
ACTA ARITHMETICA127.3 (2007)

On density modulo 1 of some expressionsontaining algebrai integersby
Roman Urban (Wroªaw)

1. Introdution. It is a very well known result in the theory of distri-bution modulo 1 that for every irrational ξ the sequene {nξ : n ∈ N} isdense modulo 1 (and even uniformly distributed modulo 1) [13℄.Let S be a multipliative semigroup of integers. The semigroup S is saidto be launary if the members {s ∈ S : s > 0} are of the form sk
0 , k ∈ N,

s0 ∈ N∗. Otherwise, S is non-launary. In 1967, in his seminal paper [7℄,Furstenberg proved that if S is a non-launary semigroup of integers and ξis an irrational number, then the orbit Sξ is dense modulo 1. In other words,we have the followingTheorem 1.1 (Furstenberg, [7℄). If p, q > 1 are rationally independentintegers (i.e., they are not both integer powers of the same integer) then forevery irrational ξ the set(1.2) {pnqmξ : n, m ∈ N}is dense modulo 1.In partiular, the result of Furstenberg an be onsidered as a general-ization of a theorem of Hardy and Littlewood [10℄, whih asserts that if r isa positive integer and ξ is an irrational number, then the set {qrξ : q ∈ N}is dense modulo 1. Furstenberg's proof is based on a fundamental idea ofdisjointness of dynamial systems, whih he introdued in the same paper[7℄ (see also [17℄, where Furstenberg's original proof is outlined). In 1994Boshernitzan gave an elementary proof of Furstenberg's theorem in [6℄.2000 Mathematis Subjet Classi�ation: 11J71, 54H20.Key words and phrases: distribution modulo 1, algebrai integers, topologial dynam-is, semigroup of endomorphisms, ID-semigroup, invariant sets.Researh supported in part by RTN Harmoni Analysis and Related Problems on-trat HPRN-CT-2001-00273-HARP, the European Commission Marie Curie Host Fellow-ship for the Transfer of Knowledge �Harmoni Analysis, Nonlinear Analysis and Proba-bility� MTKD-CT-2004-013389 and by the MNiSW researh grant N201 012 31/1020.[217℄ © Instytut Matematyzny PAN, 2007



218 R. UrbanOne possible diretion of generalizations is to onsider p and q in Theo-rem 1.1 not neessarily integer. This was done by Berend in [4℄. Let us statehis result preisely.Let K be a real algebrai number �eld (i.e., a �nite extension of Q)and S a subsemigroup of its multipliative group K∗. Aording to [4℄, thesemigroup S is said to be DM1 if Sξ is dense modulo 1 for every ξ 6= 0,and almost DM1 if Sξ is dense modulo 1 for every ξ 6∈ K. We say that twonumbers λ and µ are rationally dependent if there are integers m and n,not both 0, suh that λm = µn, and rationally independent otherwise. Thesemigroup S is said to be one-parameter if all its elements are integer powersof a single number; weakly one-parameter if any two of its elements arerationally dependent, and multi-parameter otherwise. If [K : Q] = m, wedenote by PS(K) the semigroup onsisting of all Pisot or Salem numbers ofdegree m (see Setion 2 for the de�nition). For a subset A ⊂ K, we denoteby Q(A) the sub�eld of K obtained by adjoining A to Q. Then we have thefollowingTheorem 1.3 (Berend, [4℄). Let K be a real algebrai number �eld and
S a multi-parameter subsemigroup of K∗ ∩ [−1, 1]c with Q(S) = K. Then Sis almost DM1. If , moreover , S 6⊂ PS(K), then S is DM1.An interesting generalization of Furstenberg's result is the followingTheorem 1.4 (Kra, [12℄). Suppose that the pairs pi, qi ∈ N, with 1 <
pi < qi for i = 1, . . . , k, k ∈ N, (pi, qi) 6= (pj , qj) for i 6= j, and p1 ≤ · · · ≤ pk,are rationally independent. Then for distint ξ1, . . . , ξk ∈ [0, 1] with at leastone ξi 6∈ Q the set { k∑

i=1

pn
i qm

i ξi : n, m ∈ N

}

is dense modulo 1.(See the paper of Meiri [14℄ for an alternative proof of part of Kra's resultvia measure-theoreti methods.)Inspired by Kra's theorem we state the following onjeture generalizingBerend's Theorem 1.3.Conjeture 1.5. Let k ∈ N be �xed , and let λi, µi, for 1 ≤ i ≤ k,be real algebrai numbers with absolute values greater than 1. Assume that ,for i = 1, . . . , k, the pairs λi, µi are rationally independent , and (λi, µi) 6=
(λj , µj) for i 6= j. Then for any real numbers ξ1, . . . , ξk with at least one
ξi 6∈ Q(

⋃k
i=1

{λi, µi}) the set
{ k∑

i=1

λn
i µm

i ξi : n, m ∈ N

}

is dense modulo 1.



Density modulo 1 of some expressions 219The aim of this paper is to make a �rst step toward a proof of Conje-ture 1.5. Namely, using some topologial dynamis methods in the spirit ofBerend [4℄ and Kra [12℄, we prove the followingTheorem 1.6. Let λ1, µ1 and λ2, µ2 be two distint pairs of rationallyindependent real algebrai integers of degree 2, with absolute values greaterthan 1, suh that the absolute values of their onjugates λ̃1, µ̃1, λ̃2, µ̃2 are alsogreater than 1. Let
µ1 = g1(λ1) for some g1 ∈ Z[x],

µ2 = g2(λ2) for some g2 ∈ Z[x].Assume that at least one element in eah pair λi, µi has all non-negativepowers irrational. Assume further that there exist k, l, k′, l′ ∈ N suh that(1.7) min{|λ2|k|µ2|l, |λ̃2|k|µ̃2|l} > max{|λ1|k|µ1|l, |λ̃1|k|µ̃1|l}and(1.8) min{|λ1|k
′ |µ1|l

′

, |λ̃1|k
′ |µ̃1|l

′} > max{|λ2|k
′ |µ2|l

′

, |λ̃2|k
′ |µ̃2|l

′}.Then for any real numbers ξ1, ξ2 with at least one ξi 6= 0 the set(1.9) {λn
1µm

1 ξ1 + λn
2µm

2 ξ2 : n, m ∈ N}is dense modulo 1.To have in mind a simple example illustrating Theorem 1.6 onsider thefollowing expression:(1.10) (
√

23 + 1)n(
√

23 + 2)mξ1 + (
√

61 + 1)n(
√

61 − 6)mξ2.It is easy to verify that the density modulo 1 of the expressions of the form(1.10) with m, n ∈ N follows from Theorem 1.6, provided that at least oneof the ξi's is non-zero. Atually, (1.10) is a speial ase of a general situationwhen assumptions (1.7) and (1.8) of Theorem 1.6 hold, namely, when(1.11) |λ2| > |λ̃2| > |λ1| > |λ̃1| > 1 and |µ1| > |µ̃1| > |µ2| > |µ̃2| > 1.It is easy to hek that (1.11) implies (1.7) and (1.8).As a orollary from the proof of Theorem 1.6 we will get the followingstrengthening of Theorem 1.6 whih gives density modulo 1 of (1.9) in thease when not all of λi, µi are of degree 2:Corollary 1.12. Let λ1, µ1 and λ2, µ2 be two distint pairs of rationallyindependent real algebrai integers of degree 1 or 2, with absolute valuesgreater than 1, suh that the absolute values of their onjugates λ̃1, µ̃1, λ̃2, µ̃2are also greater than 1 (for an algebrai integer λ of degree 1 we de�ne λ̃ tobe λ). Assume that for eah i, if λi or µi has degree 2, then at least one ofthem has all non-negative powers irrational. Assume further that if λi and µi



220 R. Urbanare both of degree 2 then
µi = gi(λi) for some gi ∈ Z[x].Assume also that there exist k, l, k′, l′ ∈ N suh that (1.7) and (1.8) hold ,and ξi is irrational if λi, µi ∈ Q. Then the onlusion of Theorem 1.6 holds.As an example illustrating the above orollary onsider(1.13) (3 +

√
3)n2m + 5n7mξ2

√
2.Another kind of generalization of Furstenberg's Theorem 1.1, whih weare going to use in the proof of our result, is to onsider higher-dimensionalanalogues. Notie that, in terms of dynamial systems, Furstenberg's theo-rem says that the orbits of the semigroup generated by p and q and atingon T = R/Z are �nite or dense, or equivalently (see [9℄ for details), the onlyin�nite losed p- and q-invariant subset of T = R/Z is T itself. Clearly, thereare many losed in�nite p-invariant (or q-invariant) proper subsets of T.Hene, Furstenberg's theorem gives a remarkable rigidity property of thejoint p- and q-ation on the one-dimensional torus.A generalization of this rigidity property to a ommutative semigroup ofnon-singular d×d matries with integer oe�ients ating by endomorphismson the d-dimensional torus Td = Rd/Zd, and to the ation of ommutativesemigroups of endomorphisms ating on other ompat abelian groups, wasgiven by Berend in [2℄ and [3℄, respetively. Reently some generalizationsfor non-ommutative semigroups of endomorphisms ating on Td have beenobtained in [8, 9, 16℄.The struture of the paper is as follows. In Setion 2 we reall some el-ementary de�nitions. Then in Setion 3, following Berend [2, 3℄, we reallthe de�nition of an ID-semigroup of endomorphisms of the d-dimensionaltorus Td and state Berend's theorem, [2℄, whih gives onditions that guar-antee that a given semigroup of endomorphisms of Td is an ID-semigroup.In Setion 4 we onsider two ommutative semigroups Σ1 and Σ2 of endo-morphisms of the 2-dimensional torus and study the losed invariant setsfor the orresponding ation of Σ1 × Σ2 on the produt T2 × T2. Finally inSetion 5 we prove the main result of the paper.Aknowledgements. The author is grateful to Yves Guivar'h for hishelpful remarks onerning the ontent of this paper. The author also wishesto thank the referee for a series of essential remarks that improved the overallpresentation of the result.2. Some de�nitions. We say that P ∈ Z[x] is moni if the leading o-e�ient of P is one, and redued if its oe�ients are relatively prime. A realalgebrai integer is any real root of a moni polynomial P ∈ Z[x], whereas analgebrai number is any root (real or omplex) of a (not neessarily moni)



Density modulo 1 of some expressions 221non-onstant polynomial P ∈ Z[x]. The minimal polynomial of an algebrainumber θ is the redued element Q of Z[x] of the least degree suh that
Q(θ) = 0. If θ is an algebrai number, the roots of its minimal polynomialare simple. The degree of an algebrai number is the degree of its minimalpolynomial.Let θ be an algebrai integer of degree n and let P ∈ Z[x] be the minimalpolynomial of θ. The n − 1 other distint (real or omplex) roots θ2, . . . , θnof P are alled onjugates of θ.A Pisot number is a real algebrai integer θ greater than 1 whose onju-gates θ2, . . . , θn satisfy the inequalities |θ2| < 1, . . . , |θn| < 1.A Salem number is a real algebrai integer θ greater than 1 whose on-jugates θ2, . . . , θn satisfy the inequalities |θj| ≤ 1, 2 ≤ j ≤ n, with equalityfor at least one j.If θ is a Salem number of degree n, then n is an even integer, n = 2m, andthe onjugates of θ are 1/θ and n − 2 pairwise-onjugate omplex numbersof absolute value 1, (ζ1, ζ1), . . . , (ζm−1, ζm−1) (see [15℄).For more about Pisot and Salem numbers see [15, 5℄.3. ID-semigroups of endomorphisms ating on Td. Following [2, 3℄,we say that the semigroup Σ of ontinuous endomorphisms of a ompatgroup G has the ID-property (or simply that Σ is an ID-semigroup) if theonly in�nite losed Σ-invariant subset of G is G itself. (ID-property standsfor in�nite invariant is dense.)Berend in [2℄ gave neessary and su�ient onditions in arithmetialterms for a ommutative semigroup Σ of endomorphisms of the r-dimen-sional torus Td = Rd/Zd to have the ID-property. Namely, he proved thefollowing.Theorem 3.1 (Berend, [2, Theorem 2.1℄). A ommutative semigroup Σof endomorphisms of Td has the ID-property if and only if the following hold :(i) There exists an endomorphism σ ∈ Σ suh that the harateristipolynomial fσn of σn is irreduible over Z for every positive inte-ger n.(ii) For every ommon eigenvetor v of Σ there exists an endomorphism

σv ∈ Σ whose eigenvalue in the diretion of v is of norm greaterthan 1.(iii) Σ ontains a pair of rationally independent endomorphisms.We say, exatly as in the ase of real numbers, that two endomorphisms
σ and τ are rationally dependent if there are integers m and n, not both 0,suh that σm = τn, and rationally independent otherwise.



222 R. UrbanRemark 3.2. Let Σ be a ommutative ID-semigroup of endomorphismsof Td. Then the Σ-orbit of the point x ∈ Td is �nite if and only if x is arational element, i.e., x = r/q, r ∈ Zd, q ∈ N (see [2℄).4. A semigroup M ating on the produt T2 × T2. Let σ1, τ1 and
σ2, τ2 be two pairs of rationally independent and ommuting endomorphismsof T2 (given by non-singular 2 × 2-matries with integer oe�ients). Weassume that for i = 1, 2 the semigroups Σi = 〈σi, τi〉 generated by σi and τisatisfy the onditions of Theorem 3.1. Let Mσ =

(
σ1 0
0 σ2

) and Mτ =
(

τ1 0
0 τ2

)
.We onsider the ations of Mσ and Mτ on the produt T2 × T2. We denoteby M the semigroup of endomorphisms of T2×T2 generated by Mσ and Mτ .We start with the followingLemma 4.1. Let σ be an invertible d× d-matrix with integer entries. Let

r = x/q ∈ Td, x ∈ Zd, q ∈ N, be a rational element suh that the denominator
q is relatively prime to det σ. Then there exists k ∈ N suh that

σkr ≡ r (mod Zd).Proof. We observe that σ ats naturally on the �nite set (Z/qZ)d. Denoteby σ the orresponding endomorphism of the module (Z/qZ)d over the �nitering Z/qZ. Thus we have an ation of the semigroup N on (Z/qZ)d, given by
k.x = σkx, k ∈ N, x ∈ (Z/qZ)d. Clearly, det σ is the ongruene lass of det σin Z/qZ. Sine q is relatively prime to detσ, we onlude that det σ 6= 0,hene σ ∈ GL(d, Z/qZ). Thus {σk : k ∈ N} is a semigroup ontained in the�nite group GL(d, Z/qZ); it follows that {σk : k ∈ N} is a group. Thus thereexists k suh that σk = Id and the lemma is proved.For a given subset A ⊂ T2 × T2 and x ∈ T2, we de�ne

Ax = {t ∈ T2 : (t, x) ∈ A}.The next three lemmas generalize Lemmas 3.1�3.3 from [12℄, where diag-onal 2 × 2-matries with integer entries ating on T × T were onsidered,to our higher dimensional situation. Berend's Theorem 3.1, together withLemma 4.1 above, allows us to extend the results from [12℄ to the ationof M on T2 × T2. For larity of exposition, we give detailed proofs.Lemma 4.2. Let A be a non-empty , Mσ- and Mτ -invariant losed subsetof T2 × T2. Then the set P = {t ∈ T2 : Ax 6= ∅} is either the whole T2 ora �nite set of rational elements in T2. Furthermore, if q ∈ T2 is a rationalelement whose denominator is relatively prime to det σ2 and det τ2, then Aqis either empty , a �nite set of rational elements, or the whole T2.Proof. Clearly, P is non-empty (sine A is) and losed in T2. Moreover,sine A is Mσ- and Mτ -invariant it follows that P is σ2- and τ2-invariant.Hene, by our assumption that the semigroup Σ2 generated by σ2, τ2 satis�es



Density modulo 1 of some expressions 223the onditions of Theorem 3.1, we infer that P is either a �nite set of rationalelements, or the whole T2.Next, given a rational element q whose denominator is relatively prime to
det σ2 and det τ2, and with Aq 6= ∅, by Lemma 4.1 we an �nd k1, k2 ∈ N suhthat σk1

2 q ≡ q (modZ2) and τk2

2 q ≡ q (modZ2). Thus Aq is a non-empty,losed, σk1

2 - and τk2

2 -invariant subset of T2. By Theorem 3.1, it is either a�nite set of rational elements, or the whole T2.Lemma 4.3. Let A be a losed , Mσ- and Mτ -invariant subset of T2×T2.If all rational elements of A are isolated in A, then A is �nite.Proof. Consider A′, the set A with all rational elements removed. If A′is empty there is nothing to do. If A′ is non-empty, then it is also losed and
Mσ- and Mτ -invariant. By Lemma 4.2, A′ must ontain a rational element.Thus A is a losed set onsisting of isolated points in the ompat spae
T2 × T2. Hene A is �nite.Lemma 4.4. Let A be a losed , Mσ- and Mτ -invariant subset of T2×T2.Let q1 and q2 be rational elements of T2 suh that (q1, q2) ∈ A. Assume thatthe denominator of qi is relatively prime to det σi, det τi for i = 1, 2. Thenthere exist n, m ∈ N suh that the set A−(q1, q2) := {(x−q1, y−q2) : (x, y) ∈
A} is Mn

σ - and Mm
τ -invariant.Proof. By Lemma 4.1 we an �nd n, m ∈ N suh that

σn
1 q1 ≡ q1 (modZ2), τm

1 q1 ≡ q1 (modZ2),

σn
2 q2 ≡ q2 (modZ2), τm

2 q2 ≡ q2 (modZ2).Now, the point (q1, q2) is �xed under Mn
σ and Mm

τ . As A is obviously Mn
σ - and

Mm
τ -invariant, we onlude that A−(q1, q2) is also Mn

σ - and Mm
τ -invariant.5. Proof of Theorem 1.6 and Corollary 1.12. Let λ > 1 be a realalgebrai integer of degree 2 with minimal (moni) polynomial Pλ ∈ Z[x],

Pλ(x) = x2 + c1x + c0.With λ we assoiate the ompanion matrix of Pλ,(5.1) σλ =

(
0 1

−c0 −c1

)
.Remark 5.2. We an think of σλ as the matrix of multipliation by λin the basis of the algebrai number �eld Q(λ) onsisting of 1 and λ, thatis, if x has oordinates α = (α0, α1) in the basis onsisting of 1, λ, then λxhas oordinates ασλ.Let µ = g(λ), where g ∈ Z[x], and de�ne the matrix τµ = g(σλ).



224 R. UrbanDenote by Σ the semigroup of endomorphisms of T2 generated by σλand τµ. The vetor v = (1, λ)t is an eigenvetor of σλ with eigenvalue λ,that is, σλv = λv. Sine Σ is a ommutative semigroup, v is a ommoneigenvetor of Σ, in partiular τµv = g(σλ)v = g(λ)v = µv.Let λ1, µ1 > 1 and λ2, µ2 > 1 be two pairs of rationally independentalgebrai integers of degree 2. Moreover, assume that µi = gi(λi), gi ∈ Z[x].We assume that the absolute values of the onjugates λ̃i, µ̃i of λi and µiare also greater than one. Now, we assoiate with λi, µi the matries σi =
σλi

, τi = τµi
, as desribed above. For i = 1, 2, we denote by Σi = 〈σi, τi〉 thesemigroups generated by σi and τi.Clearly, σ1, τ1 and σ2, τ2 are rationally independent endomorphisms of

T2 and for i = 1, 2, the harateristi polynomial of σn
i or τn

i is irreduibleover Z for every n ∈ N. Furthermore, sine λ̃i, µ̃i > 1, it follows that for thesemigroups Σi ondition (ii) of Theorem 3.1 is also satis�ed. Thus Σ1 and Σ2are ID-semigroups of endomorphisms of T2. Hene, if we de�ne Mσ =
(

σ1 0
0 σ2

)and Mτ =
(

τ1 0
0 τ2

)
, we an apply the results of Setion 4 to the semigroup

M = 〈Mσ, Mτ 〉 of endomorphisms of T2 × T2.For α = (α1, α2) ∈ T2 × T2, de�ne(5.3) Xα = {(σn
1 τm

1 α1, σ
n
2 τm

2 α2) ∈ T2 × T2 : n, m ∈ N},whih is the orbit of α under the ation of the semigroup M generated by
Mσ and Mτ . Let Xac

α denote the set of aumulation points of Xα. Clearly,
Xα and Xac

α are M -invariant. Furthermore, Xac
α is losed.The following simple lemma will be used in the proof of the next proposi-tion. (A more general version for d×d-matries is given in [16, Lemma 6.4℄.)Lemma 5.4. Let A be a real invertible 2 × 2-matrix with two di�erentreal eigenvalues η1, η2 suh that |η1| > |η2| > 1. Let vn = (xn, yn), xn 6= 0,

yn 6= 0, be a sequene of vetors in R2 tending to (0, 0). Then there exists asubsequene vnk
and an inreasing subsequene {jnk

} of N suh that(5.5) lim
k→∞

Ajnk vnk
= w 6= 0 with ‖w‖ ≤ 1.Proof. We an assume that ‖vn‖ ≤ 1. By the assumption on the eigen-values it follows that A is an expanding map, and thus for every n, thereexists the smallest natural number jn suh that

1/‖A‖ ≤ ‖Ajnvn‖ ≤ 1.Hene, by ompatness, we an hoose a subsequene {nk} ⊂ N suh that(5.5) holds.We will also need the following



Density modulo 1 of some expressions 225Lemma 5.6. Let A : Rd → Rd be a linear map. For every δ > 0 thereexists a norm ‖ · ‖δ in Rd suh that
‖A‖δ < r(A) + δ,where r(A) is the spetral radius of A (i.e., the maximal absolute value of aneigenvalue of A).Proof. See Proposition 1.2.2 in [11℄.Proposition 5.7. With the same assumptions as in Theorem 1.6, if

(0, 0) ∈ Xac
α then one of the following holds :(1) The point (0, 0) is isolated in Xac

α .(2) The set Xac
α ontains T2 × {0} or {0} × T2.Proof. Consider a general element m of the semigroup M = 〈Mσ, Mτ 〉,(5.8) m = m(k, l) = Mk

σM l
τ =

(
σk

1τ l
1 0

0 σk
2τ l

2

) for some k, l ∈ N.Denote the diagonal elements of m, whih are non-singular 2 × 2-matries,by m1 and m2. That is, m1 = σk
1τ l

1 and m2 = σk
2τ l

2. Let ̺1 > ̺′1 (̺2 > ̺′2,resp.) denote the absolute values of the eigenvalues of m1 (m2, resp.). Sine
σi (τi, resp.) has eigenvalues λi, λ̃i (µi, µ̃i, resp.), we see that

̺i = max{|λi|k|µi|l, |λ̃i|k|µ̃i|l}, ̺′i = min{|λi|k|µi|l, |λ̃i|k|µ̃i|l}.Suppose that k and l are �xed (we will hoose them appropriately later) andonsider m =
(

m1 0
0 m2

) ating on V1 × V2 := R2 × R2.It follows from Lemma 5.6 that for every δ > 0 there exist norms ‖ · ‖i,δin Vi suh that, for every y ∈ Vi,(5.9) ‖miy‖i,δ ≤ (̺i + δ)‖y‖i,δ.Furthermore, there exist norms ‖ · ‖i in Vi suh that(5.10) ‖miy‖i ≥ ̺′i‖y‖ifor every y ∈ Vi. In fat, let T ∈ GL(2, R) be suh that TAT−1 =
( ̺i 0

0 ̺′
i

)
,and de�ne ‖y‖i = ‖Ty‖, where ‖y‖ =

√
y2
1 + y2

2.By Lemma 4.2, we an assume that the intersetion of Xac
α with {0}×T2(with T2×{0}, resp.) either ontains �nitely many rational points, or equals

{0} × T2 (T2 × {0}, resp.). Assume that Xac
α ontains neither {0} × T2 nor

T2×{0}. Then, removing �nitely many rational isolated points from {0}×T2and T2×{0}, by applying the matrix ( q1Id 0

0 q2Id

) to Xac
α , where q1 (q2, resp.) isa ommon denominator of the �nite set of rational points of (T2×{0})∩Xac

α(({0} × T2) ∩ Xac
α , resp.), we an assume that the intersetion of Xac

α withthe �x and y axes� is empty, that is,(5.11) Xac
α ∩ ({0} × T2 ∪ T2 × {0}) = ∅.



226 R. UrbanSuppose that (0, 0) is not isolated in Xac
α . Thus there exists a sequene

{(xn, yn)} ⊂ Xac
α tending to (0, 0), with xn, yn 6= 0 by (5.11). Choosing anappropriate subsequene, we an assume that(5.12) lim

n→∞

‖yn‖
‖xn‖

= α ∈ [0, +∞) or lim
n→∞

‖yn‖
‖xn‖

= +∞,where ‖ · ‖ stands for an arbitrary norm in R2.First we onsider the ase when α 6= 0 or the limit in (5.12) is in�nite.By the assumption (1.7) there are k, l ∈ N suh that m = m(k, l) has theproperty that(5.13) ̺′2 > ̺1.By (5.9) and (5.10) we get, for every j ∈ N,(5.14) ‖mj
2yn‖2

‖mj
1xn‖1,δ

≥
(

̺′2
̺1 + δ

)j ‖yn‖2

‖xn‖1,δ
.Now, by Lemma 5.4, we an hoose a subsequene vnk

= (xnk
, ynk

) and
{jnk

} ⊂ N tending to in�nity suh that(5.15) lim
k→∞

m
jnk

2 ynk
= y 6= 0.By (5.13) we an take δ > 0 in (5.9) so that ̺′2 > ̺1 + δ. Hene, by (5.14)and our assumption that ‖ynk

‖2/‖xnk
‖1,δ tends to α 6= 0 or to in�nity as

k → ∞,(5.16) lim
k→∞

‖mjnk

2 ynk
‖2

‖mjnk

1 xnk
‖1,δ

= ∞.

Now (5.15) and (5.16) imply that m
jnk

1 xnk
→ 0. Thus we have onstrutedthe sequene {(mjnk

1 xnk
, m

jnk

2 ynk
)} ⊂ Xac

α suh that (m
jnk

1 xnk
, m

jnk

2 ynk
) →

(0, y) ∈ T2 × T2, with y 6= 0. This ontradits (5.11).Finally, we onsider the ase when α = 0 in (5.12). By assumption (1.8)there are k′, l′ ∈ N suh that the orresponding element m = m(k′, l′) in(5.8) satis�es ̺′1 > ̺2. By (5.9) and (5.10),
‖mj

1xn‖1

‖mj
2yn‖2,δ

≥
(

̺′1
̺2 + δ

)j ‖xn‖1

‖yn‖2,δ
.Now we proeed analogously to the previous ase exhanging the roles of xnand yn to get a sequene {(mjnk

1 xnk
, m

jnk

2 ynk
)} ⊂ Xac

α suh that, as k → ∞,

(m
jnk

1 xnk
, m

jnk

2 ynk
) → (x, 0) ∈ T2 × T2, with x 6= 0. This again ontradits(5.11).Corollary 5.17. With the same assumptions as in Theorem 1.6, either

(0, 0) is isolated in Xac
α , or {x + y : (x, y) ∈ Xac

α } = T2.



Density modulo 1 of some expressions 227Proof. Straightforward from Proposition 5.7.The following lemma will also be used. Its proof is analogous to thelassial ase of one endomorphism of Td (see for example [11℄ or [1℄). In thislemma Σ ⊂ Minv(d, Z) := GL(d, R) ∩ M(d, Z), where M(d, Z) is the set of
d × d matries with integer entries, is a semigroup of endomorphisms of the
d-dimensional torus Td. The torus Td is endowed with its normalized Haarmeasure m, whih is Σ-invariant.Lemma 5.18. Assume A ⊂ Td is measurable, has positive measure andsatis�es ΣA ⊂ A. Then, if any harater χ 6= Id has unbounded Σt-orbit ,then A has measure 1; in partiular Σ is ergodi on Td.Finally, we are ready to giveProof of Theorem 1.6. Consider the set Xα, α = (α1, α2), de�ned in(5.3), with α1 = ξ1(1, λ1)

t and α2 = ξ2(1, λ2)
t being ommon eigenvetorsof the semigroups Σ1 and Σ2, respetively. We an assume that both ξ1 and

ξ2 are non-zero; if one of them is zero then the onlusion of Theorem 1.6follows from Theorem 1.3. Thus,(5.19) Xα = {(λn
1µm

1 ξ1, λ
n+1
1 µm

1 ξ1, λ
n
2µm

2 ξ2, λ
n+1
2 µm

2 ξ2) : n, m ∈ N}.We have notied, before Lemma 5.4, that the semigroup Σ1 = 〈σ1, τ1〉satis�es the onditions of Theorem 3.1, and so is an ID-semigroup. Therefore,sine α1 is not a rational point (see Remark 3.2), for every x ∈ T2 there existsequenes {nk} and {mk}, tending to in�nity, suh that σnk

1 τmk

1 α1 → x as
k → ∞. Sine T2 is ompat, we an assume, hoosing a subsequene, that
σnk

2 τmk

2 α2 → y for some y ∈ T2. Therefore, for every x ∈ T2 there exists
y ∈ T2 so that (x, y) ∈ Xac

α . In partiular, Xac
α is in�nite.By Lemma 4.3 there is a non-isolated rational point (q1, q2) in Xac

α . For
κ, ι ∈ N ∪ {0}, de�ne

Jκ,ι =

(
detσ1Id 0

0 det σ2Id

)κ(
det τ1Id 0

0 det τ2Id

)ι

.

Let κ, ι be hosen so that, for ( q̃1

q̃2

)
= Jκ,ι

(
q1

q2

)
, the denominator of q̃i isrelatively prime to det σi, det τi for i = 1, 2. Applying Lemma 4.4 to theset X̃ac

α = Jκ,ιX
ac
α we an assume that (0, 0) is non-isolated in X̃ac

α . Itis lear that Proposition 5.7 and Corollary 5.17 are valid for X̃ac
α insteadof Xac

α , with no hanges in their proofs. Thus, by Corollary 5.17, the set
S̃ := {x + y : (x, y) ∈ X̃ac

α } is equal to the whole T2. So its projetion π1(S̃)of S̃ on the �rst oordinate equals T. But π1(S̃) = (detσ1)
κ(det τ1)

ιπ1(S),where S = {x + y : (x, y) ∈ Xac
α }. Thus we have

T = (detσ1)
κ(det τ1)

ιπ1(S).



228 R. UrbanHene, a losed Σ1-invariant subset π1(S) of T has positive Haar measure(greater than 1/(detσ1)
κ(det τ1)

ι). By Remark 5.2 and the ondition onthe eigenvalues of σ1 and τ1, any harater χ 6= Id has unbounded Σt-orbit. Hene, by Lemma 5.18, the semigroup Σ1 is ergodi. Thus π1(S) hasmeasure 1. Sine it is losed, we have π1(S) = T.Now omparing this with the �rst and third oordinate of Xα in T2 ×T2(see (5.19)) we obtain the result.Proof of Corollary 1.12. We slightly modify the proof of Theorem 1.6.The only di�erene is that when, say, λi is of degree 1, that is when λi is aninteger, we annot de�ne σλi
as in (5.1). Instead, if the orresponding µi isof degree 2, we de�ne
σλi

=

(
λi 0

0 λi

)
,whereas if µi is of degree 1, we de�ne σλi

and τµi
as the 1 × 1 matries,

σλi
= (λi) and τµi

= (µi).For example, if we onsider an expression as in (1.13), we have to deal with
Mσ =




0 1 0

−6 6 0

0 0 2


 and Mτ =




5 0 0

0 5 0

0 0 7




ating on T2 × T.It is lear that Proposition 5.7 and Corollary 5.17, with obvious hangesin their onlusions and some osmeti hanges in the proofs, work in thissituation as well. In partiular, in this example, Proposition 5.7 gives that,if (0, 0) is non-isolated in X̃ac
α then X̃ac

α ontains T2 × {0}, where 0 ∈ T, or
{0}×T, where 0 ∈ T2. As in Corollary 5.17 we onlude that {x+y : (x, y) ∈
X̃ac

α } = T, where x is the projetion of x ∈ T2 on the �rst oordinate.
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