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1. Introduction. Lipka [10] obtained some irreducibility criteria for
integer polynomials of the form f(X) = anXn+an−1X

n−1+· · ·+a1X+a0p
k

with a0an 6= 0, p a prime number and k a positive integer. For instance, he
proved that for fixed p, a0, a1, . . . , an with a0a1an 6= 0, f is irreducible over

Q for all but finitely many positive integers k.

Another criterion proved in [10] is that given integers a0, a1, . . . , an with

a0an 6= 0, the polynomial anXn +an−1X
n−1 + · · ·+a1X +a0p is irreducible

over Q for all but finitely many prime numbers p, this result being a conse-
quence of a theorem of Ore [14, Th. 5, p. 151].

These results can be formulated equivalently as in the earlier paper of
Weisner [23]:

If a polynomial f(X) ∈ Z[X] has a simple rational root , then for a fixed

integer c 6= 0 and a fixed prime number p, the polynomial f(X) + cpk is

irreducible over Q for all but finitely many positive integers k.
If f(X) ∈ Z[X] has a rational root and c 6= 0 is a fixed integer, then

f(X) + cp is irreducible over Q for all but finitely many prime numbers p.
Inspired by some results of Fried [6] and Langmann [7] in connection

with Hilbert’s irreducibility theorem, Cavachi [2] studied the irreducibility of
polynomials of the form f(X)+pg(X) with p prime and f , g relatively prime,
and proved that for any relatively prime f, g ∈ Q[X] with deg f < deg g,
the polynomial f(X) + pg(X) is irreducible over Q for all but finitely many
prime numbers p. In [3] this result was strengthened, by providing an explicit
bound α depending on f and g such that for all primes p > α the polynomial
f(X) + pg(X) is irreducible over Q. Explicit upper bounds for the number
of factors over Q of a linear combination n1f(X) + n2g(X), in particular
irreducibility criteria covering also the case deg f = deg g, have been derived
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in [1]. Similar irreducibility criteria have also been obtained for polynomials
in several variables over a given field. More specifically, the following result
has been proved in [4].

Let K be a field , n ≥ 2 and g ∈K(X1, . . . , Xn−1)[Xn] with degXn
g = d.

For any polynomial p ∈ K[X1, . . . , Xn−1], irreducible over K, and any f ∈
K(X1, . . . , Xn−1)[Xn] such that degXn

f < d, f is relatively prime to g in

K(X1, . . . , Xn−1)[Xn] and

max
1≤j≤n−1

{degXj
p − (d + 1)Hj(f) − 3dHj(g)} > 0,

the polynomial f + pg is irreducible over K(X1, . . . , Xn−1).

Here, for any polynomial F ∈ K(X1, . . . , Xn−1)[Xn], written in the form
F = (a0 + a1Xn + · · · + adX

d
n)/q, with a0, a1, . . . , ad, q ∈ K[X1, . . . , Xn−1],

ad 6= 0, q relatively prime to gcd(a0, . . . , ad), and for any index j with
1 ≤ j < n, Hj(F ) stands for max{degXj

a0, . . . , degXj
ad, degXj

q}.

The problem of the reducibility of lacunary polynomials has been inves-
tigated by Schinzel in a series of papers including [15]–[21], and by Filaseta
and Schinzel [5], H. W. Lenstra Jr. [8], [9] and Ljunggren [11]. For the
study of lacunary polynomials over arbitrary fields, and over Kroneckerian
fields, the reader is referred to Chapters 2 and 6, respectively, of Schinzel’s
book [22].

In this paper we first prove an irreducibility criterion for lacunary poly-
nomials with integer coefficients, which is similar to the first result of Lipka
mentioned above. Then, by using technics similar to those employed in [1], [4]
and [10], we extend this criterion, as well as the first result of Lipka, to
polynomials in several variables over a given field. Our proofs are effective,
providing explicit conditions on the leading coefficient, which ensure the ir-
reducibility of the polynomials considered. For lacunary polynomials with
integer coefficients we prove the following results.

Theorem 1. Let

f(X) = a0 + · · · + an−3X
n−3 + pean−2X

n−2 + pmanXn ∈ Z[X]

with n ≥ 3, a0an−2an 6= 0 and p a prime number , p ∤ an−2an. If

(1) pm > |anan−2|p
3e +

n∑

i=3

|ai−1
n an−i|p

ie

and m 6≡ e mod 2, then f is irreducible over Q.

Corollary 1. Let f ∈ Z[X] be a polynomial of degree n ≥ 3, having a

rational root α/β of multiplicity 2. Let c 6= 0 be a fixed integer and p a prime

number , p ∤ cβ. Denote by e the multiplicity of p in the prime decomposition
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of βn−2f ′′(α/β)/2. If m 6≡ e mod 2 and

pm >
n∑

i=2

|c|i−1|β|i(n−2) |f
(i)(α/β)|

i!
pie,

then the polynomial f(X) + cpm is irreducible over Q.

The irreducibility criteria for polynomials in several variables will be
deduced from the following two results for polynomials in two variables
X, Y over a field K.

Theorem 2. Let K be a field , n ≥ 2 a fixed integer , and let

f(X, Y ) = a0 + a1Y + · · · + an−2Y
n−2 + pean−1Y

n−1 + pmanY n ∈ K[X, Y ]

with a0, . . . , an, p ∈ K[X], a0an−1an 6= 0, p irreducible over K and

p ∤ an−1an. If

(2) m > ne +
(n − 1) deg an + max{deg a0, . . . , deg an−2, deg pean−1}

deg p
,

then f is irreducible over K(X).

Theorem 3. Let K be a field , n ≥ 3 a fixed integer , and let

f(X, Y ) = a0 + a1Y + · · · + an−3Y
n−3 + pean−2Y

n−2 + pmanY n ∈ K[X, Y ]

with a0, . . . , an−2, an, p ∈ K[X], a0an−2an 6= 0, p irreducible over K and

p ∤ an−2an. If m 6≡ e mod 2 and

(3) m > ne +
(n − 1) deg an + max{deg a0, . . . , deg an−3, deg pean−2}

deg p
,

then f is irreducible over K(X).

Immediate consequences of Theorems 2 and 3 above are two irreducibility
criteria for polynomials in r ≥ 2 variables X1, . . . , Xr over K. For any f ∈
K[X1, . . . , Xr] and any j ∈ {1, . . . , r} we denote by degj f the degree of f

as a polynomial in Xj with coefficients in K[X1, . . . , X̂j , . . . , Xr], where the
hat denotes omission of the corresponding variable. With this notation, one
has the following results, obtained by writing Y for Xr and X for a suitable
Xj , and by replacing the field K with the field K(X1, . . . , X̂j, . . . , Xr−1) of
rational functions.

Corollary 2. Let K be a field , fix integers n, r ≥ 2, and let

f(X1, . . . , Xr) = a0 + a1Xr + · · · + an−2X
n−2
r + pean−1X

n−1
r + pmanXn

r

with a0, . . . , an, p ∈ K[X1, . . . , Xr−1], a0an−1an 6= 0 and p ∤ an−1an. Assume

that for some j ∈ {1, . . . , r − 1}, p as a polynomial in Xj is irreducible over
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K(X1, . . . , X̂j, . . . , Xr−1). If

m > ne +
(n − 1) degj an + max{degj a0, . . . , degj an−2, degj pean−1}

degj p
,

then f is irreducible over K(X1, . . . , Xr−1).

Corollary 3. Let K be a field , fix integers n ≥ 3, r ≥ 2, and let

f(X1, . . . , Xr) = a0 + a1Xr + · · · + an−3X
n−3
r + pean−2X

n−2
r + pmanXn

r

with a0, . . . , an−2, an, p ∈ K[X1, . . . , Xr−1], a0an−2an 6= 0 and p ∤ an−2an.

Assume that for some j ∈ {1, . . . , r − 1}, p as a polynomial in Xj is irre-

ducible over K(X1, . . . , X̂j, . . . , Xr−1). If m 6≡ e mod 2 and

m > ne +
(n − 1) degj an + max{degj a0, . . . , degj an−3, degj pean−2}

degj p
,

then f is irreducible over K(X1, . . . , Xr−1).

In the last section of the paper we give a couple of applications of Corol-
laries 2 and 3, which are in some sense analogous to the first result of Weisner
mentioned above, and to Corollary 1, respectively. The proofs of the main
results are presented in Sections 2 and 3 below.

2. Proof of Theorem 1. Assume by contradiction that f decomposes
as f(X) = f1(X) · f2(X) with

f1(X) = b0 + b1X + · · · + bj−1X
j−1 + pdbjX

j ,

f2(X) = c0 + c1X + · · · + ck−1X
k−1 + pm−dckX

k,

where d ≥ 0, j, k ≥ 1, j + k = n, b0, . . . , bj , c0, . . . , ck ∈ Z, bjck = an, and
b0c0 = a0. One may obviously assume that

(4) d ≤ m − d.

Let us further assume that j, k ≥ 2. Equating the coefficients in the equality
f(X) = f1(X) · f2(X), we obtain

pdbjck−1 + pm−dbj−1ck = 0,(5)

pdbjck−2 + bj−1ck−1 + pm−dbj−2ck = pean−2.(6)

Let bj−1 = pn1g1 and ck−1 = pn2g2 with n1, n2 ≥ 0 and p ∤ g1g2. By (5) we
then find

d + n2 = m − d + n1,

so (6) becomes

(7) pdbjck−2 + pm−2d+2n1g1g2 + pm−dbj−2ck = pean−2.

If we now assume that e < d, it follows by (4) and (7) that we must have
e = m − 2d + 2n1, which contradicts the fact that m 6≡ e mod 2. Therefore,
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e ≥ d, and one may easily check that this conclusion still holds for j = 1 or
k = 1. Consider now the factorizations of f and f1, say

f(X) = pman(X − ξ1) · · · (X − ξn),

f1(X) = pdbj(X − ξ1) · · · (X − ξj),

with ξ1, . . . , ξn ∈ C. It is well known that if the leading coefficient of a
complex polynomial F (X) = α0 +α1X + · · ·+αnXn satisfies the inequality
|αn| > |αn−1| + |αn−2| + · · · + |α0|, then all the roots of F lie in the disk
|z| < 1. Let us now fix an arbitrarily chosen real δ ≥ 1 and assume that

(8) |pman| > δ2|pean−2| + δ3|an−3| + · · · + δn|a0|.

Then all the roots of f(X/δ) will lie in the disk |z| < 1, so for any i ∈
{1, . . . , n} one must have |ξi| < 1/δ, and therefore

(9) |ξ1 · · · ξj | <
1

δj
.

On the other hand, b0 6= 0 and hence |b0| ≥ 1, and since bj | an and d ≤ e,
we must have

(10) |ξ1 · · · ξj | =

∣∣∣∣
b0

pdbj

∣∣∣∣ ≥
1

pe|an|
.

In view of (9) and (10), to reach a contradiction we will choose δ satisfying

(11)
1

pe|an|
≥

1

δj
.

Since j ≥ 1, instead of (11) it will be sufficient to have δ ≥ pe|an|. A suitable
candidate for δ is therefore pe|an|, so one derives the desired contradiction
for all integers m 6≡ e mod 2 satisfying

pm > |anan−2|p
3e +

n∑

i=3

|ai−1
n an−i|p

ie,

which completes the proof.

For the proof of Corollary 1, we first use the fact that f(X) + cpm is
irreducible over Q if and only if f(X + α/β) + cpm is. It will therefore be
sufficient to test the irreducibility of βn−2[f(X + α/β) + cpm]. Since by our
assumption f(α/β) = f ′(α/β) = 0 and f ′′(α/β) 6= 0, we have

βn−2

[
f

(
X +

α

β

)
+ cpm

]
= pmcβn−2 + pe βn−2f ′′(α/β)

2!pe
X2

+
n∑

i=3

βn−2f (i)(α/β)

i!
X i.

If we now replace f by Xdeg f ·f(1/X) in Theorem 1, we see that a polynomial
of the form f(X) = pma0 + pea2X

2 + a3X
3 + · · · + anXn with n ≥ 3,
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a0a2an 6= 0 and p a prime number, p ∤ a0a2, must be irreducible over Q if
m 6≡ e mod 2 and

(12) pm > |a0a2|p
3e +

n∑

i=3

|ai−1
0 ai|p

ie.

The conclusion follows by applying (12) to βn−2[f(X + α/β) + cpm].

Remarks. 1. Without our assumption that m 6≡ e mod 2, the conclu-
sion of Theorem 1 may be false, as seen from the following example. Take
an integer k > 1 and let fk(X) = 22kX4 + (2k+1 − 1)X2 + 1. Here we have
p = 2, m = 2k, e = 0, and hence m ≡ e mod 2. Although condition (1) is
fulfilled, being equivalent to 22k > 2k+1, our polynomials fk are all reducible
over Q, since

22kX4 + (2k+1 − 1)X2 + 1 = (2kX2 + X + 1)(2kX2 − X + 1).

2. Some additional information on the coefficients of f may allow one to
obtain sharper bounds than those exhibited in Theorem 1, by searching for
sharper estimates for the moduli of the roots of f . Such estimates may be
obtained by using ideas of Mignotte [12] and Mignotte and Ştefănescu [13].
However, our assumption on the size of pm is in some cases best possible, in
the sense that there exist polynomials for which equality in (1) holds and
m 6≡ e mod 2, and which are reducible over Q. To see this, take k ≥ 2 and
let

fk(X) = 1 + X + X2 + · · · + X2k−4 + 2X2k−3 − 22kX2k−1.

Here p = 2, m = 2k, e = 1, and hence m 6≡ e mod 2. On the other hand we
have equality in (1), since 22k = 23 +

∑2k−1
i=3 2i, and fk is reducible over Q,

since fk(1/2) = 0.
3. Note that once we fix the integers a0, . . . , an−2, an, m, e such that

a0an−2an 6= 0, m 6≡ e mod 2 and m > ne, the inequality (1) will hold
for all but finitely many prime numbers p.

3. Proof of Theorems 2 and 3. Let a0, . . . , an, p be as in the
statement of Theorem 2, and assume by contradiction that f(X, Y ) =
f1(X, Y ) · f2(X, Y ) with

f1(X, Y ) = b0 + b1Y + · · · + bj−1Y
j−1 + pdbjY

j ,

f2(X, Y ) = c0 + c1Y + · · · + ck−1Y
k−1 + pm−dckY

k,

where d ≥ 0, j, k ≥ 1, j + k = n, b0, . . . , bj , c0, . . . , ck ∈ K[X], bjck = an and
b0c0 = a0. One may obviously assume that

(13) d ≤ m − d.

Equating the coefficients, we find that pean−1 = pdbjck−1 + pm−dbj−1ck, so
in view of (13) we must have e ≥ d.
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We now introduce a nonarchimedean absolute value | · | on K(X) as
follows. We fix a real number ̺ > 1, and for any F (X) ∈ K[X] we define

|F (X)| = ̺deg F (X).

We then extend | · | to K(X) by multiplicativity. Thus for any H(X)
= F (X)/G(X) with F (X), G(X) ∈ K[X], G(X) 6= 0, we let |H(X)| =
|F (X)|/|G(X)|. Note that for any non-zero element u of K[X] one has
|u| ≥ 1. Let then K(X) be a fixed algebraic closure of K(X), and fix an

extension of the absolute value | · | to K(X), which we will also denote by | · |.
Consider the factorizations of f and f1, say

f(X, Y ) = pman(Y − ξ1) · · · (Y − ξn),

f1(X, Y ) = pdbj(Y − ξ1) · · · (Y − ξj),

with ξ1, . . . , ξn ∈ K(X). If we now fix an arbitrarily chosen real δ ≥ 0 and
assume that

(14) |pman| > ̺δ max{|a0|, . . . , |an−2|, |p
ean−1|},

then for any j ∈ {1, . . . , n} we must have

(15) |ξj| < 1/̺δ/n.

Indeed, since our absolute value also satisfies the triangle inequality, we have

0 = |a0 + a1ξj + · · · + an−2ξ
n−2
j + pean−1ξ

n−1
j + pmanξn

j |

≥ |pman| · |ξ
n
j | − |a0 + a1ξj + · · · + an−2ξ

n−2
j + pean−1ξ

n−1
j |

≥ |pman| · |ξ
n
j | − max{|a0|, |a1ξj |, . . . , |an−2ξ

n−2
j |, |pean−1ξ

n−1
j |}.

Therefore, if |ξj | > 1 we find

0 ≥ |pman| · |ξj|
n − max{|a0|, |a1|, . . . , |an−2|, |p

ean−1|} · |ξj|
n−1

= |ξj|
n−1(|pman| · |ξj| − max{|a0|, |a1|, . . . , |an−2|, |p

ean−1|})

> |ξj|
n−1(|pman| − ̺δ max{|a0|, |a1|, . . . , |an−2|, |p

ean−1|}) > 0,

while if 1 ≥ |ξj| ≥ 1/̺δ/n we obtain

0 ≥ |pman| ·
1

̺δ
− max{|a0|, |a1|, . . . , |an−2|, |p

ean−1|} > 0,

again a contradiction.
Using (15) one obtains

(16) |ξ1 · · · ξj | < 1/̺jδ/n.

On the other hand, b0 6= 0 and hence |b0| ≥ 1, and since bj | an and d ≤ e
we obviously have

(17) |ξ1 · · · ξj| =

∣∣∣∣
b0

pdbj

∣∣∣∣ ≥
1

|p|e|an|
.
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Recalling the definition of our absolute value, inequality (14) reads

̺m deg p+deg an > ̺δ+max{deg a0,...,deg an−2,deg pean−1},

or equivalently,

(18) m deg p > δ + max{deg a0, . . . , deg an−2, deg pean−1} − deg an.

In view of (16) and (17), to reach a contradiction it remains to choose δ
such that

(19)
1

|p|e|an|
≥ 1/̺jδ/n.

Since j ≥ 1, instead of (19) it will be sufficient to have ̺δ/n ≥ |p|e|an|, or
equivalently

δ ≥ ndeg an + ne deg p.

A suitable candidate for δ is therefore ndeg an + ne deg p, so we derive a
contradiction if

(m − ne) deg p > (n − 1) deg an + max{deg a0, . . . , deg an−2, deg pean−1},

and this completes the proof.

For the proof of Theorem 3, we assume as before that f decomposes as
f(X, Y ) = f1(X, Y ) · f2(X, Y ) with

f1(X, Y ) = b0 + b1Y + · · · + bj−1Y
j−1 + pdbjY

j ,

f2(X, Y ) = c0 + c1Y + · · · + ck−1Y
k−1 + pm−dckY

k,

where d ≥ 0, j, k ≥ 1, j + k = n, b0, . . . , bj , c0, . . . , ck ∈ K[X], bjck =
an, and b0c0 = a0. One may again assume that d ≤ m − d. Then, with
exactly the same arguments as in the proof of Theorem 1, one shows that
e ≥ d. The remainder of the proof is similar to that of Theorem 2, with
max{|a0|, . . . , |an−2|, |p

ean−1|} replaced by max{|a0|, . . . , |an−3|, |p
ean−2|}.

Remarks. 1. Here too, one may find polynomials for which equality in
(2) holds, and which are reducible over K(X). To see this, take p ∈ K[X], p
irreducible over K, let n ≥ 3 and choose a0, a2, . . . , an−1 ∈ K[X] of degree
less than or equal to m deg p and such that a0an−1 6= 0, p ∤ an−1. Define then
a1 ∈ K[X] by the equality a1(X) = −p(X)m−a0(X)−a2(X)−· · ·−an−1(X),
and let f(X, Y ) = a0 + a1Y + · · · + an−1Y

n−1 + pmY n. Here e = 0 and
obviously m deg p = max{deg a0, . . . , deg an−1}, so one has equality in (2).
On the other hand, f is reducible over K(X), being divisible by Y − 1.

In a similar way one can find polynomials for which m 6≡ e mod 2 and
equality in (3) holds, and which are reducible over K(X).

2. Let K = Q, take an integer k ≥ 1 and consider the polynomials
fk(X, Y ) = X2kY 4 + (2Xk − 1)Y 2 + 1. Here we have p(X) = X, m = 2k,
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e = 0, and hence m ≡ e mod 2. Although condition (3) is fulfilled, our
polynomials fk are all reducible over Q(X), since

X2kY 4 + (2Xk − 1)Y 2 + 1 = (XkY 2 + Y + 1)(XkY 2 − Y + 1).

So in the case of Theorem 3 too, one has to assume that m 6≡ e mod 2.

3. If we fix the polynomials a0, . . . , an as in Theorem 2, and take integers
m, e with m > (n + 1)e, the inequality (2) will hold for all the irreducible
polynomials p ∈ K[X] with

deg pean−1 ≥ max{deg a0, . . . , deg an−2},

deg p > (n − 1) deg an + deg an−1.

Similarly, if we fix the polynomials a0, . . . , an−2, an as in Theorem 3, and
take integers m, e with m > (n + 1)e and m 6≡ e mod 2, the inequality (3)
will hold for all the irreducible polynomials p ∈ K[X] with

deg pean−2 ≥ max{deg a0, . . . , deg an−3},

deg p > (n − 1) deg an + deg an−2.

We end with two immediate applications of Corollaries 2 and 3.

Corollary 4. Let K be a field of characteristic 0, r ≥ 2 a fixed integer ,
and f(X1, . . . , Xr) ∈ K[X1, . . . , Xr] a polynomial of degree n ≥ 2 in Xr.

Assume that f has a linear factor in Xr of multiplicity 1, say βXr − α,
with α, β ∈ K[X1, . . . , Xr−1], β 6= 0. Let p, c ∈ K[X1, . . . , Xr−1], c 6= 0,
p ∤ cβ, and assume that for some j ∈ {1, . . . , r − 1}, p as a polynomial in

Xj is irreducible over K(X1, . . . , X̂j, . . . , Xr−1). Let e be maximum with the

property that

pe
∣∣ βn−1 ∂f

∂Xr

(
X1, . . . , Xr−1,

α(X1, . . . , Xr−1)

β(X1, . . . , Xr−1)

)
.

Then for every integer m satisfying

m>ne+

(n−1) degj cβn−1+ max
1≤i≤n

degj βn−1 ∂if
∂Xi

r

(
X1, . . . , Xr−1,

α(X1,...,Xr−1)
β(X1,...,Xr−1)

)

degj p

the polynomial f + cpm is irreducible over K(X1, . . . , Xr−1).

Corollary 5. Let K be a field of characteristic 0, r ≥ 2 a fixed integer ,
and f(X1, . . . , Xr) ∈ K[X1, . . . , Xr] a polynomial of degree n ≥ 3 in Xr.

Assume that f has a linear factor in Xr of multiplicity 2, say βXr − α,
with α, β ∈ K[X1, . . . , Xr−1], β 6= 0. Let p, c ∈ K[X1, . . . , Xr−1], c 6= 0,
p ∤ cβ, and assume that for some j ∈ {1, . . . , r − 1}, p as a polynomial in

Xj is irreducible over K(X1, . . . , X̂j, . . . , Xr−1). Let e be maximum with the
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property that

pe
∣∣ βn−2 ∂2f

∂X2
r

(
X1, . . . , Xr−1,

α(X1, . . . , Xr−1)

β(X1, . . . , Xr−1)

)
.

Then for every integer m 6≡ e mod 2 satisfying

m>ne+

(n−1) degj cβn−2+ max
2≤i≤n

degj βn−2 ∂if
∂Xi

r

(
X1, . . . , Xr−1,

α(X1,...,Xr−1)
β(X1,...,Xr−1)

)

degj p

the polynomial f + cpm is irreducible over K(X1, . . . , Xr−1).

For the proof of Corollary 4 it will be sufficient to test the irreducibility
over K(X1, . . . , Xr−1) of the polynomial g defined by

g(X1, . . . , Xr) = βn−1

{
f

(
X1, . . . , Xr−1, Xr +

α(X1, . . . , Xr−1)

β(X1, . . . , Xr−1)

)
+ cpm

}
.

Let us denote the r-tuple
(
X1, . . . , Xr−1,

α(X1,...,Xr−1)
β(X1,...,Xr−1)

)
by X . Since by

our assumption we have f(X) = 0 and ∂f
∂Xr

(X) 6= 0, we obtain

g(X1, . . . , Xr) = pmcβn−1 + pe
βn−1 ∂f

∂Xr
(X)

1!pe
· Xr +

n∑

i=2

βn−1

i!

∂if

∂X i
r

(X) · X i
r.

If we replace now f by Xdeg f
r ·f(1/Xr) in Corollary 2, we see that a polyno-

mial of the form f(X1, . . . , Xr) = pma0+pea1Xr +a2X
2
r +a3X

3
r +· · ·+anXn

r

with a0, . . . , an, p ∈ K[X1, . . . , Xr−1], a0a1an 6= 0, p ∤ a0a1, must be irre-
ducible over K(X1, . . . , Xr−1) if for some j ∈ {1, . . . , r−1}, p as a polynomial

in Xj is irreducible over K(X1, . . . , X̂j, . . . , Xr−1) and

(20) m > ne +
(n − 1) degj a0 + max{degj pea1, degj a2, . . . , degj an}

degj p
.

The conclusion now follows by applying (20) to g(X1, . . . , Xr).

In order to prove Corollary 5, we first see from Corollary 3 that a poly-
nomial of the form f(X1, . . . , Xr) = pma0 + pea2X

2
r + a3X

3
r + · · · + anXn

r

with a0, a2, . . . , an, p ∈ K[X1, . . . , Xr−1], a0a2an 6= 0, p ∤ a0a2, m 6≡ e mod 2
will be irreducible over K(X1, . . . , Xr−1) if for some j ∈ {1, . . . , r − 1}, p as

a polynomial in Xj is irreducible over K(X1, . . . , X̂j , . . . , Xr−1) and

(21) m > ne +
(n − 1) degj a0 + max{degj pea2, degj a3, . . . , degj an}

degj p
.

Here it will be sufficient to test the irreducibility over K(X1, . . . , Xr−1) of
the polynomial g defined by

g(X1, . . . , Xr) = βn−2

{
f

(
X1, . . . , Xr−1, Xr +

α(X1, . . . , Xr−1)

β(X1, . . . , Xr−1)

)
+ cpm

}
.
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Since now the linear factor βXr − α has multiplicity 2, we have f(X) = 0,
∂f

∂Xr
(X) = 0 and ∂2f

∂X2
r
(X) 6= 0. Thus, we obtain

g(X1, . . . , Xr) = pmcβn−2 + pe
βn−2 ∂2f

∂X2
r
(X)

2!pe
· X2

r +
n∑

i=3

βn−2

i!

∂if

∂X i
r

(X) · X i
r,

and the proof finishes by applying (21) to g(X1, . . . , Xr).
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Theory in Progress, Vol. 1 (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999,
267–276.

[9] —, On the factorization of lacunary polynomials, ibid. 277–291.
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