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An extension of a theorem of Eulerby
Noriko Hirata-Kohno (Tokyo), Shanta Laishram (Mumbai),T. N. Shorey (Mumbai), and R. Tijdeman (Leiden)
1. Introdution. The theorem of Euler ([Eul80℄, f. [Mor69, pp. 21�22℄,[MS03℄) referred to in the title of this paper is that a produt of four termsin arithmeti progression is never a square. Let n, d, k ≥ 2 and y be positiveintegers suh that gcd(n, d) = 1. We onsider the equation

n(n + d) · · · (n + (k − 1)d) = y2(1)in n, d, k and y. It has in�nitely many solutions when k = 2 or 3. A well-known onjeture states that (1) with k ≥ 4 is not possible. We laimTheorem 1. Equation (1) with 4 ≤ k ≤ 109 is not possible.By Euler, Theorem 1 is valid when k = 4. The ase when k = 5 is dueto Obláth [Obl50℄. Independently of the authors, Bennett, Bruin, Gy®ry andHajdu [BBGH06℄ proved that (1) with 6 ≤ k ≤ 11 does not hold. Theorem 1has been on�rmed by Erd®s [Erd39℄ and Rigge [Rig39℄, independently ofeah other, when d = 1.Theorem 1 is derived from a more general result and we introdue somenotation for stating this. For an integer ν > 1, we denote by P (ν) the greatestprime fator of ν and we put P (1) = 1. Let b be a squarefree positive integersuh that P (b) ≤ k. We onsider a more general equation than (1), namely
n(n + d) · · · (n + (k − 1)d) = by2.(2)We write

n + id = aix
2
i for 0 ≤ i < k(3)where ai are squarefree integers suh that P (ai) ≤ max(P (b), k − 1) and xiare positive integers. Every solution to (2) yields a k-tuple (a0, a1, . . . , ak−1).We rewrite (2) as

m(m − d) · · · (m − (k − 1)d) = by2, m = n + (k − 1)d.(4) 2000 Mathematis Subjet Classi�ation: Primary 11D61.Key words and phrases: Euler, Diophantine equations, squares, Legendre symbol.[71℄ © Instytut Matematyzny PAN, 2007



72 N. Hirata-Kohno et al.Equation (4) is alled the mirror image of (2). The orresponding k-tuple
(ak−1, ak−2, . . . , a0) is alled the mirror image of (a0, a1, . . . , ak−1).Let P (b) < k. Erd®s and Selfridge [ES75℄ proved that (2) with d = 1 neverholds under the assumption that the left-hand side of (2) is divisible by aprime greater than or equal to k. The result does not hold unonditionally.As mentioned above, equation (2) with k = 2, 3 and b = 1 has in�nitelymany solutions. This is also the ase when k = 4 and b = 6; see Tijdeman[Tij89℄. On the other hand, equation (2) with k = 4 and b 6= 6 does not hold.We onsider (2) with d > 1 and k ≥ 5. We proveTheorem 2. Equation (2) with d > 1, P (b) < k and 5 ≤ k ≤ 100implies that (a0, a1, . . . , ak−1) is among the following tuples or their mirrorimages:

k = 8 : (2, 3, 1, 5, 6, 7, 2, 1), (3, 1, 5, 6, 7, 2, 1, 10);

k = 9 : (2, 3, 1, 5, 6, 7, 2, 1, 10);

k = 14 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1);

k = 24 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7).

(5)
Theorem 2 with k = 5 is due to Mukhopadhyay and Shorey [MS03℄.Initially, Bennett, Bruin, Gy®ry, Hajdu [BBGH06℄ and Hirata-Kohno,Shorey (unpublished), independently, proved Theorem 2 with k = 6 and

(a0, a1, . . . , a5) 6= (1, 2, 3, 1, 5, 6), (6, 5, 1, 3, 2, 1). Next, Bennett, Bruin, Gy®ryand Hajdu [BBGH06℄ removed the assumption on (a0, a1, . . . , a5) in theabove result. Thus (2) with k = 6 does not hold and we shall refer to itas the ase k = 6. Bennett, Bruin, Gy®ry and Hajdu [BBGH06℄, indepen-dently of us, showed that (2) with 7 ≤ k ≤ 11 and P (b) ≤ 5 is not possible.This is now a speial ase of Theorem 2.Let P (b) = k. Then we have no new result on (2) with k = 5. For k ≥ 7,we proveTheorem 3. Equation (2) with d > 1, P (b) = k and 7 ≤ k ≤ 100implies that (a0, a1, . . . , ak−1) is among the following tuples or their mirrorimages:
k = 7 : (2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10);

k = 13 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15),

(1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1);

k = 19 : (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22);

k = 23 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3),

(6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7).

(6)
It has been onjetured that (2) with k ≥ 5 never holds. Granville (un-published) showed that k is bounded by an absolute onstant whenever the

abc-onjeture holds; see Laishram [Lai04℄ for a proof. For the onveniene ofthe proofs, we onsider Theorems 2 and 3 together. Therefore we formulate



An extension of a theorem of Euler 73Theorem 4. Let d > 1, P (b) ≤ k and 5 ≤ k ≤ 100. Suppose that k 6= 5if P (b) = k. Then (2) does not hold exept for the (a0, a1, . . . , ak−1) among(5), (6) and their mirror images.It is lear that Theorem 4 implies Theorems 2 and 3. In fat the proof ofTheorem 4 provides a method for solving (2) for any given value of k unless
(a0, a1, . . . , ak−1) is given by (5), (6) and their mirror images. This is a newand useful feature of the paper. We have restrited k up to 100 for keepingthe omputational load under ontrol. It is an open problem to solve (2) foran in�nite sequene of values of k. A solution to this problem may be animportant ontribution towards the onjeture stated just after Theorem 3.Theorem 4 has been applied in [LS℄ to show that (2) with k ≥ 6 implies that
d > 1010. For more appliations, see [LS℄.Now we give a sketh of the proof of Theorem 4. Let the assumptions ofTheorem 4 be satis�ed. Assume (2) suh that (a0, a1, . . . , ak−1) is not among(5), (6) or their mirror images. As already stated, the ases k = 5 and k = 6have already been solved in [MS03℄ and [BBGH06℄. Therefore we supposethat k ≥ 7. Further it su�es to assume that k is prime and we proeedindutively on k. Let k be given. Then we hoose a suitable pair (q1, q2) ofdistint primes ≤ k suh that

(

p

q1

)

=

(

p

q2

)

for small primes p. For example, when k = 29, we take (q1, q2) = (19, 29) sothat the above relation holds with p = 2, 3, 5, 7. We show that q1 ∤ d and q2 ∤ d(see Lemma 8). Assume q1 | d or q2 | d. Then we �nd two primes Q1 and Q2suh that Q1 | d or Q2 | d whenever k ≥ 29 (see Lemma 7). Now we arrive ata ontradition by a ounting argument using (9) and Lemmas 1, 2. Hene
q1 ∤ d and q2 ∤ d but this is exluded by Lemma 6, the proof of whih dependson Lemma 5. In fat, we need to apply it repeatedly for k > 11.In the ase k = 6, Bennett, Bruin, Gy®ry and Hajdu [BBGH06℄ solvedthe ases (a0, a1, . . . , a5) ∈ {(1, 2, 3, 1, 5, 6), (6, 5, 1, 3, 2, 1)} by using expliitChabauty tehniques due to Bruin and Flynn [BF05℄. These ases appear tobe similar to our exeptional ases (5) and (6) where we have, in fat, morefreedom in the sense that there are at least 7 urves where we may onsiderapplying the Chabauty method. Finally we remark that it su�es to solvethe ases k = 7 in (6) or its mirror images for Theorem 3 and the ases k = 8in (5) or its mirror images for Theorem 2.2. Notation and lemmas. We introdue some notation. Let

R = {ai : 0 ≤ i < k}and, for a prime q, put
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S = S(q) = {a ∈ R : P (a) ≤ q}, S1 = S1(q) = {a ∈ R : P (a) > q}.(7)Further we write

T = T (q) = {i : ai ∈ S}, T1 = T1(q) = {i : ai ∈ S1}.(8)Then we see that
|T | + |T1| = k.(9)For a ∈ R, let

ν(a) = |{i : ai = a}|,

νo(a) = |{i : ai = a, 2 ∤ xi}|, νe(a) = |{i : ai = a, 2 |xi}|.We observe that
|T | =

∑

a∈S

ν(a).(10)Let
δ = min(3, ord2(d)), ̺ =

{

3 if 3 | d,

1 otherwise.We haveLemma 1. For a ∈ R, let Ka = k/a23−δ, K′
a = k/16a,

f1(k, a, δ) =



























1 if k ≤ a23−δ,
⌈Ka⌉ −

[

⌈Ka⌉

4

] if k > a23−δ, 3 | d,
2

∑

i=1

(⌈

Ka

3i

⌉

−

[

⌈Ka/3i⌉

4

]) if k > a23−δ, 3 ∤ d,and

f2(k, a) =































































1 if k ≤ 4a,

⌈K′
a⌉ + 1 if 4a < k ≤ 32a,

2
∑

i=1

(⌈

K′
a

i

⌉

−

[

⌈K′
a/i⌉

4

])

if k > 32a, 3 | d,

2
∑

i=1

(⌈

K′
a

3i

⌉

−

[

⌈K′
a/3i⌉

4

])

+
2

∑

i=1

(⌈

K′
a

2 · 3i

⌉

−

[

⌈K′
a/2 · 3i⌉

4

])

if k > 32a, 3 ∤ d.Then we have
νo(a) ≤ f1(k, a, δ), νe(a) ≤ f2(k, a),



An extension of a theorem of Euler 75and
ν(a) ≤ F (k, a, δ) :=







1 if k ≤ a,
f1(k, a, δ) if k > a and d even,
f1(k, a, 0) + f2(k, a) if k > a and d odd.Proof. Let I1 = {i : ai = a, xi odd}, I2 = {i : ai = a, 2 ‖xi} and

I3 = {i : ai = a, 4 |xi}. Further, for l = 1, 2, 3, let
Il1 := {i ∈ Il : 3 ∤ xi}, Il2 := {i ∈ Il : 3 |xi}.Let τ := τ(l, m) be de�ned by τ/a = 23−δ · 3̺−1, 23−δ · 9, 32 · 3̺−1, 32 · 9,

16·3̺−1, 16·9 for (l, m) = (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), respetively.Sine x2
i ≡ 1 (mod8) for i ∈ I1, (xi/2)2 ≡ 1 (mod8) for i ∈ I2, 16 |x2

i for
i ∈ I3 and x2

i ≡ 1 (mod3) for i ∈ Il1, 9 |x2
i for i ∈ Il2 for l = 1, 2, 3, wesee from (i − j)d = a(x2

i − x2
j ) that τ | i − j for i, j ∈ Ilm. Sine a | i − jwhenever ai = aj , we get ν(a) = 1 for k ≤ a. Thus we suppose that k > a.We have ν(a) = νo(a) + νe(a). It su�es to show νo(a) ≤ f1(k, a, δ) and

νe(a) ≤ f2(k, a) sine νe(a) = 0 for d even. We observe that νo(a) = |I1| and
νe(a) = |I2| + |I3|. Sine a23−δ | i − j whenever i, j ∈ I1, we get |I1| ≤ 1 if
k ≤ a23−δ. Thus we suppose k > a23−δ for proving |I1| ≤ f1(k, a, δ). Furtherfrom 4a | i − j for i, j ∈ I2 ∪ I3, 32a | i − j for i, j ∈ I2 and 16a | i − j for
i, j ∈ I3, we get |I2| + |I3| ≤ f2(k, a) for k ≤ 32a. Hene we suppose that
k > 32a for showing |I2| + |I3| ≤ f2(k, a).Let (l, m) have 1 ≤ l ≤ 3, 1 ≤ m ≤ 2. Let i0 = mini∈Ilm

i, N =
(n + i0d)/a and D = τd/a. Then we see that ax2

i with i ∈ Ilm ome fromthe squares in the set {N, N + D, . . . , N + (⌈(k − i0)/τ⌉ − 1)D}. Dividingthis set into onseutive intervals of length 4 and using Euler's result, we seethat there are at most
⌈

k − i0
τ

⌉

−

[

⌈(k − i0)/τ⌉

4

]

≤

⌈

k

τ

⌉

−

[

⌈k/τ⌉

4

]

of them whih an be squares. Hene |Ilm| ≤ ⌈k/τ⌉ − [⌈k/τ⌉/4]. Now theassertion follows from |Il| =
∑2

m=1 |Ilm| for l = 1, 2, 3 sine |Il2| = 0 for
3 | d.We observe that there are (p − 1)/2 distint quadrati residues and
(p − 1)/2 distint quadrati nonresidues modulo an odd prime p. The nextlemma follows easily from this fat.Lemma 2. Assume (2) holds. Let k be an odd prime. Suppose that k ∤ d.Let

T ′ =

{

i :

(

ai

k

)

= 1, 0 ≤ i < k

}

, T ′′ =

{

i :

(

ai

k

)

= −1, 0 ≤ i < k

}

.
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|T ′| = |T ′′| =

k − 1

2
.Lemma 3. Assume that (2) with P (b) ≤ k has no solution at k = k1 with

k1 prime. Then (2) with P (b) ≤ k has no solution at k with k1 ≤ k < k2,where k2 is the smallest prime larger than k1.Proof. Let k1 and k2 be onseutive primes suh that k1 ≤ k < k2.Assume that (2) does not hold at (n, d, k1). Suppose
n(n + d) · · · (n + (k − 1)d) = by2.Using (3), we see that
n(n + d) · · · (n + (k1 − 1)d) = b′y′2with P (b′) ≤ k1. This is not possible.Let q1, q2 be distint primes and

Λ1(q1, q2) :=

{

p ≤ 97 :

(

p

q1

)

6=

(

p

q2

)}

.We write Λ(q1, q2) = Λ(q1, q2, k) := {p ∈ Λ1(q1, q2) : p ≤ k}.Lemma 4. We have
(q1, q2) Λ1(q1, q2)

(5, 11) {3, 19, 23, 29, 37, 41, 47, 53, 61, 67, 79, 97}

(7, 17) {11, 13, 19, 23, 29, 37, 47, 59, 71, 79, 83, 89}

(11, 13) {5, 17, 29, 31, 37, 43, 47, 59, 61, 67, 71, 79, 89, 97}

(11, 59) {7, 17, 19, 23, 29, 31, 37, 41, 47, 67, 79, 89, 97}

(11, 61) {13, 19, 23, 31, 37, 41, 53, 59, 67, 71, 73, 83, 89}

(19, 29) {11, 13, 17, 43, 47, 53, 59, 61, 67, 71, 73}

(23, 73) {13, 19, 29, 31, 37, 47, 59, 61, 67, 79, 89, 97}

(23, 97) {11, 13, 29, 41, 43, 53, 59, 61, 71, 79, 89}

(31, 89) {7, 11, 17, 19, 41, 53, 59, 73, 79}

(37, 83) {17, 23, 29, 31, 47, 53, 59, 61, 67, 71, 73}

(41, 79) {11, 13, 19, 37, 43, 59, 61, 67, 89, 97}

(43, 53) {7, 23, 29, 31, 37, 41, 67, 79, 83, 89}

(43, 67) {11, 13, 19, 29, 31, 37, 41, 53, 71, 73, 79, 89, 97}

(53, 67) {7, 11, 13, 19, 23, 43, 71, 73, 83, 97}

(59, 61) {7, 13, 17, 29, 47, 53, 71, 73, 79, 83, 97}

(73, 97) {11, 19, 23, 31, 37, 41, 43, 47, 53, 67, 71}

(79, 89) {13, 17, 19, 23, 31, 47, 53, 71, 83}
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Definition. Let P be a set of primes and I ⊆ [0, k) ∩ Z. We say that

I is overed by P if, for every j ∈ I, there exists p ∈ P suh that p | aj .Further, for i ∈ I, let
i(P) = |{p ∈ P : p divides ai}|.(11)For a prime p with gcd(p, d) = 1, let ip be the smallest i ≥ 0 suh that

p |n+ id. For I ⊆ [0, k)∩Z and primes p1, p2 with gcd(p1p2, d) = 1, we write
I ′ = I(p1, p2) = I \

2
⋃

j=1

{ipj
+ pji : 0 ≤ i < ⌈k/pj⌉}.Lemma 5. Let P0 be a set of primes. Let p1, p2 be primes suh that

gcd(p1p2, d) = 1. Let (i1, i2) = (ip1
, ip2

), I ⊆ [0, k)∩ Z and I ′ = I(p1, p2) besuh that i(P0 ∩ Λ(p1, p2)) is even for eah i ∈ I ′. De�ne
I1 =

{

i ∈ I ′ :

(

i − i1
p1

)

=

(

i − i2
p2

)}

,

I2 =

{

i ∈ I ′ :

(

i − i1
p1

)

6=

(

i − i2
p2

)}

.Let P = Λ(p1, p2) \ P0. Let ℓ be the number of terms n + id with i ∈ I ′divisible by primes in P. Then either
|I1| ≤ ℓ, I1 is covered by P, I2 = {i ∈ I ′ : i(P) is even},or
|I2| ≤ ℓ, I2 is covered by P, I1 = {i ∈ I ′ : i(P) is even}.We observe that ℓ ≤

∑

p∈P⌈k/p⌉.Proof. Let i ∈ I ′. Let U0 = {p : p | ai}, U1 = {p ∈ U0 : p /∈ Λ(p1, p2)},
U2 = {p ∈ U0 : p ∈ P0 ∩ Λ(p1, p2)} and U3 = {p ∈ U0 : p ∈ P}. Then wededue from ai =

∏

p∈U0
p that

(

ai

p1

)

=
∏

p∈U1

(

p

p1

)

∏

p∈U2

(

p

p1

)

∏

p∈U3

(

p

p1

)

= (−1)i(P)+|U2|
∏

p∈U0

(

p

p2

)

= (−1)i(P)

(

ai

p2

)

sine |U2| = i(P0 ∩ Λ(p1, p2)) is even. Therefore
L :=

{

i ∈ I ′ :

(

ai

p1

)

6=

(

ai

p2

)}

= {i ∈ I ′ : i(P) is odd}.(12)In partiular, L is overed by P and hene
|L| ≤ ℓ.(13)
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ai

pj

)

=
(

n+id
pj

)

=
( i−ij

pj

)(

d
pj

) for i ∈ I ′ and j = 1, 2. Therefore
L = I1 or I2 aording as (

d
p1

)

6=
(

d
p2

) or (

d
p1

)

=
(

d
p2

), respetively. Now theassertion of Lemma 5 follows from (12) and (13).
Remark. Let P onsist of one prime p. We observe that p |n+ id if andonly if p | i − ip. Then I1 or I2 is ontained in one residue lass modulo pand p ∤ ai for i in the other set.Corollary 1. Let p1, p2, i1, i2,P0,P, I, I ′, I1, I2 and ℓ be as in Lem-ma 5. Assume that

ℓ <
1

2
|I ′|.(14)Then |I1| 6= |I2|. Let

M =

{

I1 if |I1| < |I2|,

I2 otherwise,(15)
B =

{

I2 if |I1| < |I2|,

I1 otherwise.(16)Then |M| ≤ ℓ, M is overed by P and B = {i ∈ I ′ : i(P) is even}.Proof. We see from Lemma 5 that min(|I1|, |I2|) ≤ ℓ and from (14) thatmax(|I1|, |I2|) ≥
1
2 |I

′| > ℓ. Now the assertion follows from Lemma 5.We say that (M,B,P, ℓ) has Property H if |M| ≤ ℓ, M is overed by Pand i(P) is even for i ∈ B.Lemma 6. Let k be a prime with 7 ≤ k ≤ 97 and assume (2). For
k ≥ 11, assume that Theorem 4 is valid for all primes k1 with 7 ≤ k1 < k.For 11 ≤ k ≤ 29, assume that k ∤ d and k ∤ n + id for 0 ≤ i < k − k′ and
k′ ≤ i < k where k′ < k are onseutive primes. Let (q1, q2) = (5, 7) if
k = 7; (5, 11) if k = 11; (11, 13) if 13 ≤ k ≤ 23; (19, 29) if 29 ≤ k ≤ 59;
(59, 61) if k = 61; (43, 67) if k = 67, 71; (23, 73) if k = 73, 79; (37, 83) if
k = 83; (79, 89) if k = 89; and (23, 97) if k = 97. Then q1 | d or q2 | d unless
(a0, a1, . . . , ak−1) is given by the following tuples or their mirror images.

k = 7 : (2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10);

k = 13 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15), (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1);

k = 19 : (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22);

k = 23 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3),

(6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7).We shall prove Lemma 6 in Setion 3.Lemma 7. Let k be a prime with 29 ≤ k ≤ 97 and Q0 a prime dividing d.Assume (2) with k ∤ d and k ∤ n + id for 0 ≤ i < k − k′ and k′ ≤ i < k where
k′ < k are onseutive primes. Then there are primes Q1 and Q2 given inthe following table suh that either Q1 | d or Q2 | d:
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k Q0 (Q1, Q2) k Q0 (Q1, Q2)

29 ≤ k ≤ 59 19 (7, 17) 73, 79 23 (53, 67)

31 ≤ k ≤ 59 29 (7, 17) 79 73 (53, 67)

61 59 (11, 61) 83 37 (23, 73)

67, 71 43 (53, 67) 89 79 (23, 73)

71 67 (43, 53) 97 23 (73, 97), (37, 83)The proofs of Lemmas 6 and 7 depend on the repeated appliation ofLemma 5 and Corollary 1. We shall prove Lemma 7 in Setion 4. Next weshall apply Lemmas 1, 2 and 7 to prove the following result.Lemma 8. Let k be a prime with 7 ≤ k ≤ 97. Assume (2) with k ∤ d.Further for k ≥ 29, assume that k ∤ n + id for 0 ≤ i < k − k′ and k′ ≤ i < kwhere k′ < k are onseutive primes. Let (q1, q2) be as in Lemma 6. Then
q1 ∤ d and q2 ∤ d.Setion 5 ontains a proof of Lemma 8. Assume that 3 ∤ d and 5 ∤ d. Wede�ne some more notation. For a subset J ⊆ [0, k) ∩ Z, let

I0
3 = I0

3 (J ) := {i ∈ J : i ≡ i3 (mod3)},

I+
3 = I+

3 (J ) :=

{

i ∈ J :

(

i − i3
3

)

= 1

}

,

I−
3 = I−

3 (J ) :=

{

i ∈ J :

(

i − i3
3

)

= −1

}

and
I+

5 = I+
5 (J ) :=

{

i ∈ J :

(

i − i5
5

)

= 1

}

,

I−
5 = I−

5 (J ) :=

{

i ∈ J :

(

i − i5
5

)

= −1

}

.Assume that ai ∈ {1, 2, 7, 14} for i ∈ I+
3 ∪I−

3 . Then either ai ∈ {1, 7} for i ∈
I+

3 , ai ∈ {2, 14} for i ∈ I−
3 or ai ∈ {2, 14} for i ∈ I+

3 , ai ∈ {1, 7} for i ∈ I−
3 .We de�ne (I1

3 , I2
3 ) = (I+

3 , I−
3 ) in the former ase and (I1

3 , I2
3 ) = (I−

3 , I+
3 ) inthe latter. We observe that i's have the same parity whenever ai ∈ {2, 14}.Thus if i's have the same parity in one of I+

3 or I−
3 but not in both, thenwe see that (I1

3 , I2
3 ) = (I+

3 , I−
3 ) or (I−

3 , I+
3 ) aording as i's have the sameparity in I−

3 or I+
3 , respetively. Further we write

J1 = I1
3 ∩ I+

5 , J2 = I1
3 ∩ I−

5 , J3 = I2
3 ∩ I+

5 , J4 = I2
3 ∩ I−

5and aµ = {ai : i ∈ Jµ} for 1 ≤ µ ≤ 4. Sine (

1
5

)

=
(

14
5

)

= 1 and (

2
5

)

=
(

7
5

)

= −1, we see that
(a1, a2, a3, a4) ⊆ ({1}, {7}, {14}, {2}) or ({7}, {1}, {2}, {14})(17)



80 N. Hirata-Kohno et al.where (a1, a2, a3, a4) ⊆ (S1, S2, S3, S4) denotes aµ ⊆ Sµ, 1 ≤ µ ≤ 4. We use
7 | i − i′ whenever ai, ai′ ∈ {7, 14} to exlude one of the above possibilities.3. Proof of Lemma 6. Let k′ < k be onseutive primes. We may sup-pose that if (2) holds for some k > 29, then k ∤ d and k ∤ ai for 0 ≤ i < k− k′and k′ ≤ i < k, otherwise the assertion follows from Theorem 4 with k re-plaed by k′. Subsetions 3.1 to 3.10 will be devoted to the proof of Lemma 6.We may assume that q1 ∤ d and q2 ∤ d, otherwise the assertion follows.3.1. The ase k = 7. Then 5 ∤ d. By taking the mirror images (4) of (2),there is no loss of generality in assuming that 5 |n + i5d, 7 |n + i7d for somepair (i5, i7) with 0 ≤ i5 < 5, 0 ≤ i7 ≤ 3. Further we may suppose i7 ≥ 1,otherwise the assertion follows from the ase k = 6. We apply Lemma 5 with
P0 = ∅, p1 = 5, p2 = 7, (i1, i2) = (i5, i7), I = [0, k) ∩ Z, P = Λ(5, 7) = {2}and ℓ ≤ ℓ1 = ⌈k/2⌉ to onlude that either

|I1| ≤ ℓ1, I1 is covered by P, I2 = {i ∈ I ′ : i(P) is even},or
|I2| ≤ ℓ1, I2 is covered by P, I1 = {i ∈ I ′ : i(P) is even}.Let (i5, i7) = (3, 1). Then I1 = {0, 2, 6} and I2 = {4, 5}. We see that I1is overed by P and hene i(P) is even for i ∈ I2. Thus 2 ∤ ai for i ∈ I2.Therefore a4, a5 ∈ {1, 3} and a0, a2, a6 ∈ {2, 6}. If a0 = 6 or a6 = 6, then

3 ∤ a4a5 so that a4 = a5 = 1. This is not possible by modulo 3. Thus a0 = a6

= 2. Sine (

a0

5

)(

a2

5

)

=
( (−3d)(−d)

5

)

= −1, we get a2 = 6. Hene a4 = 1. Fur-ther a5 = 3 sine (

a5

5

)(

a4

5

)

=
( (2d)(1d)

5

)

= −1. Also 5 | a3 and 7 | a1, other-wise the assertion follows from the results of [MS03℄ for k = 5 and [BBGH06℄for k = 6, respetively, stated in Setion 1. In fat, a1 = 7, a3 = 5by gcd(a1a3, 6) = 1. Thus (a0, a1, a2, a3, a4, a5, a6) = (2, 7, 6, 5, 1, 3, 2). Theproofs for the other ases of (i5, i7) are similar. We get (a0, . . . , a6) =
(1, 5, 6, 7, 2, 1, 10) when (i5, i7) = (1, 3), (a0, . . . , a6) = (1, 2, 7, 6, 5, 1, 3) when
(i5, i7) = (4, 2) and all the other pairs are exluded. Hene Lemma 6 with
k = 7 follows.3.2. The ase k = 11. Then 5 ∤ d. By taking the mirror images (4) of (2),there is no loss of generality in assuming that 5 |n+i5d, 11 |n+i11d for somepair (i5, i11) with 0 ≤ i5 < 5, 4 ≤ i11 ≤ 5. We apply Lemma 5 with P0 = ∅,
p1 = 5, p2 = 11, (i1, i2) = (i5, i11), I = [0, k) ∩ Z, P = Λ(5, 11) = {3} and
ℓ ≤ ℓ1 = ⌈k/3⌉ to derive that either

|I1| ≤ ℓ1, I1 is covered by P, I2 = {i ∈ I ′ : i(P) is even},or
|I2| ≤ ℓ1, I2 is covered by P, I1 = {i ∈ I ′ : i(P) is even}.



An extension of a theorem of Euler 81We ompute I1, I2 and we restrit attention to those pairs (i5, i11) for whihmin(|I1|, |I2|) ≤ ℓ1 and either I1 or I2 is overed by P. We �nd that
(i5, i11) = (0, 4), (1, 5). Let (i5, i11) = (0, 4). Then I1 = {3, 9} is overedby P, i3 = 0 and i(P) is even for i ∈ I2 = {1, 2, 6, 7, 8}. Thus 3 ∤ ai for i ∈ I2.Further, p ∈ {2, 7} whenever p | ai with i ∈ I2. Therefore ai ∈ {1, 2, 7, 14}for i ∈ I2. By taking J = I2, we have I2 = I0

3 ∪ I+
3 ∪ I−

3 and I2 = I+
5 ∪ I−

5with
I0

3 = {6}, I+
3 = {1, 7}, I−

3 = {2, 8}, I+
5 = {1, 6}, I−

5 = {2, 7, 8}.Let (I1
3 , I2

3 ) = (I+
3 , I−

3 ). Then
J1 = {1}, J2 = {7}, J3 = ∅, J4 = {2, 8}.The possibility (a1, a2, a3, a4) ⊆ ({7}, {1}, {2}, {14}) is exluded sine 7 |

i − i′ whenever ai, ai′ ∈ {7, 14}. Therefore a1 = 1, a7 = 7, a2 = a8 = 2.Further, a6 = 1 sine 6 ∈ I+
5 and a1 = 1, a7 = 7. This is not possiblesine 1 =

(

a6

7

)(

a8

7

)

=
( (−d)(d)

7

)

= −1. Let (I1
3 , I2

3 ) = (I−
3 , I+

3 ). Then weargue as above to onlude that a2 = a8 = 1, a1 = 2, a7 = 14, whih is notpossible sine n+2d and n+8d annot both be odd squares. The other ase
(i5, i11) = (1, 5) is exluded similarly.3.3. The ases 13 ≤ k ≤ 23. Then 11 ∤ d and 13 ∤ d. There is no loss ofgenerality in assuming that 11 |n + i11d, 13 |n + i13d for some pair (i11, i13)with 0 ≤ i11 < 11, 0 ≤ i13 ≤ (k − 1)/2 and further i13 ≥ 2 if k = 13.We have applied Lemma 5 one in eah of ases k = 7 and k = 11 but weapply it twie for every ase 13 ≤ k ≤ 23 in this subsetion. Let P0 = ∅,
p1 = 11, p2 = 13, (i1, i2) = (i11, i13), I = [0, k) ∩ Z, P = P1 := Λ(11, 13)and ℓ ≤ ℓ1 where ℓ1 = 3 if k = 13, and ℓ1 = ⌈k/5⌉ + ⌈k/17⌉ if k > 13. Then
ℓ1 < 1

2 |I
′| sine |I ′| ≥ k − ⌈k/11⌉ − ⌈k/13⌉. By Corollary 1, we derive that

I ′ is partitioned into M =: M1 and B =: B1 suh that (M1,B1,P1, ℓ1) hasProperty H. Now we restrit to all suh pairs (i11, i13) satisfying |M1| ≤ ℓ1and M1 is overed by P1. We hek that |M1| > 2. Therefore 5 ∤ d sine M1is overed by P1. Thus there exists i5 with 0 ≤ i5 < 5 suh that 5 |n + i5d.Now we apply Lemma 5 with p1 = 5, p2 = 11 and partition B1(5, 11)into two subsets. Let P0 = Λ(11, 13) ∪ {11, 13}, (i1, i2) = (i5, i11), I = B1,
P = P2 := Λ(5, 11) ⊆ {3, 19, 23} and ℓ ≤ ℓ2 where ℓ2 = 5, 6, 8, 11 if k =
13, 17, 19, 23, respetively. Hene B′

1 is partitioned into I1 and I2 satisfyingeither
|I1| ≤ ℓ2, I1 is covered by P2, I2 = {i ∈ I ′ : i(P2) is even},or
|I2| ≤ ℓ2, I2 is covered by P2, I1 = {i ∈ I ′ : i(P2) is even}.We ompute I1, I2 and we restrit attention to those pairs (i11, i13) for whih



82 N. Hirata-Kohno et al.min(|I1|, |I2|) ≤ ℓ2 and either I1 or I2 is overed by P2. We �nd that
(i11, i13) = (4, 2), (5, 3) if k = 13; (0, 0), (5, 3) if k = 17; (0, 0), (0, 9), (7, 5),
(7, 9), (8, 6), (9, 7), (10, 8) if k = 19; and (0, 0), (0, 9), (1, 10), (2, 11), (4, 0),
(5, 1), (5, 7), (6, 2), (6, 8), (7, 9), (8, 10), (9, 11) if k = 23.Let (i11, i13) be suh a pair. We write M for the one of I1 or I2 whih isovered by P2 and B for the other. For i ∈ B′

1, we see that p ∤ ai whenever
p ∈ P0 sine 17 | ai implies 5 | ai. Therefore

i(P2) is even for i ∈ B and p ∤ ai for i ∈ B whenever p ∈ P0,(18)sine B ⊆ B′
1. Further we hek that |M | > 1 if k 6= 23 and > 3 if k = 23,implying 3 ∤ d.By taking J = B, we get B = I0

3 ∪ I+
3 ∪ I−

3 and B = I+
5 ∪ I−

5 . Then
p ∈ {2, 7} whenever p | ai with i ∈ I+

3 ∪ I−
3 by (18). By omputing I+

3 , I−
3 ,we �nd that i's have the same parity in exatly one of I+

3 , I−
3 . Therefore wededue from (17) that

(a1, a2, a3, a4) ⊆ ({1}, {7}, {14}, {2}) or ({7}, {1}, {2}, {14}) .Let k = 13 and (i11, i13) = (4, 2). Then we have M1 = {0, 5, 10}, i5 = 0,
M = {3, 9, 12} and B = {1, 6, 7, 8, 11} sine the latter set is not overed by
P2 = {3}. Further i3 = 0, I0

3 = {6}, I1
3 = I−

3 = {8, 11}, I2
3 = I+

3 = {1, 7},
I+

5 = {1, 6, 11}, I−
5 = {7, 8}, J1 = {11}, J2 = {8}, J3 = {1}, J4 = {7}.Hene a11 = 1, a8 = 7, a1 = 14, a7 = 2 or a11 = 7, a8 = 1, a1 = 2, a7 = 14.The seond possibility is exluded sine a11 = 7, a7 = 14 is not possible.Further, from (18) we get a6 = 1 sine 2 ∤ a6 and 7 ∤ a6. Sine 13 |n + 2d and

7 |n + d, we get (

i−2
13

)

=
(

aia6

13

)

=
(

ai

13

) and −
(

i−1
7

)

=
(

aia6

7

)

=
(

ai

7

). Weobserve that 13 |n + 2d, 11 |n + 4d, 7 |n + d, 5 |n, 3 |n, 2 |n + d, 5 | ai for
i ∈ M and 3 | ai for i ∈ M1. Now we see that a0 ∈ {5, 15} and a0 = 5 isexluded sine (

5
7

)

6= −
(

−1
7

). Thus a0 = 15. Next a1 = 14, a2 = 13 and
a3 = 3. Also a4 ∈ {1, 11} and a4 6= 1 sine (

a4

13

)

=
(

2
13

)

= −1. Similarlywe derive that a5 = 10, a6 = 1, a7 = 2, a8 = 7, a9 = 6, a10 = 5, a11 = 1and a12 = 3. Thus (a0, a1, . . . , a12) = (15, 14, . . . , 6, 5, 1, 3). The other ase
(i11, i13) = (5, 3) is similar and we get (a0, a1, . . . , a12) = (1, 15, 14, . . . , 5, 1).Let k = 17 and (i11, i13) = (0, 0). Then we have M1 = {5, 10, 15} and
i5 = 0. We see from the assumption of Lemma 6 with k = 17, k′ = 13that 4 ≤ i17 < 13. Hene, from i17 ∈

⋃

p=5,11,13{ip + pj : 0 ≤ j < ⌈k/p⌉},we get i17 ∈ {5, 10, 11}. Further M = {3, 6, 12}, B = {1, 2, 4, 7, 8, 9, 14, 16},
i3 = 0, I0

3 = {9}, I1
3 = {1, 4, 7, 16}, I2

3 = {2, 8, 14}, I+
5 = {1, 4, 9, 14, 16},

I−
5 = {2, 7, 8}, J1 = {1, 4, 16}, J2 = {7}, J3 = {14} and J4 = {2, 8}.Therefore a1 = a4 = a16 = 1, a7 = 7, a14 = 14, a2 = a8 = 2. Thus a9 = 1by (18) and 2 ∤ a9, 7 ∤ a9. Now we see by the Legendre symbol mod 17 that

a1 = a4 = a9 = a16 = 1 is not possible. The ase (i11, i13) = (5, 3) is exludedsimilarly.



An extension of a theorem of Euler 83Let k = 19 and (i11, i13) = (0, 0). Then we have M1 = {5, 10, 15, 17},
i5 = 0, i17 = 0, M = {3, 6, 12}, B = {1, 2, 4, 7, 8, 9, 14, 16, 18} and i3 = 0.We see from i19 ∈

⋃

p=3,5,11,13,17{ip + pj : 0 ≤ j < ⌈k/p⌉} and 2 ≤

i19 < 17 that i19 ∈ {3, 5, 6, 9, 10, 11, 12, 13, 15}. Further, I0
3 = {9, 18},

I1
3 = {1, 4, 7, 16}, I2

3 = {2, 8, 14}, I+
5 = {1, 4, 9, 14, 16}, I−

5 = {2, 7, 8, 18},
J1 = {1, 4, 16}, J2 = {7}, J3 = {14} and J4 = {2, 8}. Therefore a1 = a4 =
a16 = 1, whih is not possible by mod 19. The ase (i11, i13) = (7, 5) is ex-luded similarly. Let (i11, i13) = (0, 9). Then M1 = {2, 5, 7, 12, 17}, i5 = 2,
i17 = 5, M = {1, 3, 10, 16}, B = {4, 6, 8, 13, 14, 15, 18}, i3 = 1 and i19 = 3.We now onsider (n + 6d)(n + 7d) · · · (n + 18d) = b′y′2. Then P (b′) ≤ 13.By the ase k = 13, we get (a6, a7, . . . , a18) = (1, 15, 14, . . . , 6, 5, 1) sine 5 | a7and 3 | a16. From 19 |n + 3d, we get (

ai

19

)

=
(

aia6

19

)

= −
(

i−3
19

) whih togetherwith 13 |n+9d, 11 |n, 7 |n+d, 2 |n, 5 | a2, 17 | a5, 3 | a1 implies a0 ∈ {2, 22},
a1 ∈ {3, 21}, a2 = 5, a3 = 19, a4 = 2 and a5 = 17. Now from (

ai

17

)

=
(

aia6

17

)

=
(

i−5
17

), we get a0 = 22, a1 = 21. Thus (a0, a1, . . . , a18) = (22, 21, . . . , 6, 5, 1).The ase (i11, i13) = (7, 9) is similar and we get (a0, a1, . . . , a18) = (1, 5, 6,
. . . , 21, 22). For the pair (i11, i13) = (10, 8), we similarly get (a0, a1, . . . , a18)
= (21, 5, . . . , 6, 5, 1, 3). This is exluded by onsidering (n + 3d)(n + 6d)
· · · (n + 18d) and k = 6. For the pairs (i11, i13) = (8, 6), (9, 7), we get
i19 = 0, 1, respetively, whih is not possible sine i19 ≥ 2 by the assumptionof the lemma.Let k = 23 and (i11, i13) = (0, 0). Then M1 = {5, 10, 15, 17, 20}, i5 = 0,
i17 = 0, M = {3, 6, 12, 19, 21}, B = {1, 2, 4, 7, 8, 9, 14, 16, 18}, i3 = 0 and
i19 = 0 sine 23 ∤ a19. We have i23 ∈ {5, 6, 9, 10, 11, 12, 13, 15, 17, 18} sine
4 ≤ i23 < 19. Here we observe that 23 ∤ a19 and 4 ≤ i23 < 19 in view ofour assumption that k ∤ ai for 0 ≤ i < k − k′ and k′ ≤ i < k with k = 23,
k′ = 19. Further, I0

3 = {9, 18}, I1
3 = {1, 4, 7, 16}, I2

3 = {2, 8, 14}, I+
5 =

{1, 4, 9, 14, 16}, I−
5 = {2, 7, 8, 18}, J1 = {1, 4, 16}, J2 = {7}, J3 = {14} and

J4 = {2, 8}. Therefore a1 = a4 = a16 = 1, a7 = 7, a14 = 14, a2 = a8 = 2.This is not possible sine (

a1

23

)

=
(

a4

23

)

=
(

a16

23

)

=
(

a2

23

)

=
(

a8

23

)

= 1. The ases
(i11, i13) = (0, 9), (1, 10), (2, 11), (4, 0), (7, 9), (8, 10), (9, 11) are exluded sim-ilarly. Let (i11, i13) = (5, 1). Then M1 = {7, 10, 12, 17, 22}, i5 = 2, i17 = 10,
M = {0, 3, 4, 6, 8, 15, 21}, B = {9, 11, 13, 18, 19, 20} and i3 = 0. This implieseither 23 | a4, 19 | a8 or 23 | a8, 19 | a4. Further, I0

3 = {9, 18}, I1
3 = {11, 20},

I2
3 = {13, 19}, I+

5 = {11, 13, 18}, I−
5 = {9, 19, 20}, J1 = {11}, J2 = {20},

J3 = {13} and J4 = {19}. Therefore a11 = 1, a20 = 7, a13 = 14, a19 = 2.Further, from (18) we get a9 ∈ {1, 2}, a18 = 1 sine 7 ∤ a9a18, 2 ∤ a18. However,
a9 = 2 as 9 ∈ I−

5 , 18 ∈ I+
5 . Sine (

a11

23

)

=
(

a18

23

)

= 1, we see that 23 | a4,
19 | a8. By using (

ai

p

)

=
(

aia11

p

)

=
( (i−ip)(11−ip)

p

), we get (

ai

23

)

= −
(

i−4
23

),
(

ai

11

)

= −
(

i−5
11

), (

ai

7

)

= −
(

i−6
7

) and (

ai

5

)

=
(

i−2
5

). Now from 23 | a4, 19 | a8,
17 | a10, 13 |n + d, 11 |n + 5d, 7 |n + 6d, 5 |n + 2d, 3 |n, 2 |n + d, M1 being



84 N. Hirata-Kohno et al.overed by {5, 17}, and M by {3, 19, 23}, we derive that (a0, a1, . . . , a22) =
(3, 26, . . . , 6, 5). The ases (i11, i13) = (5, 7), (6, 2), (6, 8) are similar and weget (a0, a1, . . . , a22) = (6, 7, . . . , 3, 7), (7, 3, . . . , 7, 6), (5, 6, 7, . . . , 3), respe-tively.3.4. Introdutory remarks on the ases k ≥ 29. Assume q1 ∤ d and q2 ∤ d.Then, by taking the mirror image (4) of (2), there is no loss of generalityin assuming that q1 |n + iq1

d, q2 |n + iq2
d for some pair (iq1

, iq2
) with 0 ≤

iq1
< q1, 0 ≤ iq2

≤ (k − 1)/2 and further iq2
≥ k − k′ if q2 = k. For

k = 61, by taking (n + 8d) · · · (n + 60d) and k = 53, we may assume that
max(i59, i61) ≥ 8 if i59 ≥ 2. Let P0 = ∅, p1 = q1, p2 = q2, (i1, i2) = (iq1

, iq2
),

I = [0, k)∩Z, P = P1 := Λ(q1, q2) and ℓ ≤ ℓ1 =
∑

p∈P1
⌈k/p⌉. We hek that

ℓ1 < 1
2 |I

′| sine |I ′| ≥ k−⌈k/q1⌉−⌈k/q2⌉. By Corollary 1, we get M =: M1and B =: B1 with (M1,B1,P1, ℓ1) having Property H. We now restrit to allsuh pairs (iq1
, iq2

) for whih |M1| ≤ ℓ1 and M1 is overed by P1. We �ndthat there is no suh pair (iq1
, iq2

) when k = 97.3.5. The ases 29 ≤ k ≤ 59. As stated in Lemma 6, we have q1 = 19,
q2 = 29 and P1 = Λ(19, 29) ⊆ {11, 13, 17, 43, 47, 53, 59}. Then the pairs
(iq1

, iq2
) are given by

k = 29 : (0, 9), (1, 10), (2, 11), (3, 12), (4, 13), (15, 5), (16, 6), (17, 7), (18, 8);

k = 31 : (0, 0), (0, 9), (1, 10), (2, 11), (3, 12), (4, 13), (11, 1),

(12, 2), (13, 3), (14, 4), (15, 5), (16, 6), (17, 7), (18, 8);

k = 37 : (0, 0), (0, 9), (1, 10), (2, 11), (3, 12), (4, 13), (17, 7), (18, 8);

k = 41 : (0, 0), (2, 11), (3, 12), (4, 13);

k = 43 : (0, 0), (1, 1), (3, 12), (4, 13), (5, 14), (6, 15), (7, 16), (8, 17);

k = 47 : (0, 0), (1, 1), (7, 16), (8, 17), (9, 18), (10, 19), (11, 20),

(12, 21), (13, 22), (13, 23), (14, 23);

k = 53 : (0, 0), (1, 0), (1, 1), (13, 22), (13, 23), (14, 23), (14, 24),

(15, 24), (15, 25), (16, 25), (16, 26), (17, 26);

k = 59 : (0, 0), (0, 28), (1, 0), (1, 1), (2, 1), (3, 2), (17, 27), (18, 28).Let k = 31 and (i19, i29) = (0, 9). We see that P1 = {11, 13, 17}, M1 =
{4, 5, 12, 16, 21, 25, 27} and B1 = {1, 2, 3, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 20,
22, 23, 24, 26, 28, 29, 30}. Sine M1 is overed by P1, we �nd that 11 di-vides a5, a16, a27; 13 divides a12, a25; and 17 divides a4, a21. Hene i11 = 5,
i13 = 12, i17 = 4. We see that gcd(11 ·13 ·17, ai) = 1 for i ∈ B1. Now we take
P0 = P1 ∪ {19, 29}, p1 = 11, p2 = 13, (i1, i2) := (i11, i13) = (5, 12), I = B1,
P = P2 := Λ(11, 13) \ P0 = {5, 31} and ℓ ≤ ℓ2 =

∑

p∈P2
⌈k/p⌉ = 8. Thus

|I ′| = |B1| = 21 > 2ℓ2. Then the onditions of Corollary 1 are satis�ed andwe have M =: M2, B =: B2 suh that (M2,B2,P2, ℓ2) has Property H. We



An extension of a theorem of Euler 85get M2 = {1, 3, 7, 8, 18, 23, 28}. This is not possible sine M2 is not overedby P2. Further, the following pairs (i19, i29) are exluded similarly:
k = 29 : (0, 9), (1, 10), (2, 11), (3, 12), (4, 13), (15, 5), (16, 6), (17, 7), (18, 8);

k = 31 : (1, 10), (2, 11), (3, 12), (4, 13), (18, 8).Thus k > 29.Let k = 59 and (i19, i29) = (0, 0). Then we see that P1 = {11, 13, 17,
43, 47, 53, 59}, M1 = {11, 13, 17, 22, 26, 33, 34, 39, 43, 44, 47, 51, 52, 53, 55},
B1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 28, 30,
31, 32, 35, 36, 37, 40, 41, 42, 45, 46, 48, 49, 50, 54, 56}, i11 = i13 = i17 = 0,
{43, 47, 53} is overed by {43, 47, 53, 59} =: P ′

1. Let p | ai for i ∈ B1 and
p ∈ P1. Then we show that i ∈ {4, 6, 10}. Let 59 | a43. Then {47, 53} is ov-ered by {43, 47, 53}. Let 43 | a47. If 43 | ai with i ∈ B1, then i = 4 and 43p | a4with p ∈ {47, 53} sine i(P1) is even. This implies either 53 | a53, 43 ·47 | a4 or
47 | a53, 43 · 53 | a4. Similarly we get i ∈ {4, 6, 10} by onsidering all the ases
59 | a43, 59 | a47 and 59 ∤ a43a47a53. We observe that 59 ∤ a53 sine 6 ≤ i59 < 53.Hene we onlude that p ∤ ai for i ∈ B1 \ {4, 6, 10} and p ∈ P ′

1. Further weobserve that
i59 ∈ M1 ∪ {19, 29, 38} ∪ {6, 10}.(19)Now we take P0 = P1 ∪ {19, 29}, p1 = 11, p2 = 13, (i1, i2) := (0, 0),

I = B1 \ {4, 6, 10}, P = P2 := Λ(11, 13) \ P0 = {5, 31, 37} and ℓ ≤ ℓ2 =
∑

p∈P2
⌈k/p⌉ = 16. Thus |I ′| = |B1| − 2 > 2ℓ2. Then the onditions of Corol-lary 1 are satis�ed and we have M =: M2, B =: B2 with (M2,B2,P2, ℓ2)having Property H. We get M2 = {5, 15, 20, 30, 31, 35, 37, 40, 45}, B2 =

{1, 2, 3, 7, 8, 9, 12, 14, 16, 18, 21, 23, 24, 25, 27, 28, 32, 36, 41, 42, 46, 48,
49, 50, 54, 56}, i5 = 0, and 31 | a31, 37 | a37 or 31 | a37, 37 | a31. Now we take
P0 = P1∪P2∪{19, 29}, p1 = 5, p2 = 11, (i1, i2) := (0, 0), I = B2, P = P3 :=
Λ(5, 11) \ P0 = {3, 23, 41} and ℓ ≤ ℓ3 =

∑

p∈P3
⌈k/p⌉. Then by Lemma 5,we see that M = {3, 6, 12, 21, 23, 24, 27, 41, 42, 46, 48, 54} is overed by P3and i(P3) is even for i ∈ B = {1, 2, 7, 8, 9, 14, 16, 18, 28, 32, 36, 49, 56}. Thus

i3 = i23 = i41 = 0 and p ∈ {2, 7} whenever p | ai with i ∈ B. Putting J = B,we have B = I0
3 ∪ I1

3 ∪ I2
3 and B = I+

5 ∪ I−
5 with

I0
3 = {9, 18, 36}, I1

3 = {1, 7, 16, 28, 49}, I2
3 = {2, 8, 14, 32, 56}and

I+
5 = {1, 9, 14, 16, 36, 49, 56}, I−

5 = {2, 7, 8, 18, 28, 32},so that
J1 = {1, 16, 49}, J2 = {7, 28}, J3 = {14, 56}, J4 = {2, 8, 32}.Hene (a1, a2, a3, a4) ⊆ ({1}, {7}, {14}, {2}) by (17). Thus a1 = a16 = a49

= 1, a7 = a28 = 7, a14 = a56 = 14, a2 = a8 = a32 = 2. Further, we get
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a9 = a36 = 1 and a18 = 2 sine 9, 36 ∈ I+

5 and 18 ∈ I−
5 . Sine

(

ai

59

)

= 1 for ai ∈ {1, 7},(20)we see that (

ai

59

)

= 1 for i ∈ {1, 7, 9, 16, 28, 36, 49}, whih is not possibleby (19).Let k = 41 and (i19, i29) = (2, 11). Then we see that P1 = {11, 13, 17},
M1 = {1, 6, 7, 14, 18, 23, 27, 29}, B1 = {0, 3, 4, 5, 8, 9, 10, 12, 13, 15, 16, 17, 19,
20, 22, 24, 25, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39}, i11 = 7, i13 = 1,
i17 = 6. Further gcd(ai, 11 · 13 · 17) = 1 for i ∈ B1. Now we take P0 =
P1 ∪ {19, 29}, p1 = 11, p2 = 13, (i1, i2) := (7, 1), I = B1, P = P2 :=
Λ(11, 13) \ P0 = {5, 31, 37} and ℓ ≤ ℓ2 =

∑

p∈P2
⌈k/p⌉ = 13. Then |I ′| =

|B1| > 2ℓ2. Thus the onditions of Corollary 1 are satis�ed and we get M =:
M2 and B =: B2 suh that (M2,B2,P2, ℓ2) has Property H. We have M2 =
{0, 3, 5, 9, 10, 20, 25, 30, 35}, B2 = {4, 8, 12, 13, 15, 16, 17, 19, 22, 24, 26, 28, 31,
32, 33, 34, 36, 37, 38, 39}, i5 = 0. Further 31 · 37 | a3a9, 31 ∤ a34. We take P0 =
P1 ∪ P2 ∪ {19, 29}, p1 = 5, p2 = 11, (i1, i2) := (0, 7), I = B2, P =
P3 := Λ(5, 11) \ P0 = {3, 23, 41}, ℓ ≤

∑

p∈P3
⌈k/p⌉ and apply Lemma 5to see that M = {13, 16, 17, 19, 28, 34, 37} is overed by P3, i3 = 1, i(P3) iseven for i ∈ B = {4, 8, 12, 22, 24, 26, 31, 32, 33, 36, 38, 39}. Further, i23 = 17,

i41 ∈ {2, 11, 21}∪M1 ∪M2 ∪M ∪{4, 22, 31} or vie versa. Here we observethat i41 exists sine 41 ∤ d. Thus 23 · 41 |
∏

ai where i runs through the set
{2, 11, 21}∪M1∪M2∪{4, 22, 31}. Therefore ai ∈ {1, 2, 7, 14} for i ∈ I1

3 ∪I
2
3 ,where B = I0

3 ∪ I1
3 ∪ I2

3 , B = I+
5 ∪ I−

5 with
I0

3 = {4, 22, 31}, I1
3 = {12, 24, 33, 36, 39}, I2

3 = {8, 26, 32, 38}and
I+

5 = {4, 24, 26, 31, 36, 39}, I−
5 = {8, 12, 22, 32, 33, 38}by taking J = B. We get

J1 = {24, 36, 39}, J2 = {12, 33}, J3 = {26}, J4 = {8, 32, 38},and a24 = a36 = a39 = 1, a12 = a33 = 7, a26 = 14, a8 = a32 = a38 = 2by (17). Sine
(

ai

41

)

= 1 for ai ∈ {1, 2},(21)we see that (

ai

41

)

= 1 for i ∈ {8, 24, 32, 36, 38, 39}, whih is not valid by thepossibilities for i41.All other ases are exluded similarly. Analogously to (20) and (21), weuse (

ai

k

)

= 1 for
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ai ∈







{1, 7} if k = 37, 53, 59,

{1, 2} if k = 31, 41, 47,

{1, 14} if k = 43to exlude the remaining possibilities.3.6. The ase k = 61. We have q1 = 59, q2 = 61 and P1 = {7, 13, 17, 29,
47, 53}. Then the pairs (iq1

, iq2
) are given by (8, 6), (9, 7), (10, 8), (11, 9), i.e.

(i + 2, i) with 6 ≤ i ≤ 9.Let (i59, i61) = (8, 6). Then P1 = {7, 13, 17, 29, 47, 53}, M1 = {2, 4, 9, 11,
14, 15, 16, 20, 25, 28, 32, 33, 38, 39, 41, 46, 50, 53, 54, 60}, B1 = {0, 1, 3, 5, 7, 10,
12, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 40, 42, 43,
44, 45, 47, 48, 49, 51, 52, 55, 56, 57, 58, 59}, i7 = 4, i13 = 2, i17 = 16, i29 = 9and a14, a20 are divisible by 47, 53. Further, gcd(p, ai) = 1 for i ∈ B1 and
p ∈ P1. Let P0 = P1 ∪ {59, 61}, p1 = 7, p2 = 17, (i1, i2) := (4, 16), I = B1,
P = P2 := Λ(7, 17) \ P0 = {11, 19, 23, 37} and ℓ ≤ ℓ2 =

∑

p∈P2
⌈k/p⌉ = 15.Then 2ℓ2 < |I ′| = |B1| − 1. By Corollary 1, we get M =: M2, B =: B2suh that (M2,B2,P2, ℓ2) has Property H. We �nd that M2 = {1, 10, 12,21, 23, 29, 30, 34, 44, 45, 48, 56}, B2 = {0, 3, 5, 7, 13, 17, 19, 22, 24, 26, 27,31, 35, 36, 37, 40, 42, 43, 47, 49, 51, 52, 55, 57, 58, 59}, i11 = 1, i19 = 10,

i23 = 21, i37 = 30. Now we take P0 = P1 ∪ P2 ∪ {59, 61}, p1 = 11,
p2 = 59, (i1, i2) := (1, 8), I = B2, P = P3 := Λ(11, 59) \ P0 = {31, 41}and ℓ ≤ ℓ3 =

∑

p∈P3
⌈k/p⌉ = 4. Then 2ℓ3 < |I ′| = |B2|. By Corollary 1, weget M =: M3 and B =: B3 suh that (M3,B3,P3, ℓ3) has Property H. Weget M3 = {0, 5, 26, 36}, whih annot be overed by P3. This is a ontradi-tion. The remaining ases are exluded similarly.3.7. The ases k = 67, 71. We have q1 = 43, q2 = 67 and P1 ⊆ {11, 13,

19, 29, 31, 37, 41, 53, 71}. Then the pairs (iq1
, iq2

) are given by
k = 67 : (i, i), 6 ≤ i ≤ 33;

k = 71 : (i, i), 0 ≤ i ≤ 35, i 6= 24, 25, and (24, 0), (25, 1), (26, 2), (27, 3).Let k = 71 and (i43, i67) = (27, 3). We see that P1 = {11, 13, 19, 29, 31, 37,
41, 53, 71}, M1 = {4, 5, 8, 12, 13, 15, 17, 18, 26, 29, 31, 32, 33, 37, 39, 41, 44, 48,
51, 57, 59}, B1 = {0, 1, 2, 6, 7, 9, 10, 11, 14, 16, 19, 20, 21, 22, 23, 24, 25, 28, 30,
34, 35, 36, 38, 40, 42, 43, 45, 46, 47, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69}, i11 = 4, i13 = 5, i19 = 13. Therefore {8, 12, 17, 29, 33,
39, 41} is overed by {29, 31, 37, 41, 53, 71} implying either i29 = 12 or i29 ∈
{17, 29, 33}, i31 = 8. Let i ∈ B1 and p | ai with p ∈ P1. Then there is a q ∈ P1suh that pq | ai sine i(P1) is even. Next we onsider the ase i31 = 8. Then
{12, 17, 29, 33, 41} =: M′

1 is overed by {29, 37, 41, 53, 71} and i29 6= 12. For
29 ∈ M′

1, we may suppose that either 29 | a29, 41 | a17, 29 ·41 | a58 or 29 | a29,
41 | a41, 29 · 41 | a0. Thus 0 or 58 in B1 orrespond to 29. We argue as abovethat for any other element of M′

1, there is no orresponding element in B1.



88 N. Hirata-Kohno et al.For the �rst ase, we derive similarly that 31 | a33, 37 | a39, 31 · 37 | a2 or
37 | a17, 37 · 71 | a54 or 37 | a29, 37 · 71 | a63 or 41 | a17, 37 · 71 | a58. Therefore

29 · 31 · 37 · 41 · 53 · 71
∣

∣

∏

(n + id) for i ∈ M1 ∪ {3, 27, 70} ∪ B′
1where B′

1 = {2, 54, 58, 63} if i29 = 12 and {0, 58} otherwise. Further,
i71 ∈ M1 ∪ {27} ∪ B′

1 and i71 6= 32.(22)For eah possibility i29 ∈ {0, 4, 12, 17}, we now take P0 = P1 ∪ {43, 67},
p1 = 19, p2 = 29, (i1, i2) := (13, i29), I = B1\B

′
1, P = P2 := Λ(19, 29)\P0 =

{17, 47, 59, 61} and ℓ = ℓ2 =
∑

p∈P2
⌈k/p⌉ = 11. Then |I ′| = |B1| − 4 > 2ℓ2.Thus the onditions of Corollary 1 are satis�ed and we get M =: M2 and

B =: B2 with (M2,B2,P2, ℓ2) having Property H. We hek that |M2| ≤ ℓ2only at i29 = 12, in whih ase we getM2 = {9, 11, 19, 23, 36, 53}, B2 = {0, 1,6, 7, 10, 14, 16, 20, 21, 22, 24, 25, 28, 30, 34, 35, 38, 40, 42, 43, 45, 46, 47, 49,
50, 52, 55, 56, 60, 61, 62, 63, 64, 65, 67, 68, 69}, i17 = 2 and {9, 11, 23} is overedby {47, 59, 61}. Thus 47·59·61 | a9a11a23. Further, p ∤ ai for i ∈ B2 and p ∈ P2.We now take P0 = P1∪P2 ∪{43, 67}, p1 = 11, p2 = 13, (i1, i2) := (4, 5), I =
B2,P = P3 := Λ(11, 13)\P0 = {5} and ℓ = ℓ3 = ⌈k/5⌉ = 15. Then |I ′| = |B2|
> 2ℓ3. By Corollary 1, we get M =: M3 and B =: B3 suh that (M3,
B3,P3, ℓ3) has Property H. We alulate M3 = {0, 10, 25, 30, 35, 40, 50, 55,60, 65}, B3 = {1, 6, 7, 14, 16, 20, 21, 22, 24, 28, 34, 38, 42, 43, 45, 46, 47, 49,52, 54, 56, 58, 61, 62, 63, 64, 66, 67, 68, 69}, i5 = 0 and further 5 ∤ a20a45.Lastly, we take P0 = P1∪P2∪P3∪{43, 67}, p1 = 5, p2 = 11, (i1, i2) := (0, 4),
I = B3, P = P4 := Λ(5, 11) \ P0 = {3, 23} and ℓ = ℓ4 =

∑

p∈P4
⌈k/p⌉. ByLemma 5, we see that M = {16, 22, 24, 28, 43, 46, 47, 49, 64, 67} is overed by

P4, i3 = i23 = 1, B = {1, 6, 7, 14, 21, 34, 38, 42, 52, 56, 61, 62, 63, 68, 69} andhene 3 ∤ a7a34a52a61 and possibly 3 · 23 | a1. Therefore ai ∈ {1, 2, 7, 14} for
i ∈ B\{1}. By taking J = B\{1}, we have B\{1} = I0

3 ∪I1
3 ∪I−

3 = I+
5 ∪I−

5with
I0

3 = {7, 34, 52, 61}, I1
3 = {6, 21, 42, 63, 69}, I−

3 = {14, 38, 56, 62, 68}and
I+

5 = {6, 14, 21, 34, 56, 61, 69}, I−
5 = {7, 38, 42, 52, 62, 63, 68}.Therefore

J1 = {6, 21, 69}, J2 = {42, 63}, J3 = {14, 56}, J4 = {38, 62, 68},and hene a6 = a21 = a69 = 1, a42 = a63 = 7, a14 = a56 = 14, a38 =
a62 = a68 = 2 by (17). Further, we get a34 = a61 = 1 and a52 = 2 by takingresidue lasses modulo 5. Sine (

1
71

)

=
(

2
71

)

= 1, we see that (

ai

71

)

= 1 for
i ∈ {6, 21, 34, 38, 52, 61, 62, 68, 69}, whih is not valid by the possibilities for
i71 given by (22).



An extension of a theorem of Euler 89Let k = 67 and (i43, i67) = (9, 9). We see that P1 = {11, 13, 19, 29, 31, 37,
41, 53}, M1 = {20, 22, 28, 31, 35, 38, 40, 42, 46, 47, 48, 50, 53, 61, 62, 64, 66},
B1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26,
27, 29, 30, 32, 33, 34, 36, 37, 39, 41, 43, 44, 45, 49, 51, 54, 55, 56, 57, 58, 59, 60,
63, 65}, i11 = i13 = i19 = 9 and {38, 40, 46, 50, 62} is overed by {29, 31, 37,
41, 53}. Further, p ∤ ai for i ∈ B1 and p ∈ P1 exept possibly when 29 | a50,
41 | a62, 29 · 41 | a21. Now we take P0 = P1 ∪ {43, 67}, p1 = 11, p2 = 13,
(i1, i2) := (9, 9), I = B1 \ {21} and P = P2 := Λ(11, 13) \ P0 = {5, 17, 47,
59, 61}. If 5 ∤ d, we observe that there is at least one multiple of 5 among
n + (i11 + 11i)d, 0 ≤ i ≤ 5, and ℓ ≤

∑

p∈P2
⌈k/p⌉ − 1 = 23. Thus we alwayshave ℓ ≤ 23 = ℓ2. Then |I ′| = |B1| − 1 > 2ℓ2 sine |B1| = 48. Thus the on-ditions of Corollary 1 are satis�ed and we get M =: M2, B =: B2 suh that

(M2,B2,P2, ℓ2) has Property H. We have M2 = {0, 1, 2, 3, 5, 6, 7, 8, 14, 19,
24, 26, 29, 39, 43, 44, 49, 54, 56, 60}, whih annot be overed by P2. This isa ontradition. The ases k = 67, (i43, i67) = (i, i) with 9 ≤ i ≤ 28, and
k = 71, (i43, i67) = (i, i) with 13 ≤ i ≤ 28, i 6= 24, 25, are exluded inthe same way as in this paragraph. The remaining ases are exluded in thesame way as k = 71, (i43, i67) = (27, 3) given in the preeding paragraph.3.8. The ases k = 73, 79. We have q1 =23, q2 =73 and P1⊆{13, 19, 29,
31, 37, 47, 59, 61, 67, 79}. Then the pairs (iq1

, iq2
) are given by

k = 73 : (6, 2), (7, 3), (8, 4), (9, 5);

k = 79 : (0, 0), (1, 1), (2, 2), (7, 3), (8, 4), (9, 5), (10, 6), (11, 7), (12, 8),

(13, 9), (14, 10), (15, 11), (16, 12), (17, 13), (18, 14), (19, 15).These pairs are of the form (i +4, i) exept for (0, 0), (1, 1), (2, 2) in the ase
k = 79.Let k = 79 and (i23, i73) = (8, 4). We see that P1 = {13, 19, 29, 31, 37, 47,
59, 61, 67, 79},M1 = {1, 3, 10, 12, 15, 16, 18, 19, 20, 25, 30, 38, 39, 40, 46, 48,51, 58, 64, 78}, B1 = {0, 2, 5, 6, 7, 9, 11, 13, 14, 17, 21, 22, 23, 24, 26, 27,28, 29, 32, 33, 34, 35, 36, 37, 41, 42, 43, 44, 45, 47, 49, 50, 52, 53, 55, 56,57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76}, i13 = 12,
i19 = 1 and {3, 10, 15, 16, 18, 19, 30, 40, 46, 48, 78} is overed by {29, 31, 37,
47, 59, 61, 67, 79}. Thus

29 · 31 · 37 · 47 · 59 · 61 · 67 · 79
∣

∣

∏

(n + id)

for i ∈ {3, 10, 15, 16, 18, 19, 30, 40, 46, 48, 78}.Further, we have
i79 ∈ {10, 15, 16, 18, 19, 30, 40, 46, 48}(23)and either i29 = 19 or i29 ∈ {1, 10, 16, 18}, i31 = 15, i37 = 3, i59 = 19.Also, for p ∈ P1, we have p ∤ ai for i ∈ B1 sine i(P1) is even for i ∈ B1.



90 N. Hirata-Kohno et al.For eah possibility i29 ∈ {1, 10, 16, 18, 19}, we now take P0 = P1 ∪{23, 73},
p1 = 19, p2 = 29, (i1, i2) := (1, i29), I = B1, P = P2 := Λ(19, 29) \ P0

= {11, 17, 43, 53, 71} and ℓ = ℓ2 =
∑

p∈P2
⌈k/p⌉ = 19. Then |I ′| ≥ |B1| − 2

> 2ℓ2. Thus the onditions of Corollary 1 are satis�ed and we have M =:
M2, B =: B2 suh that (M2,B2,P2, ℓ2) has Property H, implying i29 = 19,in whih ase we get M2 = {0, 6, 9, 11, 22, 24, 26, 33, 34, 43, 44, 55, 60, 66},
B2 = {2, 5, 7, 13, 14, 17, 21, 23, 27, 28, 29, 32, 35, 36, 37, 41, 42, 45, 47, 49, 50,52, 53, 56, 57, 59, 61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76}, i11 = 0,
i17 = 9 and {6, 24, 34} is overed by {43, 53, 71}. Thus 43 · 53 · 71 | a6a24a34.Further, p ∤ ai for i ∈ B2 and p ∈ P2. We now take P0 = P1 ∪ P2 ∪ {23, 73},
p1 = 11, p2 = 13, (i1, i2) := (0, 12), I = B2, P = P3 := Λ(11, 13) \ P0 = {5}and ℓ = ℓ3 = ⌈k/5⌉ = 16. Then |I ′| = |B2| > 2ℓ3. By Corollary 1, we get
M =: M3 and B =: B3 with (M3,B3,P3, ℓ3) having Property H. We al-ulate M3 = {7, 17, 32, 37, 42, 47, 57, 62, 67, 72}, B3 = {2, 5, 13, 14, 21, 23, 27,28, 29, 35, 36, 41, 45, 49, 50, 52, 53, 56, 59, 61, 63, 65, 68, 69, 70, 71, 73, 74,
75, 76}, i5 = 2 and 5 ∤ ai for i ∈ B3. Lastly, we take P0 = P1 ∪ P2 ∪
P3 ∪ {23, 73}, p1 = 5, p2 = 11, (i1, i2) := (2, 0), I = B3, P = P4 :=
Λ(5, 11) \ P0 = {3, 41} and ℓ = ℓ4 =

∑

p∈P4
⌈k/p⌉. By Lemma 5, we seethat M = {23, 29, 35, 36, 50, 53, 56, 65, 71, 74} is overed by P4, i3 = 2,

i41 = 36, B = {5, 13, 14, 21, 28, 41, 45, 49, 59, 61, 63, 68, 69, 70, 73, 75, 76} andhene ai ∈ {1, 2, 7, 14} for i ∈ B. By taking J = B, we have B = I0
3 ∪ I1

3

∪ I2
3 = I+

5 ∪ I−
5 with

I0
3 = {5, 14, 41, 59, 68}, I1

3 = {13, 28, 49, 61, 70, 73, 76},

I2
3 = {21, 45, 63, 69, 75}and

I+
5 = {13, 21, 28, 41, 61, 63, 68, 73, 76}, I−

5 = {5, 14, 45, 49, 59, 69, 70, 75}.Thus
J1 = {13, 28, 61, 73, 76}, J2 = {49, 70}, J3 = {21, 63}, J4 = {45, 69, 75},and hene a13 = a28 = a61 = a73 = a76 = 1, a49 = a70 = 7, a21 = a63 = 14,
a45 = a69 = a75 = 2 by (17). Further, we get a41 = a68 = 1 and a5 = a59 = 2by residues modulo 5. Sine (

1
79

)

=
(

2
79

)

= 1, we see that (

ai

71

)

= 1 for i ∈
{5, 13, 28, 41, 45, 59, 61, 68, 69, 75, 76}, whih is not valid by the possibilitiesfor i79 given by (23). The other ases are exluded similarly.3.9. The ase k = 83. We have q1 = 37, q2 = 83 and P1 = {17, 23, 29, 31,
47, 53, 59, 61, 67, 71, 73}. Then the pairs (iq1

, iq2
) are given by

(13, 4), (14, 5), (15, 6), (16, 7), (17, 8), (18, 9), (19, 10),

(20, 11), (21, 12), (22, 13), (23, 14), (24, 15), (25, 16), (26, 17).These pairs are of the form (i + 9, i) with 4 ≤ i ≤ 17.



An extension of a theorem of Euler 91Let (i37, i83) = (13, 4). We see that P1 = {17, 23, 29, 31, 47, 53, 59, 61, 67,
71, 73}, M1 = {0, 2, 14, 16, 18, 19, 20, 25, 26, 28, 29, 34, 36, 40, 41, 53, 56,58, 64, 70}, B1 = {1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 21, 22, 23, 24, 27, 30, 31,32, 33, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 57, 59, 60,61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82},
i17 = 2, i23 = 18, i29 = 0, i31 = 25 and {14, 16, 20, 26, 28, 34, 40} is overedby {47, 53, 59, 61, 67, 71, 73}. Further, p ∤ ai for i ∈ B1 and p ∈ P1. For eahpossibility i73 ∈ {14, 16, 20, 26, 28, 34, 40}, we take P0 = P1 ∪ {37, 83}, p1 =
23, p2 = 73, (i1, i2) := (18, i73), I = B1, P = P2 := Λ(23, 73) \ P0 =
{13, 19, 79} and ℓ = ℓ2 =

∑

p∈P2
⌈k/p⌉ = 14. Then |I ′| = |B1| > 2ℓ2. Thusthe onditions of Corollary 1 are satis�ed and we getM =: M2, B =: B2 suhthat (M2,B2,P2, ℓ2) has Property H, whih is possible only if i73 = 14. Then

M2 = {8, 9, 11, 22, 30, 35, 48, 49, 61, 68, 74}. Therefore i13 = 9, i19 = 11 and
i79 = 8. This is not possible by applying the ase k = 73 to (n + 9d) · · · (n +
81d). Similarly, for (i37, i83) = (14, 5), we get i73 = 15, i79 = 9 and this isexluded by applying the ase k = 73 to (n + 10d) · · · (n + 82d). For all theremaining ases, we ontinue similarly to �nd that M2 is not overed by P2for the possible hoies of i73, and hene they are exluded.3.10. The ase k = 89. We have q1 = 79, q2 = 89 and P1 = {13, 17, 19,
23, 31, 47, 53, 71, 83}. Then the pairs (iq1

, iq2
) are given by

(16, 6), (17, 7), (18, 8), (19, 9), (20, 10), (21, 11).These pairs are of the form (i + 10, i) with 6 ≤ i ≤ 11.Let (i79, i89) = (16, 6). We see that P1 = {13, 17, 19, 23, 31, 47, 53, 71, 83},
M1 = {0, 1, 2, 3, 4, 10, 12, 17, 19, 24, 26, 27, 30, 33, 38, 42, 43, 44, 48, 49, 56,57, 61, 64, 69, 72, 76, 78, 82}, B1 = {5, 7, 8, 9, 11, 13, 14, 15, 18, 20, 21, 22, 23,25, 28, 29, 31, 32, 34, 35, 36, 37, 39, 40, 41, 45, 46, 47, 50, 51, 52, 53, 54, 55,58, 59, 60, 62, 63, 65, 66, 67, 68, 70, 71, 73, 74, 75, 77, 79, 80, 81, 83, 84, 85,86, 87, 88}, i13 = 4, i17 = 10, i19 = 0, i23 = 3, i31 = 2, i47 = 1 and
{12, 24, 42} is overed by {53, 71, 83}. Further, p ∤ ai for i ∈ B1 and p ∈ P1.Now we take P0 = P1 ∪ {79, 89}, p1 = 31, p2 = 89, (i1, i2) := (2, 6), I = B1and P = P2 := Λ(31, 89) \ P0 = {7, 11, 41, 59, 73}. If 7 ∤ d, we observe thatthere is at least one multiple of 7 among n + (i13 + 13i)d, 0 ≤ i ≤ 6,and ℓ ≤ ℓ2 =

∑

p∈P2
⌈k/p⌉ − 1 = 28. Thus in all ases, we have ℓ ≤ ℓ2 and

|I ′| = |B1| > 2ℓ2. Therefore the onditions of Corollary 1 are satis�ed and weget M =: M2 and B =: B2 with (M2,B2,P2, ℓ2) having Property H. We �nd
M2 = {7, 11, 13, 22, 25, 29, 32, 36, 39, 40, 51, 53, 54, 60, 62, 67, 73, 74, 81,84, 88}, B2 = {5, 8, 9, 14, 15, 18, 20, 21, 23, 28, 31, 34, 35, 37, 41, 45, 46, 47,50, 52, 55, 58, 59, 63, 65, 66, 68, 70, 71, 75, 77, 79, 80, 83, 85, 86, 87}, i7 = 4,
i11 = 7, i41 = 13 and {22, 36} is overed by {59, 73}. Further, for p ∈ P2, p ∤ aifor i ∈ B2\{18}. We take P0 = P1∪P2∪{79, 89}, p1 = 41, p2 = 79, (i1, i2) :=
(13, 16), I = B2 \ {18}, P = P3 := Λ(41, 79) \ P0 = {37, 43, 61, 67} and ℓ =
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ℓ3 =

∑

p∈P3
⌈k/p⌉ = 10. Then |I ′| = |I| = |B2|−1 > 2ℓ3. Thus the onditionsof Corollary 1 are satis�ed and we have M =: M3, B =: B3 suh that

(M3,B3,P3, ℓ3) has Property H. We get M3 = {9, 21, 28, 34, 52, 58}, B3 =
{5, 8, 14, 15, 20, 23, 31, 35, 37, 41, 45, 46, 47, 50, 55, 59, 63, 65, 66, 68, 70, 71,75, 77, 79, 80, 83, 85, 86, 87}, i37 = 21, i43 = 9 and {28, 34} is overed by
{61, 67}. Therefore p ∈ {2, 3, 5, 29} whenever p | ai for i ∈ B3. Now we take
P0 = P1 ∪ P2 ∪ P3 ∪ {79, 89}, p1 = 7, p2 = 17, (i1, i2) := (4, 10), I = B3,
P = P4 := Λ(7, 17)\P0 = {29} and ℓ = ℓ4 = ⌈k/29⌉ = 4. Then |I ′| = |B3|−1sine 46 ∈ B3 and |B3|−1 > 2ℓ3. By Corollary 1, we get M =: M4 and B =:
B4 with (M4,B4,P4, ℓ4) having Property H. We �nd M4 = {8, 37, 66}, B4 =
{5, 14, 15, 20, 23, 31, 35, 41, 45, 47, 50, 55, 59, 63, 65, 68, 70, 71, 75, 77, 79, 80,83, 85, 86, 87}, i29 = 8 and P (ai) ≤ 5 for i ∈ B4. Now we get a ontraditionby taking k = 6 and (n+47d)(n+55d)(n+63d)(n+71d)(n+79d)(n+87d) =
b′y′2. Similarly the pair (i79, i89) = (17, 7) is exluded by applying k = 6 to
(n+48d)(n+56d)(n+64d)(n+72d)(n+80d)(n+88d). For all the remainingases, we ontinue similarly to �nd that M3 is not overed by P3, and henethey are exluded.4. Proof of Lemma 7. Assume that Q1 ∤ d and Q2 ∤ d. Then, by takingthe mirror image (4) of (2), there is no loss of generality in assuming that
0 ≤ iQ1

< Q1, 0 ≤ iQ2
≤ min(Q2 − 1, (k − 1)/2). Further, iQ2

≥ k − k′ if
Q2 = k. Let P0 = {Q0}, p1 = Q1, p2 = Q2, (i1, i2) := (iQ1

, iQ2
), I = [0, k)∩Zand P = P1 := Λ(Q1, Q2) \ P0. Then |I ′| ≥ k − ⌈k/Q1⌉ − ⌈k/Q2⌉ and

ℓ ≤ ℓ1 where ℓ1 =
∑

p∈P1
⌈k/p⌉. In fat we an take ℓ1 =

∑

p∈P1
⌈k/p⌉ − 1 if

(k, Q0) = (79, 23) or (k, Q0) = (59, 29) with i7 ≤ 2 by onsidering multiplesof 13, 11 or 19, 7, 11, respetively.Let (k, Q0) 6= (79, 73). Then ℓ1 < 1
2 |I

′|. We observe that i(P0) = 0 for
i ∈ I ′ sine Q0 | d, and by Corollary 1, we get M =: M1, B =: B1 suh that
(M1,B1,P1, ℓ1) has Property H. We now restrit to all suh pairs (iQ1

, iQ2
)with |M1| ≤ ℓ1 and M1 overed by P1. These pairs are given by

k Q0 (Q1, Q2) (iQ1
, iQ2

)

29 19 (7, 17) (0, 0), (0, 11)

37 19 or 29 (7, 17) (0, 0), (1, 2)

47 29 (7, 17) (0, 0), (4, 12)

59 29 (7, 17) (1, 1), (1, 6)

71 43 (53, 67) (0, 0)

89 79 (23, 73) (0, 0), (19, 15)Let (k, Q0) = (79, 73) and (Q1, Q2) = (53, 67). We apply Lemma 5 toderive that either |I1| ≤ ℓ1, I1 is overed by P1, i(P1) is even for i ∈ I2, or
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|I2| ≤ ℓ1, I2 is overed by P1, i(P1) is even for i ∈ I1. We ompute I1, I2and we �nd that both I1 and I2 are not overed by P1 for eah pair (i53, i67)with 0 ≤ i53 < 53, 0 ≤ i67 ≤ (k − 1)/2.Let (k, Q0) = (37, 29), (Q1, Q2) = (7, 17) and (i7, i17) = (1, 2). Then
P1 = {11, 13, 19, 23, 37}. We �nd that M1 = {3, 7, 10, 13, 14, 17, 23, 25},
B1 = {0, 4, 5, 6, 9, 11, 12, 16, 18, 20, 21, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35},
i11 = 3, i13 = 10 and {7, 13, 17} is overed by {19, 23, 37}. Further, p ∤ ai for
p ∈ P1, i ∈ B1. Now we take P0 = P1 ∪ {7, 17, 29}, p1 = 11, p2 = 13,
(i1, i2) := (3, 10), I = B1, P = P2 := Λ(11, 13) \ P0 = {5, 31} and
ℓ = ℓ2 =

∑

p∈P2
⌈k/p⌉ = 10. Thus |I ′| = |I| = |B1| = 21 > 2ℓ2. Then theonditions of Corollary 1 are satis�ed and we have M =: M2, B =: B2 suhthat (M2,B2,P2, ℓ2) has Property H. We get M2 = {5, 6, 16, 21, 26, 31},

B2 = {0, 4, 9, 11, 12, 18, 20, 24, 27, 28, 30, 32, 33, 34, 35}, i5 = 1, 31 | a5 and
5 ∤ a11. Also, P (ai) ≤ 3 for i ∈ B2 and P (a31) = 5. Thus P (a30a31 · · · a35) ≤ 5and this is exluded by the ase k = 6. The other ases for k = 29, 37, 47 areexluded similarly. Eah possibility is exluded by the ase k = 6 after show-ing P (a1a2 · · · a6) ≤ 5 when (k, Q0) ∈ {(29, 19), (37, 19), (37, 29), (47, 29)},
(i7, i17) = (0, 0); P (a22a23 · · · a27) ≤ 5 when (k, Q0) = (29, 19), (i7, i17) =
(0, 11); P (a30a31 · · · a35) ≤ 5 when (k, Q0) = (37, 19), (i7, i17) = (1, 2); and
P (a40a41 · · · a45) ≤ 5 when (k, Q0) = (47, 29), (i7, i17) = (4, 12).Let (k, Q0) = (59, 29), (Q1, Q2) = (7, 17) and (i7, i17) = (1, 1). Then
P1 = {11, 13, 19, 23, 37, 47, 59}. We �nd that M1 = {0, 12, 14, 20, 23, 24, 27,
30, 34, 38, 39, 40, 45, 47, 48, 53, 56, 58}, B1 = {2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 16,
17, 19, 21, 25, 26, 28, 31, 32, 33, 37, 41, 42, 44, 46, 49, 51, 54, 55}, i11 = i13 = i19

= i23 = 1 and {30, 38, 48} is overed by {37, 47, 59}. Further, p ∤ ai for p ∈ P1,
i ∈ B1. Now we take P0 = P1∪{7, 17, 29}, p1 = 11, p2 = 13, (i1, i2) := (1, 1),
I = B1, P = P2 := Λ(11, 13)\P0 = {5, 31, 43} and ℓ = ℓ2 =

∑

p∈P2
⌈k/p⌉. ByLemma 5, we get M = {6, 11, 16, 21, 31, 32, 41, 44, 46}, i5 = 1, 31 ·43 | a32a44,and i(P2) is even for i ∈ B = {2, 3, 4, 5, 7, 9, 10, 13, 17, 19, 25, 26, 28, 33, 37,

42, 49, 51, 54, 55}. Further, for p ∈ P2, p ∤ ai for i ∈ B. Finally we applyLemma 5 with P0 = P1 ∪ P2 ∪ {7, 17, 29}, p1 = 5, p2 = 11, (i1, i2) :=
(1, 1), I = B and P = P3 := Λ(5, 11) \ P0 = {3, 41, 53}. We get M1 =
{4, 7, 13, 25, 28, 42, 49, 54, 55}, whih is overed by P3, i3 = 1, {42, 54} is ov-ered by {41, 53} and i(P3) is even for i ∈ B1 = {2, 3, 5, 9, 10, 17, 19, 33, 37}.Hene P (ai) ≤ 2 for i ∈ B1. Sine (

ai

29

)

=
(

n
29

) and (

2
29

)

6= 1, we see that
ai = 1 for i ∈ B1. By taking J = B1, we derive that either I+

5 = ∅ or
I−

5 = ∅, whih is a ontradition. The other ase (i7, i17) = (1, 6) is exludedsimilarly.Let (k, Q0) = (71, 43), (Q1, Q2) = (53, 67), (i53, i67) = (0, 0). Then P1 =
{7, 11, 13, 19, 23, 71}. We get M1 = {7, 11, 13, 14, 19, 21, 22, 23, 26, 28, 33, 35,
38, 39, 42, 43, 44, 46, 52, 55, 56, 57, 63, 65, 66, 69, 70}, B1 = {1, 2, 3, 4, 5, 6, 8, 9,



94 N. Hirata-Kohno et al.10, 12, 15, 16, 17, 18, 20, 24, 25, 27, 29, 30, 31, 32, 34, 36, 37, 40, 41, 45, 47, 48,49, 50, 51, 54, 58, 59, 60, 61, 62, 64, 68}, i7 = i11 = i13 = i19 = i23 = 0,
i71 = 43. Further, for p ∈ P1, p ∤ ai for i ∈ B1. Now we take P0 = P1 ∪
{43, 53, 67}, p1 = 11, p2 = 13, (i1, i2) := (0, 0), I = B1, P = P2 :=
Λ(11, 13) \ P0 = {5, 17, 29, 31, 37, 47, 59, 61} and ℓ = ℓ2 =

∑

p∈P2
⌈k/p⌉. ByLemma 5, we see that M = {5, 10, 15, 17, 20, 29, 30, 31, 34, 37, 40, 45, 47, 51,

58, 59, 60, 61, 62, 68} is overed by P2 and i(P2) is even for i ∈ B = {1, 2, 3,
4, 6, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 41, 48, 49, 50, 54, 64}. We get i5 = i17 =
i29 = i31 = 0, and {37, 47, 59, 61} is overed by {37, 47, 59, 61}. Thus
37 · 47 · 59 · 61 | a37a47a59a61. Further, p ∤ ai for i ∈ B and p ∈ P2. Wetake P0 = P1 ∪ P2 ∪ {43, 53, 67}, p1 = 5, p2 = 11, (i1, i2) := (0, 0), I = B2,
P = P3 := Λ(5, 11) \ P0 = {3, 41} and ℓ = ℓ3 =

∑

p∈P3
⌈k/p⌉. By Lemma 5,we see that M1 = {3, 6, 12, 24, 27, 41, 48, 54} is overed by P3 and i(P3) iseven for i ∈ B1 = {1, 2, 4, 8, 9, 16, 18, 32, 36, 49, 64}. Thus i3 = 0, implying

i41 = 0 and p = 2 whenever p | ai for i ∈ B1. By taking J = B1, we have
B1 = I+

5 ∪ I−
5 with
I+

5 = {1, 4, 9, 16, 36, 49, 64}, I−
5 = {2, 8, 18, 32}.Thus ai = 1 for i ∈ I+

5 and ai = 2 for i ∈ I−
5 sine ai ∈ {1, 2} for i ∈ B1.This is a ontradition sine 43 | d, (

ai

43

)

=
(

n
43

) and (

1
43

)

6=
(

2
43

).Let k = 89, Q0 = 79, (Q1, Q2) = (23, 73), (i23, i73) = (19, 15). Then P1 =
{13, 19, 29, 31, 37, 47, 59, 61, 67, 79, 89}. We �nd that M1 = {1, 9, 10, 12, 14,21, 23, 26, 27, 29, 30, 31, 36, 41, 49, 50, 51, 57, 59, 62, 69, 75}, B1 = {0, 2, 3, 4,5, 6, 7, 8, 11, 13, 16, 17, 18, 20, 22, 24, 25, 28, 32, 33, 34, 35, 37, 38, 39, 40, 43,44, 45, 46, 47, 48, 52, 53, 54, 55, 56, 58, 60, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73,74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87}, i13 = 10, i19 = 12, i29 = 1,
i31 = 26, i37 = 14 and {9, 21, 27, 29, 41} is overed by {47, 59, 61, 67, 89}.Thus i89 ∈ {9, 21, 27, 29, 41}. Further, for p ∈ P1, p ∤ ai for i ∈ B1. Nowwe take P0 = P1 ∪ {23, 73, 79}, p1 = 19, p2 = 29, (i1, i2) := (12, 1),
I = B1, P = P2 := Λ(19, 29) \ P0 = {11, 17, 43, 53, 71} and ℓ = ℓ2 =
∑

p∈P2
⌈k/p⌉ = 22. Thus |I ′| = |I| = |B1| > 2ℓ2. By Corollary 1, we have

M =: M2, B =: B2 suh that (M2,B2,P2, ℓ2) has Property H. We getM2 =
{0, 2, 3, 11, 17, 20, 22, 33, 35, 37, 44, 45, 54, 55, 66, 71, 77}, B2 = {4, 5, 6, 7, 8,13, 16, 18, 24, 25, 28, 32, 34, 38, 39, 40, 43, 46, 47, 48, 52, 53, 56, 58, 60, 61, 63,64, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87}, i11 = 0,
i17 = 3, i43 = 2 and {17, 35} is overed by {53, 71}. Further, p ∤ ai for i ∈ B2and p ∈ P2. We take P0 = P1∪P2∪{23, 73, 79}, p1 = 11, p2 = 13, (i1, i2) :=
(0, 10), I = B2, P = P3 := Λ(11, 13) \ P0 = {5} and ℓ = ℓ3 =

∑

p∈P2
⌈k/p⌉

= 18. Thus |I ′| = |I| = |B2| > 2ℓ3. Then the onditions of Corollary 1 aresatis�ed and we have M =: M3, B =: B3 with (M3,B3,P3, ℓ3) having Prop-erty H. We get M3 = {8, 18, 28, 43, 48, 53, 58, 68, 73, 78, 83}, B3 = {4, 5, 6, 7,13, 16, 24, 25, 32, 34, 38, 39, 40, 46, 47, 52, 56, 60, 61, 63, 64, 67, 70, 72, 74, 76,



An extension of a theorem of Euler 9579, 80, 81, 82, 84, 85, 86, 87}, i5 = 3. Lastly, we take P0 = P1 ∪ P2 ∪ P3 ∪
{23, 73, 79}, p1 = 5, p2 = 11, (i1, i2) := (3, 0), I = B3, P = P4 := Λ(5, 11) \
P0 = {3, 41} and ℓ = ℓ4 =

∑

p∈P4
⌈k/p⌉. By Lemma 5, we see that M =

{4, 6, 34, 40, 46, 47, 61, 64, 67, 76, 82, 85} is overed by P4 and i(P4) is evenfor i ∈ B = {5, 7, 16, 24, 25, 32, 39, 52, 56, 60, 70, 72, 74, 79, 80, 81, 84, 86, 87}.Thus i3 = 1, i41 = 6 and p ∈ {2, 7, 83} whenever p | ai for i ∈ B. Sine 79 | d,we see that ai ∈ {1, 2, 83, 2 · 83} or ai ∈ {7, 14, 7 · 83, 14 · 83} for i ∈ B. Thelatter possibility is exluded sine 7 ∤ i− i′ for all i, i′ ∈ B. By taking J = B,we have B = I+
5 ∪ I−

5 with
I+

5 = {7, 24, 32, 39, 52, 72, 74, 79, 84, 87},

I−
5 = {5, 16, 25, 56, 60, 70, 80, 81, 86}.Then we observe that either ai ∈ {1, 2 · 83} for i ∈ I+

5 and ai ∈ {2, 83} for
i ∈ I−

5 or vie versa. This is not possible by parity argument. The other ase
(i23, i73) = (0, 0) is exluded similarly.5. Proof of Lemma 8. Let 7 ≤ k ≤ 97 be primes. Suppose that theassumptions of Lemma 8 are satis�ed. Assume that q1 | d or q2 | d and we shallarrive at a ontradition. We divide the proof into Subsetions 5.1 and 5.2.5.1. The ases 7 ≤ k ≤ 23. We take q = 5 in (7) and (8). We maysuppose that 5 | d if k = 7, 11 and 11 | d if k = 13. Let 5 | d. Then

S ⊆ {1, 6} or S ⊆ {2, 3}(24)aording as (

n
5

)

= 1 or −1, respetively. Thus (24) holds if k = 7, 11. Let
11 | d. Then

S ⊆ {1, 3, 5, 15} or S ⊆ {2, 6, 10, 30}(25)aording as (

n
11

)

= 1 or −1, respetively. Let 13 | d. Then
S ⊆ {1, 3, 10, 30} or S ⊆ {2, 5, 6, 15}(26)aording as (

n
13

)

= 1 or −1, respetively. Thus either (25) or (26) holds if
13 ≤ k ≤ 23.By observing that ai's divisible by a prime p an our in at most ⌈k/p⌉terms, we have

|T1| ≤ t′1 :=











∑

p>5⌈k/p⌉ if k = 7, 11,
∑

p>5⌈k/p⌉ − 2 if 13 ≤ k < 23,
∑

p>5⌈k/p⌉ − 3 if k = 23,

(27)
where the sum is taken over all p ≤ k. For the last sum, we observe that 7and 11 together divide at most six ai's when k = 23. We divide the proofinto four ases.
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Case I. Let 2 ∤ d and 3 ∤ d. From (24)�(26), (10) and Lemma 1, we get

|T | ≤ t1 :=























max(f1(k, 1, 0) + f1(k, 6, 0), f1(k, 2, 0) + f1(k, 3, 0)) + ⌈k/4⌉if k = 7, 11,

f1(k, 1, 0) + f1(k, 3, 0) + f1(k, 5, 0) + f1(k, 15, 0) + ⌈k/4⌉if k > 11,sine f1(k, a, δ) is a noninreasing funtion of a and ∑

a∈R νe(a) ≤ ⌈k/4⌉.We hek that k = |T | + |T1| ≤ t1 + t′1 < k, a ontradition.Thus we have either 2 | d or 3 | d. Let k = 7, 11. If 2 | d, then S ⊆ {1}or S ⊆ {3}. If 3 | d, we have S ⊆ {1} or S ⊆ {2}. By Lemma 2, we get
|T | ≤ (k − 1)/2. We hek that k = |T | + |T1| ≤ (k − 1)/2 + t′1 < k by (27).This is a ontradition. From now on, we may also suppose that 13 ≤ k ≤ 23.
Case II. Let 2 | d and 3 ∤ d. Then S ⊆ {1, 3, 5, 15} if 11 | d and S ⊆ {1, 3}or S ⊆ {5, 15} if 13 | d. Let 2 ‖ d. From (10) and Lemma 1 with δ = 1, we get

|T | ≤ F (k, 1, 1) + F (k, 3, 1) + F (k, 5, 1) + F (k, 15, 1) =: t2.Let 4 ‖ d. From ai ≡ n (mod4), we see that S ⊆ {1, 5} or S ⊆ {3, 15} if 11 | d,and either S = ∅ or S = {1}, {3}, {5} or {15} if 13 | d. Therefore
|T | ≤ F (k, 1, 2) + F (k, 5, 2) =: t3by Lemma 1 with δ = 2. Let 8 | d. Then ai ≡ n (mod8) and Lemma 1 with

δ = 3 imply
|T | ≤ F (k, 1, 3) =: t4.Thus |T | ≤max(t2, t3, t4). This with (27) ontradits (9).

Case III. Let 2 ∤ d and 3 | d. From ai ≡ n (mod3), we see that either
S = ∅ or S = {1}, {2}, {5} or {10} if 11 | d, and S ⊆ {1, 10} or S ⊆ {2, 5} if
13 | d. By (10) and Lemma 1, we get

|T | ≤ F (k, 1, 0) + F (k, 5, 0),whih together with (27) ontradits (9).
Case IV. Let 2 | d and 3 | d. Then S ⊆ {1}, {5}. By Lemma 2, we get

|T | ≤ (k − 1)/2. We hek that k = |T | + |T1| ≤ (k − 1)/2 + t′1 < k, aontradition.5.2. The ases k ≥ 29. Let 29 ≤ k ≤ 59 and 19 | d. Then by Lemma 7with Q0 = 19, we get 7 | d or 17 | d. Thus we get a prime pair (Q, Q′) = (7, 19)or (Q, Q′) = (17, 19) suh that QQ′ | d. Similarly we get (Q, Q′) = (7, 29) or
(Q, Q′) = (17, 29) with QQ′ | d when 31 ≤ k ≤ 59 and 29 | d. Let k = 71.Then we have either 43 | d, 67 | d or 43 | d, 67 ∤ d or 43 ∤ d, 67 | d. We get a primepair (Q, Q′) = (43, 67) with QQ′ | d if 43 | d, 67 | d. If 43 | d, 67 ∤ d, we deduefrom Lemma 7 with Q0 = 43 that 53 | d and we take (Q, Q′) = (43, 53) suh



An extension of a theorem of Euler 97that QQ′ | d. If 43 ∤ d, 67 | d, we �nd from Lemma 7 with Q0 = 67 that 53 | dand we take (Q, Q′) = (53, 67) suh that QQ′ | d. Similar prime pairs (Q, Q′)with QQ′ | d for eah 61 ≤ k ≤ 97 are given in the table below. For q ≤ 17,we see that
|T1| ≤

∑

p>q
p6=Q,Q′

⌈

k

p

⌉

≤ t′2 :=











∑

p>q⌈k/p⌉ − 2 if 29 ≤ k ≤ 61,
∑

p>q⌈k/p⌉ − 4 if 61 < k < 97,
∑

p>q⌈k/p⌉ − 7 if k = 97,(28)
where the sum is taken over primes ≤ k.

k (Q, Q′) S ⊆ S′ with S′ given by one of
29 ≤ k ≤ 59 (7, 19), (7, 29) {1, 30}, {2, 15}, {3, 10}, {5, 6}

29 ≤ k ≤ 59 (17, 19), (17, 29) {1, 30, 35, 42}, {2, 15, 21, 70}, {3, 10, 14, 105}, {5, 6, 7, 210}

61 (11, 59) {1, 3, 5, 15}, {2, 6, 10, 30}, {7, 21, 35, 105}, {14, 42, 70, 210}

67, 71 (43, 53) {1, 6, 10, 15}, {2, 3, 5, 30}, {7, 42, 70, 105}, {14, 21, 35, 210}

71 (43, 67) See (29)
71 (53, 67) {1, 6, 10, 15}, {2, 3, 5, 30}, {7, 42, 70, 105}, {14, 21, 35, 210}

73 (23, 53) {1, 6, 70, 105}, {2, 3, 35, 210}, {5, 14, 21, 30}, {7, 10, 15, 42}

73 (23, 67) {1, 6, 35, 210}, {2, 3, 70, 105}, {5, 7, 30, 42}, {10, 14, 15, 21}

79 (23, 53), (53, 73) {1, 6, 70, 105}, {2, 3, 35, 210}, {5, 14, 21, 30}, {7, 10, 15, 42}

79 (23, 67), (67, 73) {1, 6, 35, 210}, {2, 3, 70, 105}, {5, 7, 30, 42}, {10, 14, 15, 21}

83 (23, 37), (37, 73) {1, 3, 70, 210}, {2, 6, 35, 105}, {5, 14, 15, 42}, {7, 10, 21, 30}

89 (23, 79), (73, 79) {1, 2, 105, 210}, {3, 6, 35, 70}, {5, 10, 21, 42}, {7, 14, 15, 30}

97 (23, 37), (23, 83) {1, 3, 70, 210}, {2, 6, 35, 105}, {5, 14, 15, 42}, {7, 10, 21, 30}

Case I. Let 2 ∤ d and 3 ∤ d. In (7) and (8) we take q = 11 if k = 71,
(Q, Q′) = (43, 67) and q = 7 otherwise. From (

ai

Q

)

=
(

n
Q

) and (

ai

Q′

)

=
(

n
Q′

),we get S ⊆ S′ =
{

s : s squarefree, P (s) ≤ q,
(

s
Q

)

=
(

n
Q

)

,
(

s
Q′

)

=
(

n
Q′

)}.By onsidering ((

n
Q

)

,
(

n
Q′

))

= (1, 1), (1,−1), (−1, 1) and (−1,−1), we getfour possibilities for S′. For eah value of k, the above table shows (Q, Q′)and S′. For k = 71, (Q, Q′) = (43, 67), we get S ⊆ S′ with S′ given by one of
(29)

{1, 6, 10, 14, 15, 21, 35, 210}, {2, 3, 5, 7, 30, 42, 70, 105},

{11, 66, 110, 154, 165, 231, 385, 2310}, {22, 33, 55, 77, 330, 462, 770, 1155}.From the possibilities for S ⊆ S′ given by the table, (10) and Lemma 1,we get
|T | ≤ t5 := max

∑

s∈S′

F (k, s, 0),where the maximum is taken over all the four hoies of S′. This with (28)gives |T | + |T1| ≤ t5 + t′2 < k, ontraditing (9).
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Case II. Let 2 | d and 3 ∤ d. We take q = 7 for 2 ‖ d, 4 ‖ d and q = 11 for

8 | d.Let 2 ‖ d. Then S ⊆ {1, 3, 5, 7, 15, 21, 35, 105} =: S2. From (10) andLemma 1 with δ = 1, we get
|T | ≤

∑

s∈S2

F (k, s, 1) =: t6.Let 4 ‖ d. Then we see that either S⊆{1, 5, 21, 105}=:S41 or S⊆{3, 7, 15, 35}
=: S42. From (10) and Lemma 1 with δ = 2, we get

|T | ≤ max
i=1,2

∑

s∈S4i

F (k, s, 2) =: t7.Hene, if 8 ∤ d, then |T | ≤ max(t6, t7). This with (28) implies |T | + |T1| ≤
max(t6, t7) + t′2 < k, ontraditing (9).Let 8 | d. Then we see from ai ≡ n (mod8) that S ⊆ {1, 33, 105, 385} =:
S81 or S ⊆ {3, 11, 35, 1155} =: S82 or S ⊆ {5, 21, 77, 165} =: S83 or S ⊆
{7, 15, 55, 231} =: S84. Then

|T | ≤ max
1≤i≤4

∑

s∈S8i

F (k, s, 3) =: t8by Lemma 1 with δ = 3. This with (28) implies |T | + |T1| ≤ t8 + t′2 < k,a ontradition.
Case III. Let 2 ∤ d and 3 | d. We take q = 11. Then by modulo 3, we geteither S ⊆ {1, 7, 10, 22, 55, 70, 154, 385} =: S31 or S ⊆ {2, 5, 11, 14, 35, 77,

110, 770} =: S32. By (10) and Lemma 1, we get
|T | ≤ max

i=1,2

∑

s∈S3i

F (k, s, 0) =: t9.This together with (28) ontradits (9).
Case IV. Let 2 | d and 3 | d. Let 2 ‖ d. We take q = 7. Then we seethat either S ⊆ {1, 7} or S ⊆ {5, 35}. By (10) and Lemma 1, we get |T | ≤

F (k, 1, 1) + F (k, 7, 1), whih together with (28) ontradits (9).Let 4 ‖ d. We take q = 13. From ai ≡ n (mod12), we see that
S ⊆ S′ ∈ S := {{1, 13, 385, 5005}, {5, 65, 77, 1001},

{7, 55, 91, 715}, {11, 35, 143, 455}}.Then
|T | ≤ max

S′∈S

∑

s∈S′

F (k, s, 2),

whih together with (28) ontradits (9).



An extension of a theorem of Euler 99Let 8 | d. We take q = 17. From ai ≡ n (mod24), we see that S ⊆ S′ =
{1, 385, 1105, 17017} or S ⊆ S′′ ∈ S1 where S1 is the union of sets

{5, 77, 221, 85085}, {7, 55, 2431, 7735},

{11, 35, 1547, 12155}, {13, 85, 1309, 5005}, {17, 65, 1001, 6545},

{91, 187, 595, 715}, {119, 143, 455, 935}.Let S ⊆ S′′ ∈ S1. Then
|T | ≤ max

S′′∈S1

∑

s∈S′′

F (k, s, 3) =: t10.Let S ⊆ S′. By Lemma 2, we get ν(1) ≤ (k − 1)/2. This together with
ν(1105) + ν(17017) ≤ 1 by 13 · 17 | gcd(1105, 17017) and ν(385) ≤ 1 byLemma 1 gives |T | ≤ (k − 1)/2+2. Therefore |T | ≤ max(t10, (k − 1)/2+2),whih with (28) ontradits (9).6. Proof of Theorem 4. Let k = 7. By the ase k = 6, we may assumethat 7 ∤ d. Now the assertion follows from Lemmas 8 and 6. Let k = 8.Then by applying the ase k = 7 twie to n(n + d) · · · (n + 6d) = b′y′2 and
(n + d) · · · (n + 7d) = b′′y′′2, we get

(a0, . . . , a6), (a1, . . . , a7)

∈ {(2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10),

(2, 7, 6, 5, 1, 3, 2), (1, 2, 7, 6, 5, 1, 3), (10, 1, 2, 7, 6, 5, 1)}.This gives (a0, . . . , a7) = (2, 3, 1, 5, 6, 7, 2, 1), (3, 1, 5, 6, 7, 2, 1, 10) or theirmirror images and the assertion follows. Let k = 9. By applying the ase
k = 8 twie to n(n + d) · · · (n + 7d) = b′y′2 and (n + d) · · · (n + 8d) =
b′′y′′2, we get the result. Let k = 10. By applying k = 9 twie, we get
(a0, a1, . . . , a8), (a1, a2, . . . , a8, a9)∈{(2, 3, . . . , 1, 10), (10, 1, . . . , 3, 2)}, whihis not possible.Let k ≥ 11 and k′ < k be onseutive primes. We suppose that Theorem 4is valid with k replaed by k′. Let k | d. Then (

ai

k

)

=
(

n
k

) for all 0 ≤ i < k.By applying the ase k = k′ to n(n + d) · · · (n + (k′ − 1)d) = b′y′2 with
P (b′) ≤ k′, we get k′ ≤ 23 and 1, 2, 3, 5 ∈ {a0, a1, . . . , ak′−1} in view of (5)and (6). Therefore (

2
k

)

=
(

3
k

)

=
(

5
k

)

= 1, whih is not possible.Thus we may assume that k ∤ d and k |n + id for some 0 ≤ i ≤ (k − 1)/2by onsidering the mirror image (4) of (2) whenever Theorem 4 holds at k′.We shall use this assertion without referene in the proof of Theorem 4.Let k = 11. By Lemmas 8 and 6, we see that 11 |n + id for 0 ≤ i ≤ 3. If
11 |n, the assertion follows by the ase k = 10. Let 11 |n + d. We onsider
(n + 2d) · · · (n + 10d) = b′y′2 with P (b′) ≤ 7 and the ase k = 9 to get
(a2, a3, . . . , a10) ∈ {(2, 3, 1, 5, 6, 7, 2, 1, 10), (10, 1, 2, 7, 6, 5, 1, 3, 2)}. The �rst



100 N. Hirata-Kohno et al.possibility is exluded sine 1 =
(

14
11

)

=
(

a2a7

11

)

=
(

1·6
11

)

= −1. For the se-ond possibility, we observe P (a0) ≤ 5 sine gcd(a0, 7 · 11) = 1 and this isexluded by the ase k = 6 applied to n(n + 2d)(n + 4d)(n + 6d)(n + 8d) ·
(n + 10d). Let 11 |n + 2d. Then by the ase k = 8, we have (a3, a4, . . . , a10)
∈ {(2, 3, 1, 5, 6, 7, 2, 1), (3, 1, 5, 6, 7, 2, 1, 10), (1, 2, 7, 6, 5, 1, 3, 2), (10, 1, 2, 7, 6,
5, 1, 3)}. The �rst three possibilities are exluded by onsidering the valuesof the Legendre symbol mod 11 at a3, a8, at a3, a4 and at a3, a5, respetively.If the last possibility holds, then a0 = 1 sine gcd(a0, 2 · 3 · 5 · 7 · 11) = 1,and this is not possible sine 1 =

(

a0a4

11

)

=
( (−2)2

11

)

= −1. Let 11 |n+3d. Weonsider (n+4d) · · · (n+10d) = b′y′2 with P (b′) ≤ 7 and the ase k = 7 to in-fer that (a4, . . . , a10)∈{(2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10),
(2, 7, 6, 5, 1, 3, 2), (1, 2, 7, 6, 5, 1, 3), (10, 1, 2, 7, 6, 5, 1)}, whih is not possibleas above. This ompletes the proof for k = 11. The assertion for k = 12follows from that of k = 11.Let k = 13. Then the assertion follows from Lemmas 8, 6 and the ase
k = 11. Let k = 14. By applying the ase k = 13 to n(n + d) · · · (n + 12d) =
b′y′2 and (n+ d) · · · (n+13) = b′′y′′2, we get the assertion. Let k = 15. Thenapplying the ase k = 14 both to n(n+d) · · · (n+13d) and (n+d) · · · (n+14d)gives the result. For k = 16 the assertion follows from the ase k = 15.Let k = 17. Then 17 |n + 2d or 17 |n + 3d by Lemmas 8, 6 and the ase
k = 15. Let 17 |n + 2d. Then by applying the ase k = 14 to (n + 3d) · · ·
(n+16d) = b′y′2 with P (b′) ≤ 13, we get (a3, a4, . . . , a16) ∈ {(3, 1, . . . , 15, 1),
(1, 15, . . . , 1, 3)}. The �rst possibility is exluded by onsidering the Legendresymbol mod 17 at a3, a4. For the seond, we observe that gcd(a1, 7 · 11 ·
13 · 17) = 1, whih is not possible by the ase k = 6 applied to (n + d) ·
(n + 4d)(n + 7d)(n + 10d)(n + 13d)(n + 16d). Let 17 |n + 3d. By onsidering
(n + 4d) · · · (n + 16d) = b′y′2 with P (b′) ≤ 13, it follows from the ase k
= 13 that (a4, . . . , a16) ∈ {(3, 1, . . . , 14, 15), (1, 5, . . . , 15, 1), (15, 14, . . . , 1, 3),
(1, 15, . . . , 5, 1)}. The �rst three possibilities are exluded by onsidering theLegendre symbol mod 17 at a4, a5. If the last possibility holds, we observethat a1 = 1 sine gcd(a1,

∏

p≤17 p) = 1 and then 1 =
(

a1a4

17

)

=
( (−6)(−3)

17

)

=
−1, a ontradition. The assertion for k = 18 follows from that for k = 17.Let k = 19. Then the assertion follows from Lemmas 8, 6 and the ase
k = 17. By applying the ase k = 19 twie to n(n + d) · · · (n + 18d) and
(n + d) · · · (n + 18d)(n + 19d), the assertion for k = 20 follows and this alsoimplies the ases k = 21, 22.Let k = 23. We see from Lemmas 8, 6 and the ase k = 20 that 23 divides
n + 3d. We onsider the ase k = 19 and (n + 4d) · · · (n + 22d) = b′y′2 with
P (b′) ≤ 19 to get (a4, a5, . . . , a22) = (1, 5, . . . , 21, 22) or (22, 21, . . . , 5, 1). Byonsidering the values of the Legendre symbol mod 23 at a4 and a5, we mayassume the seond possibility. Now P (a2) ≤ 11 and this is not possible by



An extension of a theorem of Euler 101the ase k = 11 applied to (n + 2d)(n + 4d) · · · (n + 22d). Let k = 24. Weget (a0, a1, . . . , a23) = (5, 6, . . . , 3, 7) or (7, 3, . . . , 6, 5) by applying the ase
k = 23 both to n(n + d) · · · (n + 22d) and (n + d) · · · (n + 23d). Further, theassertion for 25 ≤ k ≤ 28 follows from k = 24.Let k ≥ 29. First we onsider k = 29. We see from Lemmas 8, 6 and thease k = 25 that 29 |n + 4d or 29 |n + 5d. Let 29 |n + 4d. Then applyingthe ase k = 24 to (n + 5d)(n + 6d) · · · (n + 28d), we get (a5, a6, . . . , a28) =
(5, 6, . . . , 3, 7) or (7, 3, . . . , 6, 5). By observing 1 =

(

30
29

)

=
(

a5a6

29

)

=
(

1·2
29

)

=
−1, we may assume the seond possibility. Then a1 = 1, implying 1 =
(

a2a8

29

)

=
( (−2)4

29

)

= −1, a ontradition. Let 29 |n + 5d. Now by onsidering
k = 23 and (n+6d) . . . (n+28d), we get (a6, a7, . . . , a28) ∈ {(5, 6, . . . , 26, 3),
(6, 7, . . . , 3, 7), (3, 26, . . . , 6, 5), (7, 3, . . . , 7, 6)}. Then we may restrit to thelast possibility by onsidering the Legendre symbol mod 29 at the �rst twoentries in the remaining possibilities. It follows that a3 = 1, implying 1 =
(

a3a9

29

)

=
( (−2)4

29

)

= −1, a ontradition. This ompletes the proof for k = 29.We now proeed by indution. By Lemmas 8 and 6, the assertion follows forall primes k. Now Lemma 3 ompletes the proof of Theorem 4.7. Proof of Theorem 1. Observe that for all tuples in (5) and (6), theprodut of the ai's is not a square. Hene, by Theorem 4, we may assumethat 101 ≤ k ≤ 109. Assume (1). Then ordp(a0a1 · · · ak−1) is even for eahprime p. Let 101 ≤ k ≤ 105. Then P (a4a5 · · · a100) ≤ 97. Now the assertionfollows from Theorem 4 by onsidering (n + 4d) · · · (n + 100d) and k =
97. Let k = 106, 107. Then P (a4a5 · · · a102) ≤ 101. We may suppose that
P (a4a5) = 101 or P (a101a102) = 101, otherwise the assertion follows by thease k = 99 in Theorem 4. Let P (a4a5) = 101. Then P (a6 · · · a102) ≤ 97and the assertion follows by the ase k = 97 in Theorem 4. This is alsotrue when P (a101a102) = 101 sine P (a4 · · · a100) ≤ 97 in this ase. Let
k = 108, 109. Then P (a6 · · · a102) ≤ 101. Thus either P (a6a7) = 101 or
P (a101a102) = 101. Let P (a6a7) = 101. Then P (a8 · · · a102) ≤ 97. We mayassume that 97 | a8a9a10a11 or 97 | a97 · · · a101a102. Let 97 | a8a9a10a11. Then
P (a12a13 · · · a102) ≤ 89 and the assertion follows by the ase k = 91 ofTheorem 4. Let 97 | a97 · · · a102. Then P (a8a9 · · · a96) ≤ 89 and the assertionfollows from the ase k = 89 of Theorem 4. When P (a101a102) = 101, weargue as above to get the assertion.
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