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On sums and products of residues modulo p
by

A. SARKOzZY (Budapest)
1. Introduction. Throughout the paper we use the notation e(a) = ™,
Our goal is to show that if A, B,C, D are “large” subsets of Z,, then the
equation

(1) a+b=cd, a€A beB, ceC,deD,
can be solved.

THEOREM. Ifp is a prime, A, B,C, D C Z,, and the number of solutions
of (1) is denoted by N, then

_ [ABIICT D]
p

(2) N < (1A[|Bl|C||D)"/?p' 2.

COROLLARY 1. If p is a prime, A, B,C,D C Z;, and
(3) |Al[B]|C||D] > p?,
then (1) can be solved.

Note that Corollary 1 and thus also the Theorem is the best possible
apart from the constant factor in (2), resp. (3). Indeed, taking A = B =
{n:1<mn < p/2} (here and in what follows we do not distinguish between
integers and residue classes represented by them), C' = {1,...,p} and D =
{0}, we have

1
AI1BI1C11D] = (5 +o(0) )

however, (1) has no solution.

Moreover, we remark that these results cannot be extended from prime
moduli to composite moduli, i.e., from Z, to Z,,. Indeed, let m = 2k be
an even positive integer, and let A = C = {2,4,...,2k} C Zy,, B =
{1,3,...,2k — 1} and D = Z,,. Then we have
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|[Al|B]|C||D| = gm*

so that much more holds than the m-analogue of (3), however, clearly (1)
has no solution. One might like to study the question that in what rings R
(including infinite ones) is it true that if A, B,C, D are “dense” subsets of
R, then (1) must be solvable.

First, in Section 2 we will show that the Theorem and Corollary 1 gener-
alize several earlier theorems, and the proofs of the Theorem and Corollary 1
will be presented in Section 3.

2. Consequences

COROLLARY 2. If p is a prime number, x is a (multiplicative) character
modulo p of order d, n € Z, A, B C Z;, and

1\ 2
o Al1B> (11
then there are a € A, b € B with
(5) x(a+b) = e(%).

Proof. Writing C = {u: u € Zy, x(u) =1} and D = {v : v € Zp, x(v) =
e(%)}, we have
p—1
Cl=|p|=2"=
o= pj =221,

so that, by (4),

p3 (P - 1)2 :p3
b7 @ P

Thus by Corollary 1, (1) can be solved. If a, b, ¢, d satisfy (1) then we have

x(a+b) = x(cd) = x(c)x(d) = 1- 6<§> N 6<g>

so that (5) holds and this completes the proof of Corollary 2.

|Al|B]|C||D] > d

In particular, if x(n) = (%) (for (n,p) = 1) is the Legendre symbol in
Corollary 2 so that d = 2, then we have the following consequence:

COROLLARY 3. Ifp is an odd prime, A,B C Z, and

1 -2
A !B|>4<1——> 2
p

then there are a,a’ € A, b,/ € B with

/ /
<a+b>:17 <a+b>:_1.
p p
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This sharpens and generalizes a result of Erdés and Sarkozy [1]; see also
[2] and [3].

COROLLARY 4. Ifp is a prime, k €N, (p—1,k) > 1, A, B C Z, and for
alla € A, b€ B, a+bis a kth power in Zy, i.e., writing E = {2* : € Z,)}
we have A+ B C E, then

(6) rAHB|s9<1—%>_3»

Note that apart from the constant factor in the upper bound in (6), this
is Gyarmati’s Theorem 8(b) in [5].

Proof of Corollary 4. We have to show that if A, B C Z, and

1\ 2
¢ AlB>9(1-1)
then there are a € A,b € B with
(8) a+b¢ E.

Write D = (p — 1,k) (so that D > 1), let r(n, D) denote the least non-
negative residue of n modulo D, let g be a primitive root modulo p, and
define C,D by C = {¢* : 0 < r(u,D) < D/2}, D = {g" : 0 < r(v,D) <
D/2} so that, by D > 1,
. Dip—-1_p-1
D> |—|— > ——.
) mincl. o) > |5 |5 =
By (7) and (9) we have

1\ 2 /p—1)\2
alslepl>9(1-1) »(5) =

so that, by Corollary 1, (1) can be solved. If a,b, ¢, d satisfy (1) then a + b
can be written in form

at+b=cd=g" g"=g"""
with 0 < r(u + v, D) < D so that D { (u + v). Thus D does not divide the
(base g) index of a + b modulo p whence (8) follows.

COROLLARY 5. If p is a prime, k € N, A,B C Z, and, writing D =
(k,p—1), we have

1 -2
(10) B> *(1-3)
then the equation
(11) at+tb=2xF acA beB,xcZ, v#0,

can be solved.
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This is a variant of a special case of Gyarmati’s Theorem 10(b) in [5].
Note that it follows from this corollary that if m,n,k € N are fixed and p is
a prime large enough then the congruence

2™ 4+ y" = 2F (mod p),
and in particular the Fermat congruence
2" +y" = 2" (modp)
has non-trivial solution z, y, z; the latter is Schur’s theorem [7].
Proof of Corollary 5. Writing F = {z* : x € Z,, x # 0}, we clearly have

p—1
F|=——.
Fl=22

Thus taking C' = D = F, by (10) we have
2
p—1 .
AliBlIc1Dl = 41181 (P5 ) >
so that by Corollary 1 (1) can be solved. For a, b, ¢, d satisfying (1) we have

a+b=cdecCD=F -F=F
which proves the solvability of (11).

COROLLARY 6. If p is a prime, S, T are integers with 1 < T < p,
C,D C Zy and

4
(12) C11D| > 1
then
(13) cd=n (modp), ceC,deD, S<n<S+T,

can be solved.
This is a slight sharpening of the Corollary in [6]; the connection with the
problem of the least quadratic non-residue was analyzed there. See also [4].

Proof of Corollary 6. Define A, B by A ={a:95 <a<S+I[T/2]},
B={b:0<b<T—[T/2]} so that

(14) min{|A],|B|} > T — E] > g
It follows from (12) and (14) that
T\? 4
AlBIIClID > (3 ) 728 =7

so that, by Corollary 1, there are a, b, ¢, d satisfying (1):
(15) a+b=cd
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By the definition of A and B, here we have
(16) S<a+b<S+T
and (13) follows from (15) and (16).

3. The proofs
Proof of the Theorem. For every a, b, c,d € Z, we have

-1 .
1% k 1 ifa+b=cd,
—E e((a+b—cd)—):{ ?a—k ¢
P p 0 ifa+b+#cd,
so that

ZZZZZ (@ro-ant)

P €A beB ceC deD k=0
Separating the term with £ = 0 we obtain

v !AHBHCHD\ ZZZZZ(HH@@)

k 1 a€A beB ceC deD

S o ) () (5 E)

whence, writing F(a) = ZE:A e(ac) and G(a) = Ypep e(bB),
(17) ‘|N, _ [A[[B[[C]|D]
SIE )G E s ()

Sl EIlCE g )l

Now we need Vinogradov’s lemma [8, p. 29]:

LEMMA 7. Let (a,q) =1, q > 1. Let

qg—1qg—-1 a
S = C(x)n(y)e| vy —
DNEIACT)

and suppose that

q—1 qg—1
S K@ =X, Y ) =
=0 y=0
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Then
S| < (XoYoq)'/2.

We use this lemma with a = —k, ¢ = p,
1 ifzeC, 1 ifde D,
=) = {0 ftegc, 107 {o itd¢ D,
so that Xo = |C| and Yy = |D|. We obtain

S Y-t )| < gt o (b =1

ceCdeD
By using Cauchy’s inequality and a Parseval formula type identity, it follows
from (17) and (18) that
k
40
p

p—1

[AlBI|C] ID!’ < }Z
172 p—1
_ (clip)¥? >

iz

(18)

-

G(%) ‘(I(Jy D|p)"/

7G)leG)
(=) (N E

> 1/2 ( p—
k=0 k=0

1/2
=(’C‘%) (1A 2(Blp)

= (|A||B[C||D])"/*p"
which completes the proof of the Theorem.

pkl

2> 1/2

“(;)

Proof of Corollary 1. By our Theorem, it follows from (3) that
[AlBl|C] D]
> L EEL (a1 Bl € D) 22

_ [AlIB[|C]|D['?

((1AB[C] D)2 = p*2) > 0.
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