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1. Introduction. C. Mauduit and A. Sárközy [3, pp. 367–370] intro-
duced the following finite measures of pseudorandomness of binary sequences.
For a binary sequence

EN = {e1, . . . , eN} ∈ {−1,+1}
N ,

write

U(EN , t, a, b) =

t∑

j=1

ea+jb

and, for D = (d1, . . . , dl) with non-negative integers 0 ≤ d1 < · · · < dl,

V (EN ,M,D) =

M∑

n=1

en+d1 · · · en+dl.

Then the well-distribution measure of EN is defined as

W (EN ) = max
a,b,t
|U(EN , t, a, b)| = max

a,b,t

∣∣∣
t∑

j=1

ea+jb

∣∣∣,

where the maximum is taken over all a, b, t such that a ∈ Z, b, t ∈ N and
1 ≤ a + b ≤ a + tb ≤ N , while the correlation measure of order l of EN is
defined as

Cl(EN ) = max
M,D
|V (EN ,M,D)| = max

M,D

∣∣∣
M∑

n=1

en+d1 · · · en+dl

∣∣∣,

where the maximum is taken over all D = (d1, . . . , dl) and M such that
M + dl ≤ N .
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In this paper we will study finite binary pseudorandom sequences which
are defined by a linear recursion over Fp. More exactly, let x1, . . . , xh ∈ Fp
be the first h elements of the sequence, c1, . . . , ch ∈ Fp be the coefficients in
the linear recursion, so for n > h,

xn ≡ c1xn−1 + c2xn−2 + · · ·+ chxn−h (modp).(1)

In order to transform the sequence {x1, x2, . . .} into a binary sequence
{e1, e2, . . .} we define

en =





(
xn
p

)
if p ∤xn,

1 if p |xn,

(2)

where
(
xn
p

)
denotes the Legendre symbol.

From the definition of xn it is clear that the sequence {xn} is periodic
with a period T , and then the sequence {en} is also periodic with period T .
Considering only the first T elements of the sequence {en} we get a finite
binary sequence {e1, . . . , eT} = ET , and we will study the pseudorandom
properties of this last sequence.

Unfortunately we cannot estimate the pseudorandom measures of all
sequences ET defined this way, but we will describe a large class of linear
recursions for which the sequence ET has strong pseudorandom properties.

It is well known that the elements of the sequence {xn} defined in (1)
can be expressed by the roots of the characteristic polynomial

xh − c1x
h−1 − c2x

h−2 − · · · − ch ≡ 0 (modp).

Suppose that this polynomial has h distinct roots in F∗p: λ1, . . . , λh. Then
there exist constants a1, . . . , ah ∈ Fp such that

xn ≡ a1λ
n
1 + · · ·+ ahλ

n
h (mod p)

for all n ∈ N. Let λ ∈ Fp be such that all roots λi (1 ≤ i ≤ h) are powers
of λ (e.g. λ can be a primitive root, or in the special case when all λi are
quadratic residues modulo p, then λ can be the square of a primitive root
modulo p). Let λi = λ

ki for 1 ≤ i ≤ h and max{k1, . . . , kh} = k. Then

xn ≡ a1λ
k1n + · · ·+ ahλ

khn = f(λn) (modp),

where f(x) ∈ Fp[x] is a polynomial of degree k. Then for the sequence
{e1, e2, . . .} we have

en =





(
f(λn)

p

)
if p ∤ f(λn),

1 if p | f(λn).
(3)

The sequence {en} is periodic with a period T , where now T can be the
multiplicative order of λ.
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Since not for every linear recursion {xn} can we write the sequence {en}
in the form (3), it is more practical to define the sequence {en} by (3), and
determine the linear recursion from this form. More exactly:

Definition 1. Let p be an odd prime, λ ∈ F∗p be of multiplicative order
T and f(x) ∈ Fp[x] be a polynomial of degree k. Then we define the sequence
ET = {e1, . . . , eT } by (3).

Throughout the paper we will use this definition and these notations:
the numbers p, k, λ, T and the polynomial f(x) will be as in Definition 1.
The next question is how to determine the linear recursion for the se-

quence {xn} (where xn ≡ f(λn) mod p) from the polynomial f(x) ∈ Fp[x]
and the number λ ∈ Fp. Write f(x) in the form

f(x) = a1x
k1 + · · ·+ ahx

kh .

Then by computing the coefficients −ci of the characteristic polynomial

(x− λk1) · · · (x− λkh) = xh − c1x
h−1 − · · · − ch,

we find that the linear recursion for the sequence {xn} is

xn ≡ c1xn−1 + c2xn−2 + · · ·+ chxn−h (modp).

We will give estimates for the pseudorandom measures of ET defined in
Definition 1, but these upper bounds will be non-trivial only if k, the degree
of the polynomial f(x), is≪ p1/2−ε for some ε > 0. For the well-distribution
measure we obtain the following:

Theorem 1. Suppose that f(x) is not of the form cxα(g(x))2 with
c ∈ Fp, α ∈ N, g(x) ∈ Fp[x]. Then

W (ET ) < 5kp
1/2 log p.

Clearly, if f(x) is of the form c(g(x))2, then either the sequence ET
contains only +1’s, or all but at most k/2 of the elements of ET are −1’s,

since if g(i) ≡ 0 (mod p) then ei = 1 and otherwise ei =
( c(g(λi))2

p

)
=
(
c
p

)
.

If f(x) is of the form cx(g(x))2, then ei =
(
c
p

)(
λ
p

)i
for g(i) 6≡ 0 (modp),

and thus the sequence ET is almost (apart from at most k/2 pieces of ei’s)
periodic with period 2.
In the case of the correlation measure there is no non-trivial general

upper bound:
Let l |T and f(x) be of the form f(x) = ϕ(x)ϕ(λT/lx), where ϕ(x) ∈

Fp[x] has no zero in Fp. Then for the sequence ET defined in (3) we will
prove that

Cl(ET ) ≥
T

l
,

which means that for small l |T , the correlation measure of order l is large.
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Indeed, by the definition of the correlation measure of order l, the equal-
ity ϕ(λn+T ) = ϕ(λn), the multiplicative property of the Legendre symbol
and ϕ(λn+iT/l) 6= 0 for i ∈ N, we get

Cl(ET ) ≥
∣∣∣
T/l∑

n=1

enen+T/len+2T/l · · · en+(l−1)T/l

∣∣∣

=

∣∣∣∣
T/l∑

n=1

(
ϕ(λn)ϕ(λn+T/l)

p

)(
ϕ(λn+T/l)ϕ(λn+2T/l)

p

)
· · ·

(
ϕ(λn+(l−1)T/l)ϕ(λn)

p

)∣∣∣∣

=

∣∣∣∣
T/l∑

n=1

(
ϕ(λn)ϕ(λn+T/l) · · ·ϕ(λn+(l−1)T/l)

p

)2∣∣∣∣ =
T

l
,

which was to be proved.
Thus for l |T there exists a polynomial f(x) for which Cl(ET ) is large.

This example shows that to ensure that the correlation measure of order l is
small one needs further assumptions on the polynomial f(x) and the integers
T and l. We will use the following definition.

Definition 2. We say that the polynomials ϕ(x), ψ(x) ∈ Fp[x] are
equivalent :

ϕ ∼ ψ,(4)

if there are c ∈ F∗p and γ ∈ N such that ϕ(x) = cψ(λγx).

Clearly, this is an equivalence relation. Next we give an upper bound for
the correlation measure of order l:

Theorem 2. Let β ∈ N be the largest integer such that xβ | f(x) (thus
xβ+1 ∤ f(x)). Suppose that at least one of the following conditions holds:

(a) l = 2, and f(x)/xβ is not of the form g(xσ) or c(g(x))2 with σ ∈ N,
(σ, T ) ≥ 2, c ∈ Fp and g(x) ∈ Fp[x].

(b) f(x)/xβ is not of the form c(g(x))2 with c ∈ Fp and g(x) ∈ Fp[x], T
(the order of λ) is a prime and either min{(4k)l, (4l)k} ≤ T or 2 is
a primitive root modulo T .

(c) Consider the factorization f(x)/xβ = ϕβ11 (x) · · ·ϕ
βu
u (x) where βi ∈ N

and ϕi(x) is irreducible over Fp. Suppose that there is an equivalence
class defined by the relation ∼ in (4), which contains exactly one fac-
tor ϕj (1 ≤ j ≤ u) amongst the irreducible factors of f(x)/x

β, more-
over the multiplicity of this factor in the factorization of f(x)/xβ is
βj = 1.

(d) k − β (the degree of the polynomial f(x)/xβ) and l are odd.
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Then

Cl(ET ) ≤ 5klp
1/2 log p.

In Theorem 2(a) we are able to handle the case l = 2 completely. Clearly,
if f(x) is of the form g(xσ) with g(x) ∈ Fp[x], σ ∈ N and (σ, T ) ≥ 2, then
the sequence ET is periodic with period T/(T, σ), and thus the correlation

measure of order 2 is greater than
∑T−T/(T,σ)
n=1 enen+T/(T,σ) = T − T/(T, σ).

(A similar situation occurs if f(x) is of the form xg(xσ) since then en =
−en+T/(T,σ).)

In Theorem 2(b), (c) and (d) we study the case l > 2, and while these
conditions are sufficient to ensure that the correlation measure is small,
they are not necessary. It is an important open question to describe all
polynomials f(x), integers T and l for which the correlation measure of
order l is small. (We remark that a similar additive problem with a prime
modulus in place of T was studied in [1].)

Usually, for a fixed polynomial f(x) it is not easy to check whether con-
dition (c) in Theorem 2 holds. We will show that for a large class of poly-
nomials f(x) ∈ Fp[x] condition (c) holds, and thus the correlation measure
is small. These polynomials will be characterized by their zeros:

Corollary 1. Suppose that f(x) has a zero ̺ 6= 0 ∈ Fp of multiplicity 1
such that no other zero of f(x) is of the form λi̺ with 1 ≤ i ≤ T − 1. Then

Cl(ET ) ≤ 5klp
1/2 log p.

Using this corollary we get, e.g., the following:

Corollary 2. Suppose that the order of λ is T = (p − 1)/2, all the
k zeros of f(x) are in Fp, and one of the zeros is a quadratic non-residue
modulo p, while the other k− 1 zeros are quadratic residues modulo p. Then

Cl(E(p−1)/2) ≤ 5klp
1/2 log p.

Finally, we would like to specify our results to the case when h = 2, i.e.,
the order of the linear recursion is 2:

Corollary 3. Assume that h = 2, i.e., (1) is of the form

xn ≡ c1xn−1 + c2xn−2 (modp)(5)

and assume that (
c21 + 4c2

p

)
= 1.

Denote the zeros of the characteristic polynomial of the linear recursion (5)
by λ1 and λ2 (λ

2
i − c1λi − c2 ≡ 0 (modp)); then λ1, λ2 ∈ Fp. Suppose that

λi 6≡ x2/x1 (mod p) for i = 1, 2. Denote the multiplicative order of λ2/λ1
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by T , and define the sequence ET = {e1, . . . , eT } by (2). Then

W (ET ) ≤ 9p
1/2 log p, Cl(ET ) ≤ 9lp

1/2 log p.

Here, the condition that x2/x1 is not a root of the characteristic poly-
nomial is necessary, since if λ1 ≡ x2/x1 (modp), then xn ≡ x1λ

n
1 , and thus

the sequence {en} is periodic with period 2.

2. Proofs. The following lemma is a generalization of Lemma 3.3 in [4],
and the proof is also similar. Indeed, in [4] only that case is studied when λ
is a primitive root, while Lemma 1 holds for all λ ∈ F∗p.

Lemma 1. Let p be a prime, χ be a multiplicative character of order d
with 2 ≤ d ∈ N, let λ ∈ F∗p be of multiplicative order T , and let M,K ∈ N
with K ≤ T . Suppose that f(x) ∈ Fp[x] has exactly s distinct zeros.

(i) If f(x) is not of the form cxα(g(x))d with c ∈ Fp, α ∈ N and g(x) ∈
Fp[x], then

∣∣∣
M+K∑

n=M+1

χ(f(λn))
∣∣∣ ≤ 4sp1/2 log p.(6)

(ii) If f(x) = cxα(g(x))d with c ∈ F∗p, α ∈ N and g(x) ∈ Fp[x], where

T ∤ p−1d α, then

∣∣∣
M+K∑

n=M+1

χ(f(λn))
∣∣∣ ≤

d

2
.(7)

Proof. If p or T ≤ 2, Lemma 1 is trivial, therefore we may assume that
p, T ≥ 3. We will reduce the problem to estimating complete sums:

Lemma 2. Let p be a prime, χ be a multiplicative character of order d
with 2 ≤ d ∈ N, and λ ∈ F∗p be an element of multiplicative order T . Suppose

that f(x) ∈ Fp[x] has s distinct zeros, and f(x) is not of the form cxα(g(x))d

with c ∈ F∗p, α ∈ N and g(x) ∈ Fp[x]. Then

∣∣∣
T∑

n=1

χ(f(λn))
∣∣∣ ≤ sp1/2.(8)

Proof. The order of λ is T , so λn (for n = 1, . . . , T ) runs over all the
T different ((p − 1)/T )th powers modulo p except 0. Moreover for fixed λ
and n,

λn = x(p−1)/T
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has exactly (p − 1)/T solutions in x. Thus replacing λn by x(p−1)/T in (8)
we get

∣∣∣
T∑

n=1

χ(f(λn))
∣∣∣ =

T

p− 1

∣∣∣
p−1∑

n=1

χ(f(x(p−1)/T ))
∣∣∣.(9)

Now, we will need the following lemma:

Lemma 3. Let p be a prime, χ be a character of order d > 1. Suppose
that f(x) ∈ Fp[x] has exactly s distinct zeros and it is not of the form

f(x) = c(g(x))d with c ∈ Fp, g(x) ∈ Fp[x]. Then

∣∣∣
p−1∑

n=1

χ(f(x))
∣∣∣ ≤ (s− 1)p1/2.

This can be derived from A. Weil’s theorem [6] (an elementary proof of
which can be found in [5]); see [2], [3].

Returning to the proof of Lemma 2, we now prove that f(x(p−1)/T ) is not
of the form c(g(x))d with c ∈ F∗p, g(x) ∈ Fp[x]. Consider the factorization of

f(x) over Fp:

f(x) = c(x− α1)
k1 · · · (x− αs)

ks ,

where c ∈ Fp and α1, . . . , αs ∈ Fp are different numbers. Let ε1, . . . , ε(p−1)/T
∈ Fp be the (p− 1)/T different solutions of the congruence

x(p−1)/T ≡ 1 (modp)

in x, and for each αi (1 ≤ i ≤ s) let ̺i ∈ Fp be a number with

̺
(p−1)/T
i = αi.

Then the factorization of f(x(p−1)/T ) over Fp is

f(x(p−1)/T ) = c

s∏

i=1

(x(p−1)/T − ̺
(p−1)/T
i )ki

= c

s∏

i=1

(x− ε1̺i)
ki · · · (x− ε(p−1)/T̺i)

ki .

Suppose that in Fp,

εu̺i = εy̺j(10)

for some 1 ≤ u, y ≤ (p− 1)/T and 1 ≤ i, j ≤ s. Then

(εu̺i)
(p−1)/T = (εy̺j)

(p−1)/T ,

and so αi = αj , that is, i = j. If u 6= y (so εu 6= εy), then from (10) we
obtain ̺i = ̺j = 0 (i = j), so αi = 0.
Since f(x) is not of the form cxα(g(x))d with c ∈ F∗p, α ∈ N and g(x) ∈

Fp[x], it follows that f(x) has zero of multiplicity tv at αv 6= 0 (1 ≤ v ≤ s),
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where d ∤ tv. Then ε1̺v is a zero of f(x
(p−1)/T ) with the same multiplicity

tv, and since d ∤ tv, we infer that f(x
(p−1)/T ) is not of the form c(g(x))d with

c ∈ F∗p, g(x) ∈ Fp[x].

The polynomial f(x) has exactly s distinct zeros, so the polynomial
f(x(p−1)/T ) (in x) has at most sp−1T distinct zeros. Using Lemma 3 and (9)
we get

∣∣∣
T−1∑

n=0

χ(f(λn))
∣∣∣ ≤

T

p− 1

(
s
p− 1

T
p1/2
)
= sp1/2,

which completes the proof of Lemma 2.

We now return to the proof of Lemma 1. Since the order of λ is T , there
exists a character χ1 of order p− 1 for which

χ1(λ) = e(1/T ).(11)

Throughout the proof of Lemma 1, χ1 will denote a character of order p− 1
satisfying (11). Since χ is a character of order d, there exists an integer m
such that (m, d) = 1 and

χ = χ
m(p−1)/d
1 .(12)

First we prove Lemma 1(i). Let 1 ≤ γ ≤ p − 2 be an integer. We prove
that the polynomial xγ(f(x))m(p−1)/d is not of the form cxα(g(x))p−1 with
c ∈ Fp, α ∈ N and g(x) ∈ Fp[x]. Indeed, f(x) has a zero 0 6= β ∈ Fp
with multiplicity t, which is not divisible by d. Then the multiplicity of β
in xγ(f(x))m(p−1)/d is tm(p− 1)/d, and as d ∤ tm the integer tm(p− 1)/d is
not divisible by p− 1.

Using (12) and Lemma 2 we obtain

∣∣∣
T−1∑

n=0

χ(f(λn))χ1(λ
nγ)
∣∣∣ =
∣∣∣
T−1∑

n=0

χ1(λ
nγ(f(λn))m(p−1)/d)

∣∣∣ ≤ (s+ 1)p1/2.(13)

By (11) we have

T−1∑

γ=0

χ1(λ
γ(n−y)) =

{
T if T |n− y,

0 otherwise.

From this and K ≤ T we get

∣∣∣
M+K∑

n=M+1

χ(f(λn))
∣∣∣ =
∣∣∣∣
M+T∑

n=M+1

χ(f(λn))

M+K∑

y=M+1

1

T

T−1∑

γ=0

χ1(λ
γ(n−y))

∣∣∣∣

=

∣∣∣∣
1

T

T−1∑

γ=0

( M+K∑

y=M+1

χ1(λ
−γy)
)( M+T∑

n=M+1

χ(f(λn))χ1(λ
nγ)
)∣∣∣∣
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≤
1

T

T−1∑

γ=0

∣∣∣
M+K∑

y=M+1

χ1(λ
−γy)
∣∣∣
∣∣∣
T−1∑

n=0

χ(f(λn))χ1(λ
nγ)
∣∣∣.

For γ = 0 we have |
∑T−1
n=0 χ(f(λ

n))χ1(λ
nγ)| = |

∑T−1
n=0 χ(f(λ

n))|, which is

less than sp1/2 by Lemma 2, and thus

(14)

M+K∑

n=M+1

χ(f(λn))

≤
1

T

T−1∑

γ=1

∣∣∣
M+K∑

y=M+1

χ1(λ
−γy)
∣∣∣
∣∣∣
T−1∑

n=0

χ(f(λn))χ1(λ
nγ)
∣∣∣+ sp1/2.

By (13) we have

∣∣∣
M+K∑

n=M+1

χ(f(λn))
∣∣∣ ≤
(s+ 1)p1/2

T

T−1∑

γ=1

∣∣∣
M+K∑

y=M+1

χ1(λ
−γy)
∣∣∣+ sp1/2.(15)

Denoting the distance of α to the nearest integer by ‖α‖, and using
|1− e(α)| ≥ 4‖α‖ and (11) we get |1− χ1(λ

γ)| = |1− e(γ/T )| ≥ 4‖γ/T‖.
By using this and the sum of a geometric progression we obtain

T−1∑

γ=1

∣∣∣
M+K∑

y=M+1

χ1(λ
−γy)
∣∣∣ ≤

T−1∑

γ=1

2

4‖γ/T‖
≤

T/2∑

γ=1

T

γ
≤ T (log(T/2) + 1)(16)

≤ 1.45 T log T.

Since T ≤ p− 1, from (15) and (16) we get the statement of Lemma 1(i).
It remains to prove Lemma 1(ii). Suppose that f(x) = cxα(g(x))d with

c ∈ F∗p, α ∈ N and g(x) ∈ Fp[x]. Since the order of the character χ is d we
have

∣∣∣
M+K∑

n=M+1

χ(f(λn))
∣∣∣ =
∣∣∣
M+K∑

n=M+1

χ(λαn)
∣∣∣.

Hence summing a geometric progression and applying (11), (12) and
|1− e(α)| ≥ 4‖α‖, we get

∣∣∣
M+K∑

n=M+1

χ(f(λn))
∣∣∣ ≤

2

|1− χ(λα)|
=

2
∣∣1− e

(m(p−1)α
dT

)∣∣ ≤
1

2
∥∥m(p−1)α

dT

∥∥ .(17)

Since T | p− 1 the quotient m(p− 1)α/T is an integer. On the other hand,
by the condition of Lemma 1(ii) we have T ∤ (p − 1)α/d, so d ∤ (p − 1)α/T .
As (m, d) = 1 we also have d ∤m(p− 1)α/T . Therefore

∥∥∥∥
m(p− 1)α

dT

∥∥∥∥ ≥
1

d
.

Using this and (17) we get Lemma 1(ii).
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Proof of Theorem 1. Assume that a, b, t ∈ N and 1 ≤ a+ b ≤ a+ tb ≤ T .
We will give an upper bound for U(EN , t, a, b).

The order of λb is T/(T, b). Clearly, for fixed a and b, f(λax) ≡ 0 (mod p)
has at most k solutions in x, and thus f(λa+bj) ≡ 0 (mod p) has at most
k solutions in j with 1 ≤ j ≤ t ≤ T/(T, b). Write h(x) = f(λax). Then
defining

(
a
p

)
to be 0 for p | a, we have

|U(EN , t, a, b)| =
∣∣∣
t∑

j=1

ea+jb

∣∣∣ ≤
∣∣∣∣
t∑

j=1

(
f(λa+bj)

p

)∣∣∣∣+ k(18)

=

∣∣∣∣
t∑

j=1

(
h((λb)j)

p

)∣∣∣∣+ k.

Now f(x) and h(x) are of the same degree, and if f(x) is not of the form
c(g(x))2 or cx(g(x))2 with c ∈ F∗p and g(x) ∈ Fp[x], then this also holds

for h(x). Thus we may apply Lemma 1 with
(
n
p

)
, 2, λb, T/(T, b) and h(x) in

place of χ(n), d, λ, T and f(x), to obtain

|U(EN , t, a, b)| ≤

∣∣∣∣
t−1∑

j=0

(
h((λb)j)

p

)∣∣∣∣+ k ≤ 4kp
1/2 log p+ k ≤ 5kp1/2 log p,

which completes the proof.

Proof of Theorem 2. Consider any D = (d1, . . . , dl) with non-negative
integers d1 < · · · < dl, and a positive integerM withM+dl ≤ T . Clearly for
fixed d, f(λn+d) ≡ 0 (modp) has at most k solutions in n with 1 ≤ n ≤ T ,
so (defining

(
0
p

)
to be 0) we have

(19) |V (EN ,M,D)|

=
∣∣∣
M∑

n=1

en+d1 · · · en+dl

∣∣∣ ≤
∣∣∣∣
M∑

n=1

(
f(λn+d1)

p

)
· · ·

(
f(λn+dl)

p

)∣∣∣∣+ kl

=

∣∣∣∣
M∑

n=1

(
f(λn+d1) · · · f(λn+dl)

p

)∣∣∣∣+ kl.

If ϕ2(x) | f(x) for a ϕ(x) ∈ Fp[x], then in Definition 1 the polynomials f
and f/ϕ2 generate almost the same sequences:

(
f(λn)

p

)
=

(
f/ϕ2(λn)

p

)(
ϕ(λn)

p

)2
=

(
f/ϕ2(λn)

p

)

if ϕ(λn) 6≡ 0 (modp), so if f(λn) 6≡ 0 (modp). It follows that (19) also holds
with f/ϕ2 in place of f , hence throughout the proof of Theorem 2 we may
suppose that f is squarefree. We will use the following lemma.
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Lemma 4. Suppose that f(x) is squarefree, and at least one of the con-
ditions (a), (b), (c), (d) of Theorem 2 holds. Then the polynomial

h(x) := f(λd1x) · · · f(λdlx)

cannot be of the form c(g(x))2 or cx(g(x))2 with c ∈ F∗p and g(x) ∈ Fp[x].

We will prove Lemma 4 below. The degree of the polynomial h(x) is kl,
so from (19), by using Lemmas 1 and 4, we obtain

|V (EN ,M,D)| ≤ 4klp1/2 log p+ kl ≤ 5klp1/2 log p,

which was to be proved. Thus to complete the proof of Theorem 2 it remains
to prove Lemma 4.

Proof of Lemma 4. Write f(x) in the form xβq(x), where x ∤ q(x). Then
x ∤ q(λd1x) · · · q(λdlx), so h(x) = f(λd1x) · · · f(λdlx) is of the form c(g(x))2

or cx(g(x))2 with c ∈ Fp and g(x) ∈ Fp[x] if and only if q(λ
d1x) · · · q(λdlx)

is of the form c(g(x))2 with c ∈ Fp and g(x) ∈ Fp[x].

In order to complete the proof of Lemma 4 we will prove that

h̃(x) := q(λd1x) · · · q(λdlx)

is not of the form c(g(x))2 with c ∈ Fp and g(x) ∈ Fp[x].

First consider the case when condition (a) of Theorem 2 holds. We prove

that the polynomial h̃(x) = q(λd1x)q(λd2x) cannot be of the form c(g(x))2

with c ∈ F∗p and g(x) ∈ Fp[x].

Let L denote the splitting field of q(x). Then

q(x) = c

k∏

i=1

(x− αi)

with c ∈ Fp, αi ∈ L, i = 1, . . . , k and α1, . . . , αk are pairwise distinct. It
follows that

q(λd1x) = cλd1k
k∏

i=1

(x− αi/λ
d1),

q(λd2x) = cλd2k
k∏

i=1

(x− αi/λ
d2).

We have αi/λ
d1 6= αj/λ

d1 whenever i 6= j. Assume that h̃(x) = c(g(x))2.

Then all the roots of h̃(x) have multiplicity 2 and there exists a permutation
π : {1, . . . , k} → {1, . . . , k} such that

αi/λ
d1 = απ(i)/λ

d2 , 1 ≤ i ≤ k.

We obtain

απ(i) = λ
d2−d1αi, 1 ≤ i ≤ k.
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This implies

απs(i) = λ
s(d2−d1)αi

for any s ∈ Z and 1 ≤ i ≤ k.

Let σ denote the multiplicative order of λd2−d1 , i.e. let λσ(d2−d1) = 1.
Then πσ is the identical permutation and we obtain

(x− αi)(x− λ
(d2−d1)αi) · · · (x− λ

(σ−1)(d2−d1)αi)

= xσ ± ασi , i = 1, . . . , k.

Thus σ | k and σ > 1 because λd2−d1 6= 1. Hence q(x) splits into factors of
the form xσ − ασi , i.e. q(x) = g(x

σ) with σ > 1.

Since σ is the order of λd2−d1 and T is the order of λ, we also have
T |σ(d2−d1). As |d2 − d1| < T , it follows that (σ, T ) ≥ 2, which contradicts
condition (a) in Theorem 2.

In order to prove Lemma 4 if (b) or (c) of Theorem 2 holds, write q(x) as
the product of irreducible polynomials over Fp; then these irreducible factors
are distinct. Let us group these factors so that in each group the equivalent
irreducible factors are collected (under the equivalence relation described in
Definition 2). We will use the following lemma.

Lemma 5. Suppose that q(x) is squarefree and h̃(x) = q(λd1x) · · · q(λdlx)
is of the form c(g(x))2 with c ∈ F∗p and g(x) ∈ Fp[x]. Let

c1ϕ(λ
a1x), . . . , crϕ(λ

arx)

be a group formed by equivalent irreducible factors of q(x), and write A =
{a1, . . . , ar}, D = {d1, . . . , dl}. Then for all γ ∈ ZT the congruence

a+ d ≡ γ (modT ), a ∈ A, d ∈ D,

has an even number of solutions.

Proof. If we write h̃(x) = q(λd1x) · · · q(λdlx) as the product of irreducible
polynomials over Fp, then all the polynomials ϕ(λ

ai+djx) with 1 ≤ i ≤ r,
1 ≤ j ≤ l occur amongst the factors. All these polynomials are equivalent,
and no other irreducible factor belonging to this equivalence class will occur
amongst the irreducible factors of h̃(x).

Since distinct irreducible polynomials cannot have a common zero, each
of the zeros of h̃(x) is of even multiplicity if and only if in each group

formed by equivalent irreducible factors of h̃(x), every polynomial of the
form ϕ(λγx) occurs with even multiplicity, i.e., for an even number of pairs
(ai, dj). From this the statement of the lemma follows.

Next we return to the proof of Lemma 4. Clearly, if (b) or (c) of The-
orem 2 holds, then there exists a group for which one of the following
holds:
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(i) T (the order of λ) is a prime, and either

|A| = r, |D| = l with min{(4r)l, (4l)r} ≤ T

or 2 is a primitive root modulo T ,
(ii) |A| = 1.

In cases (i) and (ii) we may use the following addition theorem type
lemma:

Lemma 6. Let A,D ⊆ ZT with |A| = r, |D| = l. Suppose that one of the
following conditions holds:

(a) min{r, l} = 1,
(b) T is a prime and min{(4r)l, (4l)r} ≤ T ,
(c) T is a prime and 2 is a primitive root modulo T .

Then there exists a γ ∈ ZT such that

a+ d ≡ γ (modT ), a ∈ A, d ∈ D,

has exactly one solution.

Using Lemma 6 we see that the conclusion of Lemma 5 cannot hold, so
h̃(x) = q(λd1x) · · · q(λdlx) cannot be of the form c(g(x))2 with c ∈ F∗p and
g(x) ∈ Fp[x] if (a), (b) or (c) of Theorem 2 holds. This proves Lemma 4 in
these cases, but it remains to prove Lemma 6.

Proof of Lemma 6. (a) If min{r, l} = 1 without loss of generality we may
suppose that r = 1, so A = {a1} and D = {d1, . . . , dl}. Then all the sums
of the form a + d with a ∈ A and d ∈ D are a1 + d1, . . . , a1 + dl and they
are different modulo T , which proves the assertion.
(b) See the proof of Theorem 2 in [1].
(c) See the proof of Theorem 3 in [1].

This completes the proof of Lemma 6. Thus we have verified the con-
clusion of Lemma 4 if (a), (b) or (c) of Theorem 2 holds. If (d) holds,
then the assertion of Lemma 4 is trivial, since the degree of the polynomial
h(x) = f(λd1x) · · · f(λdlx) is odd as k and l are odd, hence h(x) cannot be of
the form c(g(x))2 with c ∈ Fp and g(x) ∈ Fp[x]. So Lemma 4 always holds,
and as we have seen, from this Theorem 2 follows.

Proof of Corollary 1. Since ̺ is a root of f(x) of multiplicity 1, there is
an irreducible factor ϕ(x) of multiplicity 1 in the factorization of f(x) for
which ̺ is a root: ϕ(x) | f(x) but ϕ2(x) ∤ f(x) and ϕ(̺) = 0.
All polynomials equivalent to ϕ(x) are of the form cϕ(λγx). These ir-

reducible polynomials (except ϕ(x)) cannot be in the factorization of f(x):
cϕ(λγx) | f(x) is not possible for T ∤ γ, since f(x) has no root of the form
λi̺ other than ̺, but cϕ(λγx) has a root of this form: x = λT−γ̺. Thus
condition (c) of Theorem 2 holds, so Corollary 1 follows from Theorem 2.
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Proof of Corollary 2. Let ̺ be the unique root which is a quadratic
non-residue modulo p. Since the order of λ is (p − 1)/2, λ is a quadratic
residue modulo p. Thus λi̺ is a quadratic non-residue modulo p, but f(x)
has no quadratic residue root other than ̺. Using Corollary 1 we get the
statement.

Proof of Corollary 3. First we slightly extend Lemma 1 in the special
case when the multiplicative character is the Legendre symbol.

Lemma 7. Let p be a prime, ν1, ν2 ∈ F∗p, where ν2 is of multiplicative
order T , and K,M ∈ Fp with K ≤ T . Suppose that f(x) ∈ Fp[x] has exactly
s distinct zeros, x ∤ f(x) and f(x) is not of the form c(g(x))2 with c ∈ Fp
and g(x) ∈ Fp[x]. Then

∣∣∣∣
M+K∑

n=M+1

(
νn1 f(ν

n
2 )

p

)∣∣∣∣ ≤ 8sp
1/2 log p.

Proof. Using the triangle inequality, the multiplicative property of the
Legendre symbol and

∣∣(νi
p

)∣∣ = 1, we get
∣∣∣∣
M+K∑

n=M+1

(
νn1 f(ν

n
2 )

p

)∣∣∣∣ ≤
∣∣∣∣
M+K∑

n=M+1
n≡0 (mod 2)

(
νn1 f(ν

n
2 )

p

)∣∣∣∣+
∣∣∣∣
M+K∑

n=M+1
n≡1 (mod 2)

(
νn1 f(ν

n
2 )

p

)∣∣∣∣

=

∣∣∣∣
M+K∑

n=M+1
n≡0 (mod 2)

(
f(νn2 )

p

)∣∣∣∣+
∣∣∣∣
M+K∑

n=M+1
n≡1 (mod 2)

(
f(νn2 )

p

)∣∣∣∣.

From this by using Lemma 1 we get the statement of Lemma 7.

Next we return to the proof of Corollary 3. Since
( c2
1
+4c2
p

)
= 1, the two

roots of the characteristic polynomial: λ1 and λ2 are different and in Fp.
Thus xn is of the form

xn ≡ a1λ
n
1 + a2λ

n
2 ≡ λ

n
1 (a1 + a2(λ2/λ1)

n) (modp)

with a1, a2 ∈ Fp. Since x2/x1 is not a root of the characteristic polynomial,
we have ai 6≡ 0 (mod p) for i = 1, 2. Define f(x) ∈ Fp[x] by f(x) = a1+ a2x.
Then

xn ≡ λ
n
1f((λ2/λ1)

n) (mod p).

Assume that a, b, t ∈ N and 1 ≤ a + b ≤ a + tb ≤ T . We will give an
upper bound for U(EN , t, a, b).

For fixed a and b, xa+jb ≡ λ
a+jb
1 (a1+ a2(λ2/λ1)

a+jb) ≡ 0 (modp) has at
most one solution in j with 1 ≤ a+ jb ≤ T . Then similarly to (18) we get



Linear recursion and pseudorandomness 373

|U(EN , t, a, b)| ≤

∣∣∣∣
t∑

j=1

(
λa+jb1 f((λ2/λ1)

a+jb)

p

)∣∣∣∣+ 1.

Using Lemma 7 we get

|U(EN , t, a, b)| ≤ 8p
1/2 log p+ 1 ≤ 9p1/2 log p,

which was to be proved.
Consider any D = (d1, . . . , dl) with non-negative integers d1 < · · · < dl,

and a positive integer M with M + dl ≤ T . We give an upper bound for
V (EN ,M,D). Similarly to (19) we get

|V (EN ,M,D)|

≤

∣∣∣∣
M∑

n=1

(
λnj1 λ

d1+···+dl
1 f((λ2/λ1)

n+d1) · · · f((λ2/λ1)
n+dl)

p

)∣∣∣∣+ l.

If f((λ2/λ1)
d1x) · · · f((λ2/λ1)

dlx) is not of the form c(g(x))2 with c ∈ Fp
and g(x) ∈ Fp[x], then we can use Lemma 7 to obtain

|V (EN ,M,D)| ≤ 8lp1/2 log p+ l ≤ 9lp1/2 log p,

which was to be proved.
In order to complete the proof of Corollary 3 we prove that

f((λ2/λ1)
d1x) · · · f((λ2/λ1)

dlx)

is not of the form c(g(x))2 with c ∈ Fp and g(x) ∈ Fp[x]. The degree of
each of the polynomials f((λ2/λ1)

dix) (1 ≤ i ≤ l) (in x) is 1, so they are
irreducible. Their product is a constant multiple of a square of a polynomial
only if there exist 1 ≤ i < j ≤ l and c ∈ Fp with

f((λ2/λ1)
dix) = cf((λ2/λ1)

djx),

a1 + a2(λ2/λ1)
dix = ca1 + ca2(λ2/λ1)

djx.

Since ai 6≡ 0 (mod p), it follows that c ≡ 1 (mod p) and thus

di ≡ dj (modT ),

which is impossible, since 1 ≤ di < dj ≤ T . This completes the proof.
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[3] C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences, I. Measures
of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), 365–377.

[4] I. Shparlinski, Cryptographic Applications of Analytic Number Theory, Birkhäuser,
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H-1117 Budapest, Hungary
E-mail: gykati@cs.elte.hu

sarkozy@cs.elte.hu

Department of Computer Science
University of Debrecen

P.O. Box 12
H-4010 Debrecen, Hungary

E-mail: pethoe@inf.unideb.hu

Received on 13.9.2004 (4847)


