm-Euclidean, which happens exactly when F
is indefinite or

F ∈
{(
−1,−1

Q

)
,

(
−1,−3

Q

)
,

(
−2,−5

Q

)}
.

Proof. The case where F is definite over Q was treated in [3, Section 4].
If F is indefinite over Q, then F is norm-Euclidean thanks to Theorem
3.4(ii).

Remark 3.6. The Euclidean and the norm-Euclidean properties are
equivalent in this setting. This is analogous to the cases of imaginary quadra-
tic number fields and totally definite quaternion fields over quadratic number
fields (see [3]).

So far, all examples of Euclidean quaternion fields have in fact been
norm-Euclidean. As there exist Euclidean number fields which are not norm-
Euclidean, we can use Theorem 3.4(i) to find quaternion fields which are
Euclidean, but not necessarily norm-Euclidean. To exhibit examples which
are actually not norm-Euclidean, we will need the following lemma.

Lemma 3.7. Let F be a totally indefinite quaternion field over a number
field K with hK = 1. Let pi, 1 ≤ i ≤ s, be some distinct finite places of K
ramified in F , and t ∈ ZK such that tZK = p1 · · · ps (we have hK = 1). Then
for any v ∈ ZK coprime to t, there exists ξ ∈ F such that mΛ(ξ) ≥ mK(v/t).

Proof. First, thanks to Lemma 3.1(ii), there exists an a ∈ Λ such that
nrdF/K(a) = v. For every i, let us denote by Pi the unique prime two-sided
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ideal of Λ lying above pi. These ideals satisfy piΛ = P2
i , Pi ∩ ZK = pi and

PiPj = PjPi for all i, j (see [10, Section 22]). Moreover nrdF/K(Pi) = pi.
Since the Pi commute, we have P1 · · ·Ps ⊆ Pi for every i. This implies
P1 · · ·Ps ∩ ZK ⊆ Pi ∩ ZK = pi for every i, so that

P1 · · ·Ps ∩ ZK ⊆ p1 · · · ps.

Let us notice that nrdF/K(a)ZK = vZK and nrdF/K(P1 · · ·Ps) = p1 · · · ps =
tZK are coprime. Applying Lemma 3.1(iii) to x = a and I = P1 · · ·Ps, we
obtain

nrdF/K(a+ P1 · · ·Ps) = nrdF/K(a) + P1 · · ·Ps ∩ ZK(6)

⊆ nrdF/K(a) + p1 · · · ps.

Since hF = 1, there exists a b ∈ Λ such that P1 · · ·Ps = bΛ. Let us put
ξ = b−1a ∈ F . Then there exists a λ ∈ Λ such that

mΛ(ξ) =
N(a− bλ)

N(b)
=
|NK/Q(nrdF/K(a− bλ))|

N(b)
.

As bλ ∈ P1 · · ·Ps, (6) shows that there exists a y ∈ p1 · · · ps = tZK with

nrdF/K(a− bλ) = nrdF/K(a) + y.

Hence there exists a z ∈ ZK such that

mΛ(ξ) =
|NK/Q(nrdF/K(a) + tz)|

N(b)
.

But nrdF/K(b) ∈ ZK and nrdF/K(b)ZK = nrdF/K(P1 · · ·Ps) = p1 · · · ps =

tZK , so that nrdF/K(b) = εt where ε ∈ Z×K . From this we deduce that

mΛ(ξ) =
|NK/Q(nrdF/K(a) + tz)|

|NK/Q(εt)|
=
|NK/Q(v + tz)|
|NK/Q(t)|

= |NK/Q(v/t+ z)| ≥ mK(v/t).

Proposition 3.8. Let K be the real quadratic field of discriminant 53.
Take x ∈ K such that x2 − x − 13 = 0. Put t = x + 2 and p = tZK . Let F
be any totally indefinite quaternion field over K in which p is ramified, for
instance, F =

(−1,7
K

)
. Then F is Euclidean, but not norm-Euclidean.

Proof. Take any F satisfying the conditions of the proposition. As F is
totally indefinite, hF = hK = 1. Harper proved that K is Euclidean (without
assuming GRH, see [7]). Consequently, by Theorem 3.4(i), F is Euclidean.

Furthermore, let us define v = 2x + 7, which is coprime to t. Then, by
Lemma 3.7, there exists some ξ ∈ F such that mΛ(ξ) ≥ mK(v/t). But we
chose v and t such that mK(v/t) = M(K) = 9/7. Therefore, mΛ(ξ) ≥ 1,
which proves that F is not norm-Euclidean.
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4. Quaternion fields over imaginary quadratic number fields.
This section will be devoted to the proof of the following statement.

Theorem 4.1. Let K=Q(
√
−d) (where d is a squarefree positive integer)

be an imaginary quadratic number field. Let F be a quaternion field
over K. Then F is norm-Euclidean if and only if d ∈ {1, 2, 3, 7, 11} or
F =

( −2,−5
Q(
√
−19)

)
.

In the whole section, K is an imaginary quadratic number field Q(
√
−d),

where d > 0 is a squarefree integer, and F is a quaternion field over K.
Let us remark that no infinite place of K ramifies in F , so that F is to-
tally indefinite. Suppose that F is norm-Euclidean. Since F is totally in-
definite, by Lemma 3.2, we have hK = hF = 1. This implies that d ∈
{1, 2, 3, 7, 11, 19, 43, 67, 163}. In Subsection 3.1 we will prove that F is norm-
Euclidean for d = 1, 2, 3, 7, 11 and not norm-Euclidean for d > 19. Then,
Subsection 3.2 will be devoted to the remaining case d = 19, and we will
prove that under this hypothesis the only norm-Euclidean quaternion field
is
( −2,−5
Q(
√
−19)

)
, thus proving Theorem 4.1.

4.1. First steps, the case d 6= 19. To begin with, we deal with the
first five values of d.

Proposition 4.2. If d = 1, 2, 3, 7 or 11, then F is norm-Euclidean.

Proof. It is a classical fact that d = 1, 2, 3, 7 and 11 are the only values
of d for which K is norm-Euclidean. Then, thanks to Theorem 3.4(ii), we
conclude that F is norm-Euclidean.

Now, to prove that F cannot be norm-Euclidean for d > 19 we have to es-
tablish some preliminary results. In particular, in order to apply Lemma 3.7,
we look for convenient points x ∈ K such that mK(x) ≥ 1.

Lemma 4.3. Suppose that d ∈ {19, 43, 67, 163}. If t ∈ ZK satisfies either

(i) t ∈ Z and |t| ≥
√
d√
d−4 , or

(ii) t 6∈ Z and |t| ≥ 2√
d−4 ,

then there exists some v ∈ ZK such that mK(v/t) ≥ 1.

Proof. In all cases, we have d ≡ 3 mod 4 and ZK = Z + Zω where

ω = 1+
√
−d

2 . Let us put

B =

{
x ∈ K; 1 ≤ Im(x) ≤

√
d

2
− 1

}
.

It is easy to see that if x ∈ B then mK(x) ≥ 1. Thus, it is sufficient to find
v ∈ ZK such that v/t ∈ B. Let us write t = t1 + t2ω where t1, t2 ∈ Z.
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Case (i): t ∈ Z (t2 = 0). Let us search for such a v with v = kω and
k ∈ Z with the same sign as t. Since

Im

(
v

t

)
=
k
√
d

2t
,

we have
v

t
∈ B ⇔ 2|t|√

d
≤ |k| ≤ (

√
d− 2)|t|√

d
.

But condition (i) implies that the difference between the right-hand side and
the left-hand side of this double inequality is at least 1, so that we can find
such a k.

Case (ii): t 6∈ Z (t2 6= 0). Here, let us search for v in Z whose sign is
opposite to the sign of t2. Since

Im

(
v

t

)
= −vt2

√
d

2|t|2
,

we have
v

t
∈ B ⇔ 2|t|2

|t2|
√
d
≤ |v| ≤ |t|

2(
√
d− 2)

|t2|
√
d

.

As above, such a v exists if

|t|2(
√
d− 4)

|t2|
√
d

≥ 1.

But since |t|/|t2| ≥
√
d/2 it is sufficient to have |t|(

√
d− 4)/2 ≥ 1, which is

implied by condition (ii).

Proposition 4.4. If d ∈ {43, 67, 163}, then F is not norm-Euclidean.

Proof. In these three cases, K = Q(
√
−d) has class number 1. Recall

also that, since F is totally indefinite, the set S of finite primes of K that
ramify in F is nonempty and has even cardinality. Let p be such a prime.
Since hK = 1, there exists a t ∈ ZK with p = tZK . Moreover |t| > 1 because
p is prime.

For d = 67 and 163 we have
√
d√
d−4 < 2, 2√

d−4 < 1 and necessarily

t satisfies the hypotheses of Lemma 4.3. This implies that there exists a
v ∈ ZK such that mK(v/t) ≥ 1. But v and t are coprime: if not, tZK being
a prime ideal, we would have v/t ∈ ZK and mK(v/t) = 0, which is absurd.
Hence, we can apply Lemma 3.7 with s = 1 and there exists a ξ ∈ F such
that mΛ(ξ) ≥ mK(v/t) ≥ 1. Consequently, F is not norm-Euclidean.

For d = 43 we have
√
d√
d−4 < 3 and 2√

d−4 < 1. The same argument as

above is possible if t 6∈ Z or t ∈ Z with |t| ≥ 3. It remains to study the case
where t = ±2. But, as the cardinality of S is a positive even integer, there
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exists another finite prime that ramifies in F , say p′ = t′ZK . If t′ 6∈ Z, we
are done. If t′ ∈ Z, necessarily |t′| ≥ 3 because p′ 6= p. We can apply again
Lemma 4.3 with t′ and the conclusion follows.

Summarizing Propositions 4.2 and 4.4, we obtain

Theorem 4.5. For d 6= 19, F is norm-Euclidean if and only if

d ∈ {1, 2, 3, 7, 11}.

4.2. The case d = 19. In this case we are first going to prove that there
is only one quaternion field over Q(

√
−19) that might be norm-Euclidean.

Proposition 4.6. If F is a norm-Euclidean quaternion field over
Q(
√
−19), then necessarily F =

( −2,−5
Q(
√
−19)

)
.

Proof. For d = 19 we have
√
d√
d−4 < 13 and 2√

d−4 <
√

32. The same

argument as above shows that if p = tZK is a finite prime of ZK that
ramifies in F , then we have |t|2 ≤ 31 if t 6∈ Z and |t| ≤ 12 otherwise. This
leads to the following list of candidates: the primes p2 = 2ZK , p3 = 3ZK ,
p5 = ωZK , p5, p7 = (1 + ω)ZK , p7, p11 = (2 + ω)ZK , p11, p17 = (3 + ω)ZK ,
p17, p19 = (−1 + 2ω)ZK , p19, p23 = (1 + 2ω)ZK , p23. Here pm is the prime
above m when m is inert, otherwise the two primes above m are pm and pm
(its conjugate). Now, it is easy to compute some appropriate local Euclidean
minima in K. We obtain

mK

(
ω

2

)
=

5

4
, mK

(
3

1 + ω

)
= mK

(
3

1 + ω

)
= 1,

mK

(
5

2 + ω

)
= mK

(
5

2 + ω

)
= 1, mK

(
7

3 + ω

)
= mK

(
7

3 + ω

)
= 1,

mK

(
5

2ω − 1

)
= mK

(
7

2ω − 1

)
=

25

19
,

mK

(
5

2ω + 1

)
= mK

(
5

2ω + 1

)
=

25

23
.

In all these cases, Lemma 3.7 (with s = 1) can be applied and we deduce
that only p3, p5 and p5 can be ramified in F . Moreover,

mK

(
7

3ω

)
= mK

(
7

3ω

)
=

49

45
.

Again Lemma 3.7 (with s = 2) shows that neither p3 and p5, nor p3 and p5
can be ramified simultaneously. Since the number of finite ramified primes
is a positive even integer, we have just one possibility: p5 and p5 are the
only primes of K that ramify in F . This leads (up to isomorphism) to

F =

(
−2,−5

Q(
√
−19)

)
.
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Remark 4.7. We have

mK

(
1 + 2ω

ωω

)
=

23

25

and the primes p5 and p5 are ramified. Therefore, Lemma 3.7 gives us the
following bound:

(7) M(Λ) ≥ 23

25
.

Now let us focus on F =
( −2,−5
Q(
√
−19)

)
. As a maximal order of F , we can

take (5)

Λ = ZK ⊕ iZK ⊕
1 + i+ j

2
ZK ⊕

2− i+ k

4
ZK .

We are going to prove that F is norm-Euclidean. Our approach will be
algorithmic, following some ideas used in [2], [8] and [3] for the computation
of the Euclidean minimum. Let us work in a more general context. Let d > 1
be a squarefree integer and F =

(a,b
K

)
be a totally indefinite quaternion field

over K = Q(
√
−d), where a, b are supposed to belong to Q, for simplicity.

Let Λ be a maximal order of F . Suppose that we have a description of Λ:

Λ =
4⊕
l=1

(al,1 + al,2i+ al,3j + al,4k)ZK ,

where, for simplicity, we assume that al,m ∈ Q for 1 ≤ l,m ≤ 4. Then F can
be written as

F =

4⊕
l=1

(al,1 + al,2i+ al,3j + al,4k)K = Λ+∆,

with

∆ =

4⊕
l=1

(al,1 + al,2i+ al,3j + al,4k)D;

here D is a fundamental domain of K. Take for instance D = {x + yθ;
x, y ∈ J}, where J = [0, 1) ∩Q and

θ =

{
1+
√
−d

2 if d ≡ 3 mod 4,√
−d otherwise.

Since mΛ is Λ-periodic, to prove that F is norm-Euclidean, it is sufficient
to establish that for every ξ ∈ ∆ there exists a λ ∈ Λ such that N(ξ−λ) < 1.

(5) We do not prove this because it is easy to check that Λ is an order whose discrim-
inant is equal to −52. This can also be checked using Magma [9].



Totally indefinite Euclidean quaternion fields 197

The sets Λ and ∆ can be rewritten as

Λ =
{ 4∑
l=1

al,1zl + i

4∑
l=1

al,2zl + j

4∑
l=1

al,3zl + k

4∑
l=1

al,4zl; xl, yl ∈ Z
}
,

∆ =
{ 4∑
l=1

al,1zl + i
4∑
l=1

al,2zl + j
4∑
l=1

al,3zl + k
4∑
l=1

al,4zl; xl, yl ∈ J
}
,

where zl = xl + ylθ. Clearly, Λ and ∆ are respectively isomorphic to Z8

and J8, and we embed both sets in R8 in the following way. To ξ = α+βi+
γj + δk ∈ F , where α, β, γ, δ ∈ K, we associate the column vector(

Re(α), Im(α),Re(β), Im(β),Re(γ), Im(γ),Re(δ), Im(δ)
)T
.

In other words, we look at the matrix M ∈M8×8(R) defined by

M =



a1,1 a1,1η a2,1 a2,1η a3,1 a3,1η a4,1 a4,1η

0 a1,1µ 0 a2,1µ 0 a3,1µ 0 a4,1µ

a1,2 a1,2η a2,2 a2,2η a3,2 a3,2η a4,2 a4,2η

0 a1,2µ 0 a2,2µ 0 a3,2µ 0 a4,2µ

a1,3 a1,3η a2,3 a2,3η a3,3 a3,3η a4,3 a4,3η

0 a1,3µ 0 a2,3µ 0 a3,3µ 0 a4,3µ

a1,4 a1,4η a2,4 a2,4η a3,4 a3,4η a4,4 a4,4η

0 a1,4µ 0 a2,4µ 0 a3,4µ 0 a4,4µ


,

where η = Re(θ) and µ = Im(θ), and we see Λ and ∆ respectively as M ·Z8

and M · J8.

Now, we consider a cutting-covering of∆ = M ·[0, 1]8 using parallelotopes
whose faces are orthogonal to the canonical axes of R8. These parallelotopes
P are of the form

P = {(ui)1≤i≤8 ∈ R8; |ui − Ci| ≤ hi},

where C = (ci)1≤i≤8 is the center of the parallelotope and 0 < hi for every i.
In order to prove that F is norm-Euclidean, it is sufficient to show that for
every P of our cutting-covering of ∆ there exists a λ ∈ Λ such that

(8) N(u− λ) < 1 for every u ∈ P.

In this case, we will say that P is absorbed by λ. But thanks to our identifi-
cation, N can be rewritten

N(t) =
∣∣(t1 + t2I)2 − a(t3 + t4I)2 − b(t5 + t6I)2 + ab(t7 + t8I)2

∣∣2
= f(t)2 + 4g(t)2,



198 J.-P. Cerri et al.

where I is a complex square root of −1 and

f(t) = t21 − t22 − at23 + at24 − bt25 + bt26 + abt27 − abt28,
g(t) = t1t2 − at3t4 − bt5t6 + abt7t8.

Therefore, to ensure that (8) is satisfied, it is enough to establish that

(9) A(P, λ) + 4B(P, λ) < 1,

where

A(P, λ) = sup
t∈P−λ

f(t)2 and B(P, λ) = sup
t∈P−λ

g(t)2.

Let us remark that if yi = Ci − λi, then for every t ∈ P − λ we have
ti ∈ [yi − hi, yi + hi], from which we deduce{

0 ≤ t2i ≤ y2i + 2|yi|hi + h2i if |yi| ≤ hi,
y2i − 2|yi|hi + h2i ≤ t2i ≤ y2i + 2|yi|hi + h2i if |yi| ≥ hi,

and

yiyj − |yi|hj − |yj |hi − hihj ≤ titj ≤ yiyj + |yi|hj + |yj |hi + hihj .

If we take into account the signs of a and b, these inequalities give us explicit
bounds for f(t) and g(t) when t ∈ P−λ, say α ≤ f(t) ≤ β and γ ≤ g(t) ≤ δ,
from which we deduce that (9) will be satisfied if

(10) max{α2, β2}+ 4 max{γ2, δ2} < 1.

Now, it is sufficient to prove that every P of our cutting-covering satisfies
(10) for some λ belonging to a finite set S of precomputed elements of Λ.
Of course, things are not so simple: in general, if we begin with a reasonable
cutting-covering, some parallelotopes are not absorbed. In this case, we cut
them into 28 smaller parallelotopes and continue. The algorithm is roughly
as follows:

1. Define a set S of elements of Λ.
2. Define a covering of ∆ by parallelotopes as described above. Denote

by T the set of these parallelotopes.
3. For any P ∈ T , search for a λ in S that absorbs P, replacing 1 by a

constant k < 1 in (10) to control rounding errors. If such a λ exists,
remove P from T .

4. If T = ∅, we are done and the algorithm stops.
5. If not, cut every P ∈ T into 28 smaller parallelotopes and replace T

with the set of these smaller parallelotopes. Then go to step 3.

In the case of F we have K = Q(
√
−19), θ = 1+

√
−19
2 and as a maximal

order for F we take Λ = ZK⊕iZK⊕ 1+i+j
2 ZK⊕ 2−i+k

4 ZK , so that our matrix
M is
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M =



1 1
2 0 0 1

2
1
4

1
2

1
4

0
√
19
2 0 0 0

√
19
4 0

√
19
4

0 0 1 1
2

1
2

1
4 −1

4 −1
8

0 0 0
√
19
2 0

√
19
4 0 −

√
19
8

0 0 0 0 1
2

1
4 0 0

0 0 0 0 0
√
19
4 0 0

0 0 0 0 0 0 1
4

1
8

0 0 0 0 0 0 0
√
19
8


.

The algorithm ran with the following parameters: the set S was defined by

S = {M ·X; Xi ∈ Z ∩ [−2, 3] for every i},

we used a covering of∆ by parallelotopes satisfying, with the above notation,

hi =
max{xi; x ∈ ∆} −min{xi; x ∈ ∆}

120

for every i, and the constant k was equal to 0.921. After three loops, all
parallelotopes were absorbed at one step or another and we obtained:

Proposition 4.8. The quaternion field F is norm-Euclidean.

Combining Theorem 4.5, Proposition 4.6 and Proposition 4.8 completes
the proof of Theorem 4.1.

Remark 4.9. If we take k = 0.92, the algorithm does not succeed. There
are many problematic parallelotopes and after several loops, their number
increases dramatically. Since we know that M(Λ) ≥ 23/25 it is reasonable
to conjecture that we have an equality.

Remark 4.10. This gives a negative answer to the question asked by
Eichler. Here K = Q(

√
−19) is not norm-Euclidean and even not Euclidean

for any stathm, but F =
(−2,−5

K

)
is norm-Euclidean. Let us note that Eich-

ler’s definition of the Euclidean property for K was slightly different than
the standard one that we use. Anyway, in our context, both definitions are
equivalent.

Acknowledgements. The research of the third author was partially
funded by ERC Starting Grant ANTICS 278537. The computations pre-
sented in this paper were carried out using the PlaFRIM experimental
testbed (see https://plafrim.bordeaux.inria.fr). The authors would like to
thank the anonymous referee for her/his helpful remarks that improved the
presentation of the paper.



200 J.-P. Cerri et al.

References

[1] E. Bayer-Fluckiger, J.-P. Cerri and J. Chaubert, Euclidean minima and central
division algebras, Int. J. Number Theory 5 (2009), 1155–1168.

[2] J.-P. Cerri, Euclidean minima of totally real number fields: algorithmic determina-
tion, Math. Comp. 76 (2007), 1547–1575.

[3] J.-P. Cerri, J. Chaubert and P. Lezowski, Euclidean totally definite quaternion fields
over the rational field and over quadratic number fields, Int. J. Number Theory 9
(2013), 653–673.

[4] J. Chaubert, Minimum euclidien des ordres maximaux dans les algèbres centrales à
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