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1. Introduction and statement of results. Let

(1.1) f(z) := η4(2z)η4(4z) = q

∞
∏

n=1

(1 − q2n)4(1 − q4n)4 =

∞
∑

n=1

a(n)qn

be the unique normalized eigenform in the space S4(Γ0(8)) of weight four
cuspforms on the congruence subgroup Γ0(8), where q := e2πiz and

η(z) := q
1
24

∞
∏

n=1

(1 − qn)

is Dedekind’s eta function. In [4], Beukers proved that for odd primes p,

(1.2) a(p) ≡ A

(

p − 1

2

)

(mod p),

where A(n) is the Apéry number

A(n) :=
n

∑

j=0

(

n + j

j

)2(n

j

)2

.

He conjectured that in fact

(1.3) a(p) ≡ A

(

p − 1

2

)

(modp2).

This was proved for primes p such that p ∤ a(p) by Ishikawa [8] and uncon-
ditionally by Ahlgren and Ono [1].

The a(p) for odd primes p are also known to be related to the modular
Calabi–Yau threefold

(1.4) x +
1

x
+ y +

1

y
+ z +

1

z
+ w +

1

w
= 0,

in the following way. Let N(p) denote the number of solutions to (1.4) over
the finite field with p elements. Then Ahlgren and Ono [2], van Geemen and

2000 Mathematics Subject Classification: Primary 11F33; Secondary 11S80.

[335]



336 T. Kilbourn

Nygaard [6], and Verrill [14] proved by different methods that

(1.5) a(p) = p3 − 2p2 − 7 − N(p)

for odd primes p. This also allows Ahlgren and Ono to give a representation
of a(p) in terms of Gaussian hypergeometric series, the finite field analogs
of the classical hypergeometric series.

In [13], Rodriguez-Villegas considers hypergeometric weight systems of
the form

γ =

∞
∑

k=1

γk[k],

where γk = 0 for all but finitely many k, satisfying the two conditions:

(1)
∞

∑

k=1

kγk = 0,

(2) d = d(γ) := −
∞

∑

k=1

γk > 0.

The integer d is called the dimension of γ. To such a γ we may associate a
hypergeometric function

u(λ) :=
∞

∑

n=0

unλn where un =
∞
∏

k=1

(kn)!γk .

This function u(λ) satisfies an order r linear differential equation, and r is
called the rank of γ.

Rodriguez-Villegas shows that in the case where d = r, the coefficients
un are integers for all n, so the truncation

p−1
∑

n=0

unλn mod p

is well defined. When d = r = 4, there is a family of Calabi–Yau threefolds
associated to γ via toric geometry. For a certain value λ = λ0, Rodriguez-
Villegas observed that numerically,

p−1
∑

n=0

unλn
0 ≡ c(p) (mod p3)

for primes p not dividing λ−1
0 , where the c(p) are the coefficients of a weight

four modular form depending on γ. If γ = 4[2] − 8[1], then λ0 = 2−8, the
modular form is f(z), and we prove Rodriguez-Villegas’ observation in the
following theorem.
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Theorem 1. Let p be an odd prime, and let a(p) be defined as in (1.1).
Then

a(p) ≡

p−1
∑

j=0

(

2j

j

)4

2−8j (modp3).

Note that by combining Lemma 4.5 below and [1, Lemma 7.2], this the-
orem extends Beukers’ supercongruence (1.3). For hypergeometric weight
systems with dimension and rank equal to 2, Rodriguez-Villegas obtains a
family of elliptic curves, and similar mod p2 supercongruences hold. These
have been proved by Mortenson ([10]–[12]).

The crucial ingredient in the proof of Theorem 1 is the fact that the
Calabi–Yau threefold (1.4) is modular. By using character sums to calcu-
late the quantity N(p), we can write a(p) in terms of character sums using
(1.5), as in [1, Theorem 6]. The Gross–Koblitz formula then transforms the
character sums into expressions involving the p-adic gamma function.

The modularity result allows us to relate the Calabi–Yau threefold to the
modular form f(z). For the other threefolds listed in [13], it seems likely that
a similar modularity result would allow us to apply the techniques in this
paper. It is possible that another approach could also provide a connection
between the modular forms and the hypergeometric series. For example,
by the work of Deligne, we know that the coefficients of these modular
forms are related to certain 2-dimensional Galois representations; it would
be interesting to see if these representations can be related directly to the
hypergeometric series in question.

Also, Theorem 1 does not hold modulo p4. A similar analysis could prob-
ably be carried out modulo p4, but the expressions involved would be con-
siderably more complicated.

In Section 2, we will review some properties of the p-adic gamma func-
tion and its logarithmic derivatives. In Section 3 we use the Gross–Koblitz
formula to reduce the proof of Theorem 1 to the proof of Proposition 3.1. In
Section 4 we use properties of the p-adic gamma function to prove Proposi-
tion 3.1.

2. p-adic preliminaries. Let p be an odd prime. Throughout the pa-
per, |·| denotes the p-adic absolute value on Qp, normalized so that |p| = p−1.
We recall the definition of the p-adic gamma function on the p-adic integers
Zp (see [9, Ch. IV] for details). For integers n ∈ N, set

Γp(n) := (−1)n
∏

j<n
p∤j

j,
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and extend to all x ∈ Zp by setting

Γp(x) := lim
n→x

Γp(n).

It is known that this limit exists, and it is independent of the sequence of
integers approaching x p-adically. This function is locally analytic and has
a Taylor series expansion (see [5])

(2.1) Γp(x + z) =
∞
∑

n=0

anzn, an ∈ Qp,

with radius of convergence

̺ := p
− 1

p
− 1

p−1 .

The following proposition gives some basic properties of Γp and is an
easy consequence of the definition of Γp(x) (see, e.g., [9]).

Proposition 2.1. Let n ∈ N and x ∈ Zp. Then

(1) Γp(0) = 1.

(2)
Γp(x + 1)

Γp(x)
=

{

−x if |x| = 1,

−1 if |x| < 1.

(3) |Γp(x)| = 1.
(4) Let x0 ∈ {1, . . . , p} be the constant term in the p-adic expansion of x.

Then Γp(x)Γp(1 − x) = (−1)x0 .

(5) If x ≡ y (mod pn), then Γp(x) ≡ Γp(y) (modpn).

Now we consider the logarithmic derivative of Γp. For x ∈ Zp, let

G1(x) :=
Γ ′

p(x)

Γp(x)
, G2(x) :=

Γ ′′
p (x)

Γp(x)
.

By the local analyticity of Γp(x) and the fact that |Γp(x)| = 1, these func-
tions are defined on all of Zp.

Proposition 2.2. Let x ∈ Z×
p . Then

(1) G1(x + 1) − G1(x) = 1/x.

(2) G2(x + 1) − G2(x) = G1(x + 1)2 − G1(x)2 − 1/x2.

Proof. We obtain the first assertion from Proposition 2.1(2), and the
second assertion is obtained by differentiating the first.

Next we discuss some congruence properties of the p-adic gamma func-
tion and its derivatives. Our arguments follow the work of Chowla, Dwork,
and Evans [5].
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Proposition 2.3. Let p ≥ 7 be prime, x ∈ Zp, and z ∈ pZp. Then

(1) G1(x), G2(x) ∈ Zp.

(2)

(2.2) Γp(x + z) ≡ Γp(x)

(

1 + zG1(x) +
z2

2
G2(x)

)

(mod p3).

(3)

(2.3) Γ ′
p(x + z) ≡ Γ ′

p(x) + zΓ ′′
p (x) (modp2).

Proof. Recall the Taylor series expansion (2.1) for Γp(x+ z) with radius
̺ = p−1/p−1/(p−1). We know that |an| ≤ ̺−n for n = 0, 1, . . . . If p ≥ 2n + 1,
then ̺−n < p. Since an ∈ Qp, we have

(2.4) |an| ≤ 1 if p ≥ 2n + 1.

By (2.1), an = (1/n!)Γ
(n)
p (x), where Γ

(n)
p (x) is the nth derivative of Γp at x.

Now for n = 1, 2, we have

|Gn(x)| =
|Γ

(n)
p (x)|

|Γp(x)|
= |Γ (n)

p (x)| = |n!an|,

since by Proposition 2.1 we have |Γp(x)| = 1. Thus for p ≥ 5 we have
G1(x), G2(x) ∈ Zp.

If |z| ≤ |p|, then

|anzn| ≤
|p|n

̺n
= |p|

n(1− 1
p
− 1

p−1
)
.

Since an ∈ Qp, we can conclude that

anzn ≡ 0 (modpβn),

where βn is the smallest integer such that

βn ≥ n

(

1 −
1

p
−

1

p − 1

)

.

If n ≥ 4 and p ≥ 5, then βn ≥ β4 ≥ 3, so

Γp(x + z) ≡ a0 + a1z + a2z
2 + a3z

3 (modp3).

For p ≥ 7, by (2.4) we see that a3 ∈ Zp and

Γp(x + z) ≡ a0 + a1z + a2z
2 (mod p3)

since |z| ≤ |p|. Now (2.2) follows since ai = (1/i!)Γ
(i)
p (x).

For (2.3), note that

Γ ′
p(x + z) =

∞
∑

n=0

nanzn−1,

where the an are as in (2.1). Thus the same arguments can be used to prove
(2.3).
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3. Proof of Theorem 1. The cases p = 3 and p = 5 can be checked
explicitly, so assume p ≥ 7. Let φ be the quadratic character on F×

p . From
[1, Lemma 7.1], we know that

(3.1) a(p) =
−1

p − 1

∑

χ

J(φ, χ)4 − p,

where J(φ, χ) is the Jacobi sum of the F×
p -characters φ and χ, and the sum

runs over all such characters χ. By using basic properties of Jacobi sums
and Gauss sums g(χ) (see [3]), we can write

∑

χ

J(φ, χ)4 = 1 + p2
∑

χ 6=φ

g(χ)4

g(φχ)4
.

We can consider the characters χ as taking values in Z×
p , and hence g(χ) ∈

Cp. Let π ∈ Cp be a fixed root of xp−1 + p = 0. If we let ω be the Teich-
müller character, then the Gross–Koblitz formula [7] states that with an
appropriate normalization of the Gauss sum,

g(ω−j) = −πjΓp

(

j

p − 1

)

, 0 ≤ j ≤ p − 2.

Applying this to our present situation, we can write (as in [1])

∑

χ

J(φ, χ)4 = 1 + p2

(p−3)/2
∑

j=0

g(ω−j)4

g(φω−j)4
+ p2

p−2
∑

j=(p+1)/2

g(ω−j)4

g(φω−j)4

= 1 + p2

(p−3)/2
∑

j=0

g(ω−j)4

g(ω−(j+ p−1
2

))4
+ p2

p−2
∑

j=(p+1)/2

g(ω−j)4

g(ω−(j− p−1
2

))4

= 1 +

(p−3)/2
∑

j=0

Γp

( j
p−1

)4

Γp

( j
p−1 + 1

2

)4 + p4
p−2
∑

j=(p+1)/2

Γp

( j
p−1

)4

Γp

( j
p−1 − 1

2

)4 .

We combine this with (3.1) to see that

a(p) ≡
−1

p − 1

(

1 +

(p−3)/2
∑

j=0

Γp

( j
p−1

)4

Γp

( j
p−1 + 1

2

)4

)

− p

≡ p2 + 1 + (p2 + p + 1)

(p−3)/2
∑

j=0

Γp

( j
p−1

)4

Γp

( j
p−1 + 1

2

)4 (mod p3).

We have j/(p − 1) ≡ −j − jp − jp2 (mod p3), so Proposition (2.1)(5) gives

a(p) ≡ p2 + 1 + (p2 + p + 1)

(p−3)/2
∑

j=0

Γp(−j − jp − jp2)4

Γp(1/2 − j − jp − jp2)4
(mod p3).
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Applying Proposition 2.1(4) and reindexing the summation, we have

(3.2) a(p) ≡ p2 +1+(p2 +p+1)

(p−1)/2
∑

j=1

Γp(1/2 + j + jp + jp2)4

Γp (1 + j + jp + jp2)4
(modp3).

By Proposition 2.3, we see that

(3.3) Γp(x0 + j + jp + jp2)4 ≡ Γp(x0 + j)4[1 + 4(jp + jp2)G1(x0 + j)

+ (jp + jp2)2(2G2(x0 + j) + 6G1(x0 + j)2)] (mod p3)

for x0 ∈ Zp. We expand the numerator and denominator of (3.2) with x0 =
1/2 and x0 = 1 respectively. By multiplying the numerator and denominator
by

1 − 4jpG1(1 + j) − 2j2p2(G2(1 + j) − 5G1(1 + j)2) − 4jp2G1(1 + j),

we conclude that

(3.4) a(p) ≡ p2 + 1 + (p2 + p + 1)

(p−1)/2
∑

j=1

Γp

(

1
2 + j

)4

Γp(1 + j)4
(1 + 4jpA(j)

+ 4jp2A(j) + 2j2p2B(j)) (modp3),

where

(3.5) A(j) := G1

(

1
2 + j

)

− G1(1 + j)

and

B(j) := G2

(

1
2 + j

)

− G2(1 + j) + 3G1

(

1
2 + j

)2
(3.6)

+5G1(1 + j)2 − 8G1

(

1
2 + j

)

G1(1 + j).

Now define

X(p) := 1 +

(p−1)/2
∑

j=1

Γp

(

1
2 + j

)4

Γp(1 + j)4
(1 + 8jA(j) + 2j2B(j)),(3.7)

Y (p) :=

(p−1)/2
∑

j=1

Γp

(

1
2 + j

)4

Γp(1 + j)4
(1 + 4jA(j)),(3.8)

Z(p) := 1 +

(p−1)/2
∑

j=1

Γp

(

1
2 + j

)4

Γp(1 + j)4
.(3.9)

By grouping the terms in (3.4) according to powers of p, we obtain

a(p) ≡ p2X(p) + pY (p) + Z(p) (modp3).

Thus Theorem 1 is proved on account of the following proposition, which
will be proved in the next section.
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Proposition 3.1. Let p ≥ 7 be prime, and let X(p), Y (p), and Z(p) be

defined as in (3.7), (3.8), and (3.9). Then

(1) X(p) ≡ 0 (mod p).
(2) Y (p) ≡ 0 (mod p2).

(3) Z(p) ≡

(p−1)/2
∑

j=0

(

2j

j

)4

2−8j (mod p3).

4. Proof of Proposition 3.1. We will now examine the terms X(p),
Y (p), and Z(p) individually to prove Proposition 3.1. First we make some
definitions that will be useful in what follows.

For i, n ∈ N, we define the generalized harmonic sums H
(i)
n as

(4.1) H(i)
n :=

n
∑

j=1

1

ji
.

Also for integers γ we define

(γ)n :=

{

1 if n = 0,

γ(γ + 1)(γ + 2) · · · (γ + n − 1) if n ≥ 1.

We first consider X(p). We have

X(p) = 1 +

(p−1)/2
∑

j=1

Γp

(

1
2 + j

)4

Γp(1 + j)4
(1 + 4jA(j))

+

(p−1)/2
∑

j=1

Γp

(

1
2 + j

)4

Γp(1 + j)4
(4jA(j) + 2j2B(j)).

Ahlgren and Ono proved in [1, Lemma 7.3] that

(p−1)/2
∑

j=1

Γp

(

1
2 + j

)4

Γp(1 + j)4
(1 + 4jA(j)) ≡ 0 (mod p),

so in order to prove the first assertion of Proposition 3.1, we need to show
that

(4.2) 1 +

(p−1)/2
∑

j=1

Γp

(

1
2 + j

)4

Γp(1 + j)4
(4jA(j) + 2j2B(j)) ≡ 0 (modp).

We will use the following lemmas.

Lemma 4.1. Let p be an odd prime and 0 ≤ j ≤ (p− 1)/2. Let A(j) and

B(j) be defined as in (3.5) and (3.6). Then
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A(j) ≡ H
(1)
(p−1)/2+j − H

(1)
j + 2p

j−1
∑

r=0

1

(2r + 1)2
(modp2)(4.3)

and

B(j) ≡ 4(H
(1)
(p−1)/2+j

− H
(1)
j )2 − (H

(2)
(p−1)/2+j

− H
(2)
j ) (modp).(4.4)

Proof. We begin by proving (4.3). By Proposition 2.3, we see that

G1

(

1
2 + j

)

=
Γ ′

p

(

1
2 + j

)

Γp

(

1
2 + j

)

≡
Γ ′

p

(p+1
2 + j

)

− p
2Γ ′′

p

(

1
2 + j

)

Γp

(p+1
2 + j

)

− p
2Γ ′

p

(

1
2 + j

)

≡
Γ ′

p

(p+1
2 + j

)

Γp

(p+1
2 + j

) +
p

2

Γ ′
p

(

1
2 + j

)

Γ ′
p

(p+1
2 + j

)

Γp

(p+1
2 + j

)2

−
p

2

Γ ′′
p

(

1
2 + j

)

Γp

(p+1
2 + j

) (mod p2).

By Proposition 2.3, we have

Γ ′
p

(

p + 1

2
+ j

)

≡ Γ ′
p

(

1

2
+ j

)

(mod p),

and a similar argument shows that

(4.5) Γ ′′
p

(

p + 1

2
+ j

)

≡ Γ ′′
p

(

1

2
+ j

)

(mod p).

We see that

(4.6) G1

(

1

2
+ j

)

≡ G1

(

p + 1

2
+ j

)

+
p

2

(

G1

(

1

2
+ j

)2

− G2

(

1

2
+ j

))

(modp2).

Applying Proposition 2.2(2), we can write

(4.7) G1

(

1

2
+ j

)2

−G2

(

1

2
+ j

)

= 4

j−1
∑

r=0

1

(2r + 1)2
+ G1

(

1

2

)2

−G2

(

1

2

)

.

If we subtract G1(1 + j) from (4.6), apply (4.7), and repeatedly apply the
first assertion of Proposition 2.2, we obtain

A(j) ≡ H
(1)
(p−1)/2+j − H

(1)
j

+ 2p

( j−1
∑

r=0

1

(2r + 1)2
+ G1

(

1

2

)2

− G2

(

1

2

))

(modp2).
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It remains to show that

(4.8) G1

(

1

2

)2

− G2

(

1

2

)

≡ 0 (modp).

As in Proposition 2.3, we see that

Γp

(

1
2 ± p

2

)

Γp

(

1
2

) ≡ 1 ±
p

2
G1

(

1

2

)

+
p2

8
G2

(

1

2

)

(modp3).

By multiplying the two terms together we have

(4.9)
Γp

(

1
2 − p

2

)

Γp

(

1
2 + p

2

)

Γp

(

1
2

)2 ≡ 1 −
p2

4

(

G1

(

1

2

)2

− G2

(

1

2

))

(mod p3).

Proposition 2.1 shows us that

Γp

(

1

2
+

p

2

)

Γp

(

1 −

(

1

2
+

p

2

))

= (−1)(p+1)/2

and

(4.10) Γp

(

1

2

)2

= (−1)(p+1)/2,

so the left hand side of (4.9) is equal to 1. This proves (4.8), and with it
(4.3).

We now turn to the proof of (4.4). By (4.5) and Proposition 2.3 we
obtain

G2

(

p + 1

2
+ j

)

≡ G2

(

1

2
+ j

)

(modp),

so with Proposition 2.2 we have

G2

(

1

2
+ j

)

− G2(1 + j)

≡ G1

(

1

2
+ j

)2

− G1(1 + j)2 − (H
(2)
(p−1)/2+j

− H
(2)
j ) (modp).

Thus by (3.6) and (4.3), we have

B(j) ≡ 4A(j)2 − (H
(2)
(p−1)/2+j − H

(2)
j )

≡ 4(H
(1)
(p−1)/2+j − H

(1)
j )2 − (H

(2)
(p−1)/2+j − H

(2)
j ) (modp).

Lemma 4.2. Let p be an odd prime and 0 ≤ j ≤ (p − 1)/2. Then

Γp

(

1
2 + j

)4

Γp(1 + j)4
≡ (j + 1)4(p−1)/2 (modp).
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Proof. Note that
(p−1

2 + j

j

)4

=

(p−1
2 + j

)

!4

j!4
(p−1

2

)

!4
≡

Γp

(

1
2 + j

)4

Γp(1 + j)4
(modp)

by Proposition 2.1 and (4.10). The lemma follows since
(p−1

2 + j

j

)4

≡ (j + 1)4(p−1)/2 (mod p).

Combining these lemmas, we see that to prove (4.2), it is enough to show
that

(4.11) 1 +

(p−1)/2
∑

j=1

(j + 1)4(p−1)/2(4j(H
(1)
(p−1)/2+j − H

(1)
j )

+ 8j2(H
(1)
(p−1)/2+j − H

(1)
j )2 − 2j2(H

(2)
(p−1)/2+j − H

(2)
j )) ≡ 0 (modp).

Let

(4.12) P (z) :=
z

2

d2

dz2
[z(z + 1)4(p−1)/2] =

2p−2
∑

k=0

akz
k,

with integers ak.

By a computation, we have

(4.13) P (j) ≡ (j + 1)4(p−1)/2(4j(H
(1)
(p−1)/2+j − H

(1)
j )

+ 8j2(H
(1)
(p−1)/2+j − H

(1)
j )2 − 2j2(H

(2)
(p−1)/2+j − H

(2)
j )) (modp).

Combining (4.11) and (4.13) we see that it is enough to show that

(4.14) 1 +

(p−1)/2
∑

j=1

P (j) ≡ 0 (modp).

Note that (j + 1)(p−1)/2 is divisible by p for (p − 1)/2 < j < p, and

H
(i)
(p−1)/2+j − H

(i)
j ∈ (1/pi)Zp for i = 1, 2, so that P (j) ≡ 0 (modp) for

such j. Therefore (4.14), and with it the first assertion of Proposition 3.1,
will be established after the following lemma whose proof is based on an
idea used by Mortenson in [12].

Lemma 4.3. Let p be an odd prime and let P (z) be the polynomial defined

in (4.12). Then

1 +

p−1
∑

j=1

P (j) ≡ 0 (mod p).
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Proof. We recall the following fact about exponential sums modulo p:
for k a positive integer, we have

(4.15)

p−1
∑

j=1

jk ≡

{

−1 (modp) if (p − 1) | k,

0 (modp) otherwise.

Since z |P (z), we have a0 = 0. By applying (4.15), we see that

p−1
∑

j=1

P (j) =

p−1
∑

j=1

2p−2
∑

k=1

akj
k =

2p−2
∑

k=1

ak

p−1
∑

j=1

jk ≡ −ap−1 − a2p−2 (modp).

Since P (z) is z times a second derivative, we see that ap−1 ≡ 0 (modp).
Now write

P (z) =
z

2

d2

dz2
[z2p−1 + · · · ] =

z

2
((2p − 1)(2p − 2)z2p−3 + · · · ),

so a2p−2 ≡ 1 (modp). This proves Lemma 4.3, and so establishes that
X(p) ≡ 0 (modp).

Next we consider Y (p). By (3.8) and Lemma 4.1, we have

(4.16) Y (p) ≡

(p−1)/2
∑

j=1

Γp

(

1
2 + j

)4

Γp(1 + j)4

×

(

1 + 4j(H
(1)
(p−1)/2+j − H

(1)
j ) + 8jp

j−1
∑

r=0

1

(2r + 1)2

)

(modp2).

The following lemma reduces Y (p) to an expression involving Γp and H
(1)
n .

Lemma 4.4. Let p be an odd prime and 0 ≤ j ≤ (p − 1)/2. Then

2j(H
(1)
(p−1)/2+j

− H
(1)
(p−1)/2−j

) ≡ −8jp

j−1
∑

r=0

1

(2r + 1)2
(modp2).

Proof. By pairing terms of the sum, we see that

H
(1)
(p−1)/2+j − H

(1)
(p−1)/2−j =

1
p−1
2 − j + 1

+ · · · +
1

p−1
2

+
1

p+1
2

+ · · · +
1

p−1
2 + j

=

j−1
∑

r=0

1
p−1
2 + 1 + r

+
1

p−1
2 − r

=

j−1
∑

r=0

4p

p2 − (2r + 1)2
.

Reducing modulo p2 and multiplying by 2j gives the desired expression.

In the proof of [1, Lemma 7.2], the analysis holds term-by-term, giving

(4.17)
Γp

(

1
2 + j

)4

Γp(1 + j)4
≡

(p−1
2 + j

j

)2(p−1
2

j

)2

(modp2).
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By combining Lemma 4.4, (4.16), and (4.17), we can write

Y (p) ≡ F

(

p − 1

2

)

(mod p2),

where

F (n) :=
n

∑

j=1

(

n + j

j

)2(n

j

)2

(1 + 2jH
(1)
n+j + 2jH

(1)
n−j − 4jH

(1)
j ).

By Theorem 7 in [1], F (n) = 0 for all positive integers n, proving the second
assertion of Proposition 3.1.

Finally, by Proposition 2.1, we see that Γp

(

1
2

)4
/Γp(1)4 = 1. Thus by

(3.9), it remains to show that

Z(p) =

(p−1)/2
∑

j=0

Γp

(

1
2 + j

)4

Γp(1 + j)4
≡

(p−1)/2
∑

j=0

(

2j

j

)4

2−8j (modp3).

In fact, we have equality by the following lemma.

Lemma 4.5. Let p be an odd prime. Then

(p−1)/2
∑

j=0

Γp

(

1
2 + j

)4

Γp(1 + j)4
=

(p−1)/2
∑

j=0

(

2j

j

)4

2−8j.

Proof. Using Proposition 2.1(2) we can write

Γp

(

1

2
+ j

)

=
Γp

(

1
2 + j

)

Γp

(

1
2 + j − 1

)

Γp

(

1
2 + j − 1

)

Γp

(

1
2 + j − 2

) · · ·
Γp

(

3
2

)

Γp

(

1
2

) Γp

(

1

2

)

= (−1)j 2j − 1

2
·
2j − 3

2
· · ·

1

2
Γp

(

1

2

)

.

Taking fourth powers gives us

Γp

(

1

2
+ j

)4

= 2−4j(2j − 1)4(2j − 3)4 · · · 34.

On the other hand, we see that
(

2j!

j!

)4

=

(

2j(2j − 1)(2j − 2) · · · 2 · 1

j(j − 1)(j − 2) · · · 2 · 1

)4

= 24j(2j − 1)4(2j − 3)4 · · · 34.

We know that Γp(1 + j)4 = (j!)4, so

Γp

(

1
2 + j

)4

Γp(1 + j)4
=

(

2j

j

)4

2−8j .

This proves our lemma, and so finishes the proof of Proposition 3.1 and
Theorem 1.
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number congruences, J. Reine Angew. Math. 518 (2000), 187–212.
[2] —, —, Modularity of a certain Calabi–Yau threefold, Monatsh. Math. 129 (2000),

177–190.
[3] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, Canad.

Math. Soc. Ser. Monographs Adv. Texts, Wiley, New York, 1998.
[4] F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25
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