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1. Introduction. Let λ(n) be the universal exponent for the group of
residues modulo n that are coprime to n. The exact definition of this function
is

λ(pν) =

{

pν−1(p − 1) if p ≥ 3 or ν ≤ 2,

2ν−2 if p = 2 and ν ≥ 3

for a prime power pν , and for an arbitrary integer n ≥ 2,

λ(n) = lcm[λ(pν1

1 ), . . . , λ(pνk

k )],

where n = pν1

1 · · · pνk

k is the prime factorization of n. Note that λ(1) = 1.

A thorough analysis of the function λ(n) was done in [3], where the
minimal order, the normal order and the average value of this function were
investigated. In particular, Theorem 3 in [3] shows that the estimate

1

x

∑

n≤x

λ(n) =
x

log x
exp

(

B log log x

log log log x
(1 + o(1))

)

holds as x → ∞, where

B = e−γ
∏

q

(

1 − 1

(q − 1)2(q + 1)

)

= 0.34537 . . . .

The above product is taken over prime values of q. In this paper, we use
the method from [3] to estimate the higher moments of λ(n). We have the
following result.

Theorem 1. Let r > 0 be fixed. Then the estimate

(1) Mr(x) :=
1

x

∑

n≤x

λ(n)r =
xr

log x
exp

(

Br log log x

log log log x
(1 + o(1))

)
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holds as x → ∞, where

(2) Br = e−γ 2

2r+1 − 1

∏

q>2

(

1 − 1

(q − 1)2

)(

1 +
q − 1

(q − 2)(qr+1 − 1)

)

.

It is important to note that the higher moments of the Carmichael λ
function (i.e., for large r) convey very strong information on the frequency
of large values of the Carmichael λ function.

We now turn our attention to negative values of r. It is much more
difficult to estimate Mr(x) for negative values of r. Studying such moments
is important because they convey strong information on the frequency of
small values of the Carmichael λ function. While Theorem 1 shows that
Mr(x) = xr+o(1) if r > 0, this is no longer the case if r < 0. In fact, when
r < 0, a trivial lower bound is Mr(x) ≥ xr. To be able to formulate our next
result, we introduce some more notation. For a positive integer n, we write
P (n) for the largest prime factor of n. We have the following result.

Theorem 2. Assume that δ > 0 is a positive constant such that if we

write

Pδ(y) = {p ≤ y : P (p − 1) < yδ},
then there exist constants K = K(δ) and y0(δ) such that the inequality

(3) #Pδ(y) ≥ y

(log y)K

holds for all y > y0(δ). Then, for every fixed r < 0, the lower bound

Mr(x) ≥ x−δ+o(1)

holds as x → ∞.

Our Theorem 2 shows that for some fixed value of δ ∈ (0, 1), we have
Mr(x) ≥ x−δ for large x, and independently of r. Of course, there is a
gap in our result, in the sense that when 0 > r > −δ, our result is worse
than the trivial bound Mr(x) ≥ xr. According to Theorem 1 in [2], one can
take δ = .2961. It is conjectured that for each δ > 0, the lower bound (3)
holds with any fixed K > 1 for all y > y0(δ, K). If this were so, then we
would deduce by Theorem 2 that Mr(x) = xo(1) (note that the upper bound
is obvious). Perhaps one can show unconditionally that Mr(x) = xo(1) for
r < 0, but we have failed to find such an argument. Our proof of Theorem 2
uses results on the distribution of primes p with p−1 smooth (i.e., for which
P (p − 1) is small relative to p), much in the spirit of the construction of
infinitely many Carmichael numbers by Alford, Granville and Pomerance
from [1]; in fact, their construction shows that for large x there are at least
xβ Carmichael numbers up to x, where β = 0.290306. . . . Recall that a
Carmichael number is a composite integer n such that the congruence an ≡ a
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(mod n) holds for all integers a. More recently, Harman [4] adapted the
above construction to produce more than x0.33 Carmichael numbers up to x.

Throughout this paper, we use the Vinogradov symbols ≫ and ≪ and
the Landau symbols O and o with their regular meaning. The constants
implied by them might depend on the parameter r. We recall that U ≪ V
and V ≫ U are both equivalent to the assertion that U = O(V ). For
a positive real number x, we use log x for the maximum of the natural
logarithm of x (denoted lnx) and 1. We use p and q for prime numbers. We
use c0, c1, . . . for positive constants which might depend on r and which are
labeled increasingly throughout the paper.
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Fall of 2005 under an Associated Membership Scheme from the Third World
Academy of Sciences. This author wishes to express his thanks to these
institutions for the hospitality and support. The authors are thankful to the
anonymous referee for some fruitful comments. The first author also thanks
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2. Proof of Theorem 1. We follow the method from [3]. Let S1, . . . ,SD

be disjoint sets whose union is the set of all odd primes less than or equal
to x. Define

Ei =
∑

pα≤x, α≥1
p∈Si

1

pα
.

We write j for a vector (j1, . . . , jD) where each ji is a non-negative integer,
and ‖j‖ = j1 + · · ·+ jD. Finally, let C(x, j) be the set of integers ≤ x having
exactly ji distinct prime divisors in Si. We put y = log log x. The following
upper bound on C(x, j) appears in [3].

Proposition 1. There exists an absolute constant c0 > 0 such that , for

any x > ee, and all vectors j as defined above, we have

#C(x, j) ≤ c0x

(log x)y
+

c0xy

log x

( D
∏

i=1

Eji

i

ji!

)( D
∑

i=1

ji

Ei

)

.

(If Si is empty , then we set 0/E = 0 and 00 = 1.)

We now specialize. We put m = ⌊y/(log y)3⌋, let D = m! and define

Sk = {p ≤ x : gcd(p − 1, D) = 2k}.
The expressions Ei for the above choices of the sets Si were estimated in
Lemma 1 in [3].
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Lemma 1. Let A > 0 be any fixed constant. For k ≤ (log y)A, we have

the following uniform asymptotic estimate:

Ek =
yPk

log y
(1 + o(1)), where Pk =

e−γ

k

∏

q>2

(

1 − 1

(q − 1)2

)

∏

q|k, q>2

q − 1

q − 2
.

Also, there is an absolute constant c1 > 0 such that for all 2k |D, we have

Ek > 1/Dc1 .

Actually, Lemma 1 above has been proved in [3] only for A = 2, but a
close analysis of that proof shows that this holds in the somewhat larger
range as indicated above.

2.1. The upper bound. For a positive integer n, we write ω(n) for the
number of distinct prime factors of n. Certainly,

(4) Mr(x) =
1

x

∑

n≤x

λ(n)r =
1

x

∑

n≤x
ω(n)≤y2

λ(n)r +
1

x

∑

n≤x
ω(n)>y2

λ(n)r.

The second sum on the right hand side of (4) is negligible because there
are only O(x/(log x)2) positive integers n ≤ x with more than y2 prime
factors. Indeed, to see this, one may either take D = 1 in Proposition 1, or
sum up the well known inequality of Hardy and Ramanujan, namely

πk(x) = #{n ≤ x : ω(n) = k} ≪ x

(k − 1)!
(log log x + O(1))k

for all k > y2.

The first sum on the right hand side of (4) equals

S :=
1

x

∑

‖j‖<y2

∑

n∈C(x,j)

λ(n)r.

For n ∈ C(x, j), we have

(5) λ(n) <
Dφ(n)

∏D
k=1(2k)jk

<
Dx

∏D
k=1(2k)jk

.

Combining the above estimate (5) with Proposition 1, we get the upper
bound

S ≤ c0x
ryDr

log x

∑

‖j‖<y2

( D
∏

k=1

Ejk

k

(2k)rjkjk!

)( D
∑

k=1

jk

Ek

)

(6)

+
c0x

rDr

(log x)log y

∑

‖j‖<y2

D
∏

k=1

1

(2k)rjk

.
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To estimate the second sum, note that

∑

‖j‖<y2

D
∏

k=1

1

(2k)rjk

=
D
∏

k=1

1

1 − (1/2k)r
< c2(2D)r,

where

c2 =

mr
∏

k=1

1

1 − (1/2k)r
,

and mr is the smallest positive integer such that the inequality

max{1, (2n)r} < (2(n + 1))r − 1

holds for all n ≥ mr. Thus,

c0x
rDr

(log x)log y

∑

‖j‖<y2

D
∏

k=1

1

(2k)rjk

≪ xr(2D)2r

(log x)log y
,

and since

(2D)2r = (2m!)2r = exp(O(rm log m)) = exp(O(ry/(log y)2)),

while (log x)log y = exp(y log y), we see that this sum is negligible even uni-
formly for r < c3 log y, for some appropriate absolute constant c3. Thus,
the second term in estimate (6) is negligible. For the first, note that since
‖j‖ < y2, we have, by Lemma 1, that

D
∑

k=1

jk

Ek
<

y2D

Dc1
.

Hence, we need only to estimate
(

xry3Dr+1−c1

log x

)

∑

‖j‖<y2

( D
∏

k=1

Ejk

k

(2k)rjkjk!

)

,

which is certainly less than

(7)

(

xry3Dr+1−c1

log x

)

exp

( D
∑

k=1

Ek

(2k)r

)

=

(

xr

log x

)

exp

( D
∑

k=1

Ek

(2k)r
+ o

(

y

log y

))

,

since by our choice of D, we have

D1+r−c1 = exp((1 + r − c1) log(m!))

≤ exp((1 + r − c1)m log m) = exp

(

o

(

y

log y

))

,

even uniformly in r = o(log y).
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For the sum in the exponent in (7), we split it at ℓ = ⌊(log y)2/r + 1⌋,
getting

D
∑

k=1

Ek

(2k)r
=

ℓ
∑

k=1

Ek

(2k)r
+

D
∑

k=ℓ+1

Ek

(2k)r
.

We now show that the second sum is negligible. Indeed, by the Brun–
Titchmarsh inequality, it is easy to see that Ek ≪ y/φ(k). Thus, using
partial summation and the estimate

∑

k≤u

1

φ(k)
≪ log u,

which holds uniformly in u > 1, we obtain

D
∑

k=ℓ+1

Ek

(2k)r
≪ 1

2r

D
∑

k=ℓ+1

y

krφ(k)
≪ 1

r2r

y

ℓr
≪ y

2rr(log y)2
= o

(

y

log y

)

,

even uniformly when 1/r = o(log y). Finally, by Lemma 1 with A = 2/r for
a fixed r (or, at least, for some r which remains bounded away from zero),

we find that the first sum
∑ℓ

k=1 Ek/(2k)r is asymptotic to

y

log y
e−γ

∏

q>2

(

1 − 1

(q − 1)2

) ℓ
∑

k=1

(

1

2rkr+1

∏

q|k, q>2

q − 1

q − 2

)

= Br(1 + o(1))
y

log y
,

where

Br =
e−γ

2r

∏

q>2

(

1 − 1

(q − 1)2

) ∞
∑

k=1

1

kr+1

∏

q|k, q>2

q − 1

q − 2
.

Observing that the function

1

kr+1

∏

q|k, q>2

q − 1

q − 2

is multiplicative, we can further simplify the expression for Br to

Br =
e−γ

2r

(

1 +
1

2r+1
+

1

22(r+1)
+ · · ·

)

∏

q>2

(

1 − 1

(q − 1)2

)

×
(

1 +
1

qr+1

q − 1

q − 2
+

1

q2(r+1)

q − 1

q − 2
+ · · ·

)

,

which leads to the expression (2) after grouping the geometric series. This
proves the upper bound in Theorem 1.
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2.2. The lower bound. For the proof of the lower bound, we define:

• Ω1(x; j) as the set of positive integers n that can be formed by picking
v = ‖j‖ distinct primes p1, . . . , pv in such a way that

(a) pi < x1/y3

for all i,
(b) the first j1 primes are in S1, the next j2 in S2, etc.;

• Ω2(x; j) consists of those integers s = p1 · · · pv ∈ Ω1(x, j) with the
additional property that gcd(pi − 1, pj − 1) divides D for all i 6= j;

• Ω3(x; j) consists of all integers of the form n = sp, where s ∈ Ω2(x; j)
and p ∈ S1 satisfies max(x/(2s), x1/y) < p ≤ x/s;

• Ω4(x; j) consists of all integers n = (p1 · · · pv)p ∈ Ω3(x; j) with the
additional property that gcd(p − 1, pi − 1) = 2 for all i = 1, . . . , v.

Now we can proceed with the proof of the lower bound. Throughout this
proof, we will use Lemmas 2–4 from [3]. We put ℓ1 = ⌊log y⌋ and let J be
the set of all j’s with 0 ≤ jk ≤ Ek/(2r−1kr) for k ≤ ℓ1, and jk = 0 for k > ℓ1.
Evidently

(8) Mr(x) =
1

x

∑

n≤x

λ(n)r ≥ 1

x

∑

j∈J

∑

n∈Ω4(x;j)

λ(n)r.

Lemma 2 in [3] yields the lower bound (with jk = 0 for k > ℓ1)

(9)
1

x

∑

j∈J

∑

n∈Ω4(x;j)

λ(n)r ≥
(

c3

y

)r

xr−1
∑

j∈J

ℓ1
∏

k=1

(2k)−rjk

∑

n∈Ω4(x;j)

1.

To estimate the innermost sum, note that

(10)
∑

n∈Ω4(x;j)

1 =
∑

s∈Ω2(x;j)

∑

{p:(sp)∈Ω4(x;j)}

1.

By Lemma 3 on p. 380 of [3], the above sum is greater than

(11)
c4x

y log x

∑

s∈Ω2(x;j)

1

s
.

Checking the fact that the hypotheses of that lemma are fulfilled amounts
to proving that ‖j‖ ≤ y2, but for j ∈ J , we have, by Lemma 1,

‖j‖ ≤ 1

2r−1

∑

k≤ℓ1

Ek

kr
≪ y

log y

∑

k≥1

1

k1+r

= ζ(1 + r)
y

log y
≪

(

1 +
1

r

)

y

log y
;
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hence, the inequality ‖j‖ < y2 holds for large x. Thus, estimates (8)–(11)
imply

Mr(x) ≥ cr
3c4x

r

yr+1 log x

∑

j∈J

ℓ1
∏

k=1

(2k)−rjk

∑

s∈Ω2(x;j)

1

s
.

Lemma 4 in [3] shows that this sum is greater than

xr

log x
exp

( −c5y

(log y)(log log y)2
+ O(r log y)

)

∑

j∈J

ℓ1
∏

k=1

Ejk

k

(2k)rjkjk!

=
xr

log x
exp

(

o

(

y

log y

)) ℓ1
∏

k=1

⌊Ek/(2r−1kr)⌋
∑

k=0

(Ek/(2k)r)jk

jk!
.

Finally, since
⌊2w⌋
∑

j=0

wj

j!
>

ew

2
for all w ≥ 1,

we get

Mr(x) ≥ xr

2ℓ1 log x
exp

( ℓ1
∑

k=1

Ek

(2k)r
+ o

(

y

log y

))

=
xr

log x
exp

(

Bry

log y
+ o

(

y

log y

))

.

3. Proof of Theorem 2. We assume that δ < 1. We let y be a large
positive real number. For simplicity, we write P for the set Pδ(y). We let P1

be the subset of p ∈ P such that p > y/(log y)2K and p−1 is not divisible by

any powerful number a > z = (log y)4K . Recall that a is powerful if q2 | a for
every prime factor q of a. Since the counting function of the set of powerful
numbers ≤ t is O(t1/2), it follows easily that the number of n ≤ y admitting
a powerful divisor a > z is

≤
∑

z<a≤y
a powerful

y

a
≪ y√

z
=

y

(log y)2K
.

We thus deduce that the estimate

#P1 ≥ #P + O

(

y

(log y)2K

)

>
y

2(log y)K

holds for large y.
For any subset S of P1, let mS be the square-free positive integer whose

prime factors are precisely the elements of S. Note that, by unique fac-
torization, different subsets S ⊂ P1 lead to distinct values of the positive
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integer mS . Let N = ⌊yδ⌋, and let

R = {mS : S ⊂ P1 and #S = N}.
We first find a lower bound for the number of elements of R. Since δ < 1, it
follows that

2N < 2yδ <
y

2(log y)K
< #P1,

therefore

#R =

(

#P1

N

)

≥
(

#P1

N

)N

= exp(N(1 − δ + o(1)) log y).

Further, if m ∈ R, then

m < yN = exp(N log y).

We write x := exp(yδ log y). We now bound λ(m) for m ∈ R. Clearly,

λ(m) = lcm[p − 1 : p |m].

Assume that qα ‖λ(m), where q is prime. Then q ≤ yδ because every prime
factor p of m is in P1. Further, since there exists p |m such that qα | (p− 1),
we see that if α > 1, then qα < z, therefore

α ≤ c6 log z = 4c6K log log y,

where c6 = 1/ln 2. Hence,

λ(n) ≤
(

∏

q≤yδ

q
)4c6K log log y

= exp(O(yδ log log y)),

where in the last inequality above we used the Prime Number Theorem.
Thus,

Mr(x) ≥ x−1
∑

m∈R

λ(n)r

≥ x−1#Rmin{λ(n)r : n ∈ R}
= exp(−(N + O(1)) log y + (1 − δ)N log y + O(rN log log y))

= exp(−(δ + o(1))N log y) = x−δ+o(1),

which completes the proof of Theorem 2.
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C.P. 58089
Morelia, Michoacán, México
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