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(

Cn
Dn

)
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1. INTRODUCTION

The behavior of binomial coefficients modulo primes attracted attention
for a long time, and still does (cf. [1], [3], [5], [7]–[9]). A classical and very
elegant result of Lucas is

Theorem A ([14]). Let p be a prime and n, k nonnegative integers,
n ≥ k, with base p representations [n]p = nl−1 . . . n0, [k]p = kt−1 . . . k0. Then

(

n

k

)

≡

(

nl−1

kl−1

)

· · ·

(

n1

k1

)(

n0

k0

)

(modp)

(where we agree to put ki = 0 for i > t − 1 and
(ni

ki

)

= 0 if ni < ki).

Assume that p is an odd prime and consider the sequence of middle
binomial coefficients An =

(

2n
n

)

. Using Lucas’ theorem, one can easily prove

that
(2n

n

)

6≡ 0 (modp) if and only if the base p representation of n is com-
posed only of the digits 0, 1, . . . , (p − 1)/2. Thus, the set of integers n with
(2n

n

)

6≡ 0 (modp) is an infinite set of density 0. Berend and Harmse [4]
considered the sequence (A′

k)
∞
k=0 obtained from (An mod p)∞n=0 by omit-

ting the zeros. They proved that each nonzero residue modulo p is visited
by (A′

k)
∞
k=0 with the same asymptotic frequency 1/(p − 1). In fact, they

proved a stronger result, showing that the sequence (An)∞n=0 is weakly well-
distributed modulo p (see Section 2).

Kriger [11] proved the analogous result for the sequences An =
(

3n
n

)

and

An =
(

3n
n,n,n

)

(for p ≥ 11).

A significant ingredient of the proofs in [4] and [11] was to show that each
nonzero residue is indeed visited by (An)∞n=0. The main tool for proving this
was the investigation of the function g(n) = An+1/An. In fact, it was found
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that it is enough to prove that the multiplicative group (Z/pZ)× is generated
by {g(n) : 0 ≤ n < p/C − 1}, where C = 2 for the sequence An =

(

2n
n

)

and

C = 3 for
(3n

n

)

and
( 3n
n,n,n

)

.

In this paper, we consider the sequence An =
(

Cn
Dn

)

for any constants C, D
with C > D > 0. It turns out to be difficult to continue with the function
g(n) = An+1/An for large values of C. One of the reasons is that (assuming
that C, D are coprime) g(n) is a rational function whose numerator and
denominator are polynomials of degree C−1 in n (for example, if An =

(

3n
n

)

,

then g(n) = 3(3n+1)(3n+2)
2(n+1)(2n+1) ). Thus, g(n) becomes more and more complicated

as C grows. In addition, the interval [0, p/C − 1) becomes smaller.
The key observation in our proof is that the behavior of

(Cn
Dn

)

(modp) is

related to the Möbius transformation f(n) = (Cn + 1)/(Dn + 1). We find
that f(n) can play (under certain assumptions on C, D) a role similar to
the function g(n) in [4], [11]. This observation enables us to generalize the
above mentioned results to each of the sequences An =

(Cn
Dn

)

.
We also study the behavior of more general sequences modulo p. For

example, we consider multinomial sequences of the form An =
( Kn
K1n,...,Ktn

)

,

as well as sequences in Zd, defined in terms of binomial coefficients.
In Section 2 we formulate our main results. In Section 3 we consider the

set of nonzero residues modulo p which are visited by
(

Cn
Dn

)

(modp) and in
Section 4 we prove that each such residue is visited with the same asymptotic
frequency (when ignoring the 0’s).

2. THE MAIN RESULTS

Let p be a prime. A sequence ~A = (An)∞n=0 over Z is p-solvable if for
every r ∈ Z/pZ there exist infinitely many solutions n for the congruence
An ≡ r (mod p).

Consider the sequence An =
(

Cn
Dn

)

, where C, D are arbitrary integers with

0 < D < C. Let νp denote the p-adic valuation (that is, pνp(n) is the exact
power of p dividing n). It can be easily observed (see Lemma 10) that, if

νp(C) > νp(D), then
(

Cn
Dn

)

≡ 0 (mod p) for every n > 0. In particular,
(

Cn
Dn

)

is not p-solvable. Our key result is

Theorem 1. Let p > 5 be a prime and C, D integers with 0 < D < C.
Then

(

Cn
Dn

)

is p-solvable if and only if νp(C) ≤ νp(D).

In particular, considering also a few cases with p = 3, 5, we obtain

Corollary 2. Let C, D be integers with 0 < D < C. Then
(Cn
Dn

)

is

p-solvable for every prime p > C, with the exception of the case (C, D, p) =
(4, 2, 5).
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Corollary 3. For any C ≥ 2, the sequence
(

Cn
n

)

is p-solvable if and
only if p does not divide C.

We note that Theorem 1 is false in general for p = 3, 5. In fact, for
these primes, taking C = 4 and D = 2, we see that the quadratic residues

modulo p (including 0) are the only possible values for
(Cn
Dn

)

(modp). In

particular,
(Cn
Dn

)

is not p-solvable. Note that this implies that An =
(2Dn

Dn

)

is

not p-solvable for any even integer D and p = 3, 5.

Open Question 4. Let p = 3, 5. For which values of C, D is the se-
quence

(

Cn
Dn

)

p-solvable?

Let us now consider the relative frequency with which each nonzero
residue is visited by (An mod p)∞n=0. In this part we consider more general
sequences than in Theorem 1. We begin with a few notations.

Take a sequence ~A = (An)∞n=0 in Z and denote by S = S( ~A) the set
of nonzero residues r ∈ (Z/pZ)× such that An ≡ r (mod p) for infinitely
many n’s. Assume that S 6= ∅ and let (A′

k)
∞
k=0 denote the subsequence of

(An mod p)∞n=0 obtained by omitting the zeros. The sequence (An)∞n=0 is
S-weakly uniformly distributed modulo p (cf. [16, p. 8]) if each r ∈ S appears
in (A′

n)∞n=0 with the same asymptotic frequency 1/#(S). More precisely, let
the density of a set X ⊆ N be

D(X) = lim
N→∞

#([0, N) ∩ X)

N

(if the limit exists). Then (An)∞n=0 is S-weakly uniformly distributed mod-
ulo p if D({n ∈ N : A′

n = r}) = 1/#(S) for every r ∈ S.

We also define a stronger version of uniform distribution modulo p, where
we demand the limit to be valid for any “large” intervals [N, M) and not
only for initial intervals [0, N). Let the Banach density (cf. [6, p. 72]) of a
set X ⊆ N be

BD(X) = lim
M−N→∞

#([N, M) ∩ X)

M − N

(if the limit exists). Then (An)∞n=0 is S-weakly well-distributed modulo p (cf.
[12, p. 84, p. 200, p. 221]) if BD({n ∈ N : A′

n = r}) = 1/#(S) for every
r ∈ S.

Take a multinomial sequence of the form

(1) An =

(

Kn

K1n, . . . , Kmn

)

,

where Ki are positive integers with
∑m

i=1 Ki = K. Assume that An 6≡ 0
(modp) for some positive n and define

G = {An mod p : n ≥ 1} \ {0} ⊆ (Z/pZ)×.
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Lemma 5. Let (An)∞n=0 be as in (1). Then:

(i) G is a subgroup of (Z/pZ)×.
(ii) Each residue r ∈ G is visited by (An mod p)∞n=0 infinitely often.
(iii) The set {n ∈ N : An 6≡ 0 (mod p)} is of Banach density 0.

Theorem 6. The sequence (An) in (1) is G-weakly well-distributed mod-
ulo p.

Example 7. If An =
( 3n
n,n,n

)

and p = 7, then G = {1, 6}, and thus the

residues 1, 6 are visited by (A′
n) with the same asymptotic frequency 1/2.

We also provide analogues of Lemma 5 and Theorem 6 for multiple
binomial sequences in Zm.

Theorem 8. Let C1, D1, . . . , Cm, Dm be integers with Ci > Di > 0 and

An =

((

C1n

D1n

)

, . . . ,

(

Cmn

Dmn

))

∈ Zm, n ≥ 0.

Assume that G = {An mod p : n ≥ 1} ∩ ((Z/pZ)×)m is nonempty (where
An mod p denotes the m-vector obtained from An by taking the residue mod-
ulo p of each coordinate). Then:

(i) G is a subgroup of ((Z/pZ)×)m.
(ii) For each r ∈ G there are infinitely many n’s with An ≡ r (mod p).
(iii) BD({n ∈ N : An ∈ ((Z/pZ)×)m (mod p)}) = 0.
(iv) Let (A′

n)∞n=0 be the sequence obtained from (An mod p)∞n=0 by omit-
ting those elements An mod p not belonging to ((Z/pZ)×)m. Then

BD({n ∈ N : A′
n = r}) = 1/#(G), r ∈ G.

3. THE SET {
(

Cn

Dn

)

mod p : n ≥ 1} \ {0}

In this section C, D are fixed integers with 0 < D < C, and p is a prime.
We start with a few notations and basic lemmas.

Let Ω be a finite set. A word w of length l = l(w) ≥ 0 over Ω is a concate-
nation of l elements in Ω (called letters). Write Λ for the empty word. Let wz
denote the concatenation of two words w, z over Ω and wk the concatenation
of w with itself k ≥ 0 times. Thus for example, 1(10)2013 = 110100111 is a
word of length 9 over Ω = Z/2Z. A word z is a subword of w if w = z0zz1

for some words z0, z1.

The base p representation of an integer n > 0 is the (unique) word

[n]p = nl−1 . . . n1n0 over Z/pZ with n =
∑l−1

i=0 nip
i and nl−1 6= 0. We will

refer to n0, nl−1 as the least significant , and most significant digits of n,
respectively, and to ni as the ith digit (where we agree that ni = 0 for
i ≥ l). Put [0]p = Λ.
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Let k ≤ n be a nonnegative integer with base p representation
kt−1 . . . k1k0. We write k � n if ki ≤ ni for each i. (By Lucas’ theorem
we have p ∤

(n
k

)

if and only if k � n.) Write l(n) = l([n]p).

Lemma 9. Let n, n0, n1 > 0 be integers and assume [n]p = [n0]p0
l[n1]p

for some l ≥ l(C). Then
(

Cn

Dn

)

≡

(

Cn0

Dn0

)(

Cn1

Dn1

)

(modp).

The lemma follows directly from Lucas’ theorem upon observing that

[Cn]p = [Cn0]p0
i[Cn1]p, [Dn]p = [Dn0]p0

j [Dn1]p

for some i, j ≥ 0 satisfying i + l(Cn1) = j + l(Dn1) = l + l(n1).

Put

G =

{(

Cn

Dn

)

mod p : n ≥ 1

}

\ {0}.

Lemma 10.

(i) G is either empty or a subgroup of (Z/pZ)×.
(ii) G = ∅ if and only if νp(C) > νp(D).

Proof. (i) Since, by Lemma 9, G is closed under multiplication, it is
either empty or a subgroup of (Z/pZ)×.

(ii) Assume first that νp(C) > νp(D). Let n ≥ 1 and i = νp(Dn). The ith
digit of Cn is 0, whereas the ith digit of Dn is not. By Lucas’ theorem,
(Cn
Dn

)

≡ 0 (modp), and so G = ∅.

Assume now that νp(C) ≤ νp(D). By Lucas’ theorem,
(

C′n
D′n

)

≡
(C′pin
D′pin

)

(modp) for every C ′, D′, i. Dividing C and D by an appropriate power of p,

we may assume that C 6≡ 0 (modp). Put m = (pφ(C) − 1)/C, where φ is
Euler’s totient function, and note that m is an integer. Since the word [Cm]p
consists of occurrences of the letter p−1 only, we have Dm � Cm, and thus
(

Cm
Dm

)

6≡ 0 (mod p). In particular, G 6= ∅.

Lemma 11. For every r ∈ G∪{0}, there are infinitely many n’s such that
(Cn
Dn

)

≡ r (modp). In particular , if G = (Z/pZ)×, then
(Cn
Dn

)

is p-solvable.

Proof. We first prove the existence of an n′ > 0 with
(

Cn′

Dn′

)

≡ 0 (modp).

Take an integer a > 0 such that C/pa ≤ min(D, C−D) and put n′ = ⌈pl/C⌉
for some l ≥ a + l(C). Note that Cn′ ∈ [pl, pl + C), and thus [Cn′]p = 10aw
for some word w. Since C/pa ≤ D and so paDn′ ≥ Cn′, we get

l(Dn′) ≥ l(Cn′) − a = l(w) + 1.

Similarly, since C/pa ≤ C − D and so paDn′ ≤ (pa − 1)Cn′ we get

l(Dn′) ≤ l((pa − 1)Cn′) − a = l(Cn′) − 1.
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Taking l = l(Dn′) − 1 ∈ [l(w), l(Cn′) − 2], we infer that the lth digit of
Cn′ is 0, whereas the lth digit of Dn′ is not. By Lucas’ theorem we have
(Cn′

Dn′

)

≡ 0 (modp).

Now let r ∈ G∪{0} and n be such that
(

Cn
Dn

)

≡ r (modp). Lucas’ theorem

shows that
(Cnpi

Dnpi

)

≡ r (modp) for every i.

Lemma 12. Let n0, n1 > 0 be integers. Denote by c0, d0 the least signif-
icant digits of Cn0, Dn0, respectively , and by c1, d1 the lth digits of Cn1,
Dn1, respectively , where l = l(Cn1)−1. Assume that Dni � Cni for i = 0, 1
and that c0 + c1 < p. Then

(c0+c1
d0+d1

)

(

c0
d0

)(

c1
d1

) ∈ G.

Proof. Take words w0, w1, z0, z1 over Z/pZ such that

[Cn0]p = w0c0, [Dn0]p = z0d0, [Cn1]p = c1w1, 0a[Dn1]p = d1z1,

where a = l(Cn1) − l(Dn1). Put n = n0p
l + n1, and note that

[Cn]p = w0(c0 + c1)w1, [Dn]p = z0(d0 + d1)z1.

Using Lucas’ theorem we obtain
(Cn
Dn

)

(Cn0

Dn0

)(Cn1

Dn1

) =

(

c0+c1
d0+d1

)

(c0
d0

)(c1
d1

) ∈ G.

3.1. Proof of Theorem 1, assuming D 6≡ 0, C/2, C (mod p). In this
subsection we prove Theorem 1 for the cases where

(i) D 6≡ 0, C/2, C (modp).

In this part of the proof, p may also be 5. The cases D ≡ 0, C/2, C (mod p)
will be handled in Subsection 3.2 for p > 5. It will also be convenient to add
the following two assumptions on C, D:

(ii) C = pe − 1 for some positive integer e,
(iii) C/2 < D < C.

To justify assumptions (ii), (iii), observe the following. Lemma 10 shows
that the assertion of Theorem 1 is true in the cases where νp(C) > νp(D).
Thus we may assume νp(C) ≤ νp(D). Since, by assumption (i), νp(D) = 0,
we conclude that C is not a multiple of p. Replacing the pair (C, D) with
(Cm, Dm), where m is as in the proof of Lemma 10, we obtain (ii). In order
to obtain (iii), we replace (if necessary) the pair (C, D) with (C, C−D). Note
that, if we replace (C, D) with (C ′, D′) according to the above two cases,

then (C ′, D′) still satisfies assumption (i). Moreover, if
(C′n
D′n

)

is p-solvable,

then so is
(

Cn
Dn

)

. Thus, without loss of generality, we may assume (i)–(iii).
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In our proof we will repeatedly use properties of Möbius transformations.
A Möbius transformation over a field F is a rational function of the form
f(n) = (an + b)/(cn + d), where the matrix

(a
c

b
d

)

is invertible. A very basic
property of a Möbius transformation f is that it permutes the elements of
F ∪ {∞} (when we put f(∞) = a/c, f(−d/c) = ∞). We refer the reader
to [17] for more on Möbius transformations.

Let f be the Möbius transformation over Z/pZ given by

f(n) =
Cn + 1

Dn + 1
.

By assumption (ii) we have f(n) = (−n + 1)/(Dn + 1). Define

T =

{

0 ≤ n < p : n 6= 1,

(

Cn

Dn

)

6≡ 0 (modp)

}

.

Observe that assumption (ii) implies

Lemma 13. Let k ≤ C be a positive integer , and put l0 = l(k) and
l1 = l(pl0 − k). Then

[kC]p = [k − 1]p(p − 1)e−l00l0−l1 [pl0 − k]p.

Proposition 14. G ⊇ f(T ).

Proof. Let n ∈ T . Since G is a group, we obtain f(0) = 1 ∈ G. Thus we
may assume n 6= 0. By Lemma 13 we have [2C]p = 1(p− 1)e−1(p− 2). Since
C/2 < D < C, the word [2D]p is of the same length as [2C]p, and it begins
with 1 as well. Write

[Cn]p = w0c, [Dn]p = z0d, [2C]p = 1w1, [2D]p = 1z1,

where c, d are the residues of Cn, Dn modulo p, respectively.

The assumption D 6≡ C/2 (mod p) ensures that the least significant digit
of 2D is not p − 1. Thus, 2D � 2C. Since n ∈ T , we have Dn � Cn. Note
that C ≡ −1 (mod p) and n 6= 1. Thus, c 6= p − 1 as 1 < n < p and so
c + 1 < p. Lemma 12 yields

c + 1

d + 1
=

(c+1
d+1

)

(

c
d

)(

1
1

) ∈ G.

Since c≡Cn (mod p) and d≡Dn (mod p), we get (Cn+1)/(Dn+1)∈G.

Lemma 15. For every integer n ∈ [1, p − 1], we have
(

Cn
Dn

)

6≡ 0 (mod p)

if and only if
(C(p−n)
D(p−n)

)

≡ 0 (modp).

Proof. Let d denote the least significant digit of Dn. Recall that, by
Lucas’ theorem, we have

(

Cn
Dn

)

6≡ 0 (mod p) if and only if Dn � Cn. Since
[Cn]p = (n − 1)(p − 1)e−1(p − n), this happens if and only if d ≤ p − n.
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Similarly, observing that the least significant digits of C(p−n), D(p − n)

are n, p − d, respectively, we obtain
(C(p−n)
D(p−n)

)

≡ 0 (mod p) if and only if

p − d > n.
By the assumption D 6≡ C (modp) we have Dn 6≡ Cn (mod p), and so

d 6= p − n. Thus the conditions d ≤ p − n and p − d > n are equivalent.

Lemma 16. T is of cardinality (p − 1)/2.

Proof. By the previous lemma,
(

Cn
Dn

)

6≡ 0 (mod p) for exactly (p − 1)/2
of the elements n ∈ [1, p − 1]. One of those values is n = 1, which does not
belong to T . On the other hand, 0 ∈ T , which gives #(T ) = (p − 1)/2.

Denote the set of nonzero quadratic residues modulo p by Q, and let
Q = (Z/pZ)× \ Q denote the set of quadratic nonresidues.

Corollary 17. G contains at least (p − 1)/2 elements. In particular ,
either G = Q or G = (Z/pZ)×.

In fact, this follows from the injectivity of f , Proposition 14 and Lem-
ma 16.

Lemma 18. If G 6= (Z/pZ)×, then G = f(T ).

Proof. By Proposition 14, f(T ) ⊆ G. Note that if f(T ) ( G, then
#(G) > (p − 1)/2, and so G = (Z/pZ)×. Thus, we must have f(T ) = G.

Let h(n) be the rational function on Z/pZ given by

h(n) = f(n)f(−n) =
n2 − 1

D2n2 − 1
.

Proposition 19. Assume that G 6= (Z/pZ)× and let n ∈ (Z/pZ)× be
such that n2 − 1 6= 0 and D2n2 − 1 6= 0. Then h(n) ∈ Q.

Proof. By Corollary 17 we have G = Q. By our assumptions n 6= ±1.
Thus, Lemma 15 shows that exactly one of the elements n, p−n belongs to T .
By Lemma 18 and the fact that f is an injection we see that exactly one of
f(n), f(p−n) belongs to G, and we conclude that one of them is a quadratic
residue modulo p and the other is not. In particular, f(n)f(−n) ∈ Q.

Remark. Let φ(n) =
(

n
p

)

denote the Legendre symbol of n modulo p

and put M(x) = (x2−1)(D2x2−1) ∈ Z/pZ[x]. An equivalent formulation of
Proposition 19 is that, assuming G 6= (Z/pZ)×, we have φ(M(n)) = −1 for
every n ∈ (Z/pZ)× which is not a root of M(x). Observing that φ(M(0)) = 1,
we get

(2)
∑

n∈Z/pZ

φ(M(n)) ≤ −(p − 6).

One way to use Proposition 19 for proving Theorem 1 for p > 19 and
D 6≡ 0, C/2, C (modp) is to observe that (2) contradicts the estimate of
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∑

n∈Z/pZ
φ(M(n)) given in [13, Thm. 5.41] for those values of p. A self-

contained proof of Theorem 1 for those cases is given below.

Lemma 20. If (C, D, p) satisfies assumptions (i)–(iii) and p is a prime

number in [5, 19], then
(Cn
Dn

)

is p-solvable.

Proof. By Proposition 14 it suffices to prove that f(T ) generates
(Z/pZ)×. Assume first that (D, p) /∈ (2 + 7Z, 7) and (D, p) /∈ (2 + 13Z, 13).
Table 1 provides a number n ∈ T such that f(n) generates (Z/pZ)×.
For the case p = 13, D ≡ 2 (mod13), observe that 2, 3 ∈ T and that
{f(2), f(3)} = {5, 9} generates Z/13Z.

Assume p = 7 and D ≡ 2 (mod7). Note that

[4C]p = 36e−13, [4D]p = aw1,

where a ∈ {2, 3} and w is a word of length e − 1. Using Lemma 12 (with
n0 = n1 = 4) we infer that g =

(

6
a+1

)

/
(

3
a

)(

3
1

)

belongs to G. Since a ∈ {2, 3},

we have g ∈ {3, 5} (mod p), and so g generates (Z/pZ)×.

Table 1. A number n ∈ T such that f(n) generates (Z/pZ)× for 5 ≤ p ≤ 19

D�p p = 5 p = 7 p = 11 p = 13 p = 17 p = 19

D ≡ 1 (mod p) f(2) = 3 f(3) = 3 f(2) = 7 f(3) = 6 f(2) = 11 f(6) = 2

D ≡ 2 (mod p) D ≡ C/2 f(2) = 2 f(2) = 10 f(2) = 15

D ≡ 3 (mod p) f(2) = 2 D ≡ C/2 f(5) = 8 f(2) = 11 f(2) = 12 f(3) = 15

D ≡ 4 (mod p) D ≡ C f(2) = 3 f(2) = 6 f(5) = 6 f(6) = 10 f(2) = 2

D ≡ 5 (mod p) f(2) = 5 D ≡ C/2 f(2) = 7 f(2) = 3 f(5) = 13

D ≡ 6 (mod p) D ≡ C f(3) = 8 D ≡ C/2 f(4) = 6 f(7) = 14

D ≡ 7 (mod p) f(2) = 8 f(2) = 6 f(3) = 3 f(4) = 13

D ≡ 8 (mod p) f(7) = 8 f(4) = 7 D ≡ C/2 f(2) = 10

D ≡ 9 (mod p) f(3) = 7 f(2) = 2 f(3) = 6 D ≡ C/2

D ≡ 10 (mod p) D ≡ C f(8) = 2 f(3) = 12 f(3) = 3

D ≡ 11 (mod p) f(4) = 6 f(2) = 14 f(2) = 14

D ≡ 12 (mod p) D ≡ C f(3) = 5 f(2) = 3

D ≡ 13 (mod p) f(2) = 5 f(4) = 15

D ≡ 14 (mod p) f(2) = 7 f(6) = 10

D ≡ 15 (mod p) f(2) = 6 f(3) = 14

D ≡ 16 (mod p) D ≡ C f(4) = 2

D ≡ 17 (mod p) f(2) = 13

D ≡ 18 (mod p) D ≡ C

Let X ⊆ Q, Y ⊆ Q. A function g : Z/pZ∪{∞} → Z/pZ∪{∞} exchanges

Q, Q with possible exceptions (X, Y ) if g(x) ∈ Q for every x ∈ Q \ X and

g(x) ∈ Q for every x ∈ Q \ Y .
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Proof of Theorem 1 for D 6≡ 0, C/2, C (mod p). Suppose the sequence
(

Cn
Dn

)

is not p-solvable for some C, D with νp(C) ≤ νp(D). By Lemma 11,

Corollary 17 and Lemma 20, we have p > 19 and G = Q. If D2 ≡ 1 (modp),
then the function h is identically 1, which contradicts Proposition 19. There-
fore D2 6≡ 1 (modp). Consider the Möbius transformation

g(x) =
x − 1

D2x − 1
.

Proposition 19 shows that g(x) ∈ Q for every x ∈ Q \ {1, 1/D2}. Observe
that g(0), g(∞) ∈ Q. Since g is a Möbius transformation, it is a permu-
tation of Z/pZ ∪ {∞}. This implies that there exist a, b ∈ Q such that g
exchanges Q, Q with exceptions ({1, 1/D2}, {a, b}).

Multiplying g(x) by ((D2x − 1)/D)2, we conclude that the polynomial

P (x) = g(x)

(

D2x − 1

D

)2

= (x − 1)

(

x −
1

D2

)

exchanges Q, Q with the same exceptions. Set

d =
1

2
(1 + 1/D2) ∈ Z/pZ.

Assume first d 6= 0. Observe that P (x + d) = P (−x + d) for every
x ∈ Z/pZ. Since P exchanges Q, Q, we conclude that, for each x ∈ Z/pZ
which is not one of the following (up to) ten possible exceptions:

E = {±(r − d) : r ∈ {1, 1/D2, a, b, 0}},

we have x + d ∈ Q if and only if −x + d ∈ Q, and similarly for Q. Consider
the Möbius transformation M(x) = (x + d)/(−x + d). We obtain M(x) ∈ Q
for every x ∈ Z/pZ \ E. Since M is injective and p > 19, this gives a
contradiction.

Now assume d = 0. In this case D2 ≡ −1 (modp), and thus P (x) = x2−1
exchanges Q, Q with the exceptions ({1,−1}, {a, b}).

Since p > 19, we get 9 ∈ Q \ {±1}, and so 80 = 92 − 1 ∈ Q. Since 80 =
42 ·5, we conclude that 5 ∈ Q. Now 4 ∈ Q\{±1}, and thus 15 = 42−1 ∈ Q.
Since 5 ∈ Q, we obtain 3 ∈ Q. Hence 8 = 32 − 1 ∈ Q, which implies that
2 ∈ Q. Since 2, 5 ∈ Q, we have 10 ∈ Q, which gives 99 = 102−1 ∈ Q, and so
11 ∈ Q. Since 3 ∈ Q, we have 12 ∈ Q, and thus 11·13 = 122−1 ∈ Q, and since
11 ∈ Q we conclude 13 ∈ Q. Finally, 25 ∈ Q, and so 24 ·3 ·13 = 252 −1 ∈ Q,
which is a contradiction.

3.2. Proof of Theorem 1 for D ≡ 0, C/2, C (mod p). We begin with
the case D ≡ C/2 (mod p). Exactly as before, we may assume C = pe − 1
for some e.

Proposition 21. If D ≡ C/2 (modp), then
(

Cn
Dn

)

is p-solvable for p ≥ 7.
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Proof. Replacing (C, D) with (C, C − D), we may assume D ≤ C/2.
Define I = [0, (p − 3)/2] (where [a, b] denotes the set of integers k with
a ≤ k ≤ b). Choose k ∈ I and t = p − 2k. Note that the least significant
digits of Ct, Dt are 2k, k, respectively, and that the most significant digit
of 3C is 2. Write

[Ct]p = w0(2k), [Dt]p = z0k, [3C]p = 2w1, 0a[3D]p = dz1,

where a = l(3C)−l(3D) and by the assumption D ≤ C/2 we have d ∈ {0, 1}.
Note also that each letter in w0, except for the leading one, is p − 1. Thus,
Dt � Ct, and in particular (taking k = (p − 3)/2 and so t = 3) we have
3D � 3C.

Assume first that d = 0. Lemma 12 yields

2(2k + 1)

k + 2
=

(2k+2
k

)

(

2k
k

)(

2
0

) ∈ G, k ∈ I.

Taking k = 1 we obtain 2 ∈ G, and hence (2k + 1)/(k + 2) ∈ G for each
k ∈ I. If p = 7, then, taking k = 2, we have 5/4 ∈ G, so that 5 ∈ G. Since
5 generates (Z/7Z)×, this implies the assertion. Assume therefore p > 7.
Taking k = 4, we obtain 3 ∈ G. Assume to the contrary that G 6= (Z/pZ)×,
and let m be the minimal residue in (Z/pZ)×\G. Assume first that m is even
(when considered as an integer in [1, p − 1]). Put k = m/2 ∈ [1, (p − 1)/2].
Since 2 ∈ G and m /∈ G, we obtain k /∈ G, which contradicts the minimality
of m. Assume now that m is odd and write m = 2k + 1. Note that k must
belong to I. Since (2k + 1)/(k + 2) ∈ G, we conclude that k + 2 /∈ G. Since
m 6= 3, and so k > 1, we obtain k+2 < m, which contradicts the assumption
that m is minimal.

Consider now the case where d = 1. Here we obtain

2k + 1

k + 1
=

(2k+2
k+1

)

(

2k
k

)(

2
1

) ∈ G, k ∈ I.

If p = 7, then 3/2 ∈ G is a generator of (Z/7Z)×. Assume p > 7. We obtain
3/2, 5/3, 9/5 ∈ G and so 2 = (2/3) · (5/3) · (9/5) ∈ G. Assume G 6= (Z/pZ)×,
and let m be the minimal residue in (Z/pZ)× \ G. As before, m cannot be
even. Write m = 2k + 1. Since (2k + 1)/(k + 1) ∈ G, we obtain k + 1 /∈ G,
which contradicts the minimality of m.

Consider now the cases where D ≡ 0, C (mod p). As before, we assume
that C = pe − 1. Replacing (if necessary) the pair (C, D) with (C, C − D)
we may assume D ≡ 0 (modp). It will be convenient to define v = νp(D)
and R = ⌊C/D⌋ + 1. Note that v ≥ 1 and that R is the minimal integer
with RD > C (and thus minimal with l(RD) = e + 1).

The proof is broken into the following three lemmas.
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Lemma 22. Assume that R ≤ ⌈2p/3⌉ + 1. Then
(

Cn
Dn

)

is p-solvable for
every prime p ≥ 7.

Proof. Since p ≥ 7 we have R < p. Take an n0 < p and note that

[Cn0]p = w0(p − n0), [Dn0]p = z00, [CR]p = (R − 1)w1, [DR]p = 1z1,

for some words w0, w1, z0, z1 with l(w1) = l(z1) = e. Since each letter of w0,
except for the leading one, is p− 1, we get Dn0 � Cn0 for each n0 < p, and
so DR � CR as well. Taking n0 ∈ [R, p − 1] we obtain p − n0 + R − 1 < p.
Thus, Lemma 12 implies

p − n0 + R − 1

R − 1
=

(

p−n0+R−1
1

)

(

p−n0

0

)(

R−1
1

) ∈ G, n0 ∈ [R, p − 1].

This shows that

p − n0 + R − 1

p − n′
0 + R − 1

∈ G for every n0, n
′
0 ∈ [R, p − 1],

and so a/b ∈ G for every a, b ∈ [R, p− 1]. In particular, −a ≡ a/(p − 1) ∈ G
for every such a. Define I = [1, p − 1 − ⌈2p/3⌉]. Since R ≤ ⌈2p/3⌉ + 1, we
have I ⊆ G.

Assume first that p ≥ 71. Since 3 ∈ I, we obtain {3i : i ∈ I} ⊆ G.
A simple calculation shows that #(I ∪ {3i : i ∈ I}) > (p − 1)/2 for p ≥ 71.
Thus, #(G) > (p − 1)/2, and hence G = (Z/pZ)×. In the cases 11 ≤ p ≤ 67
it can be checked that there exists a generator of (Z/pZ)× in the inter-
val I.

We are left with the case p = 7. If R ≤ 5, then it can be easily verified
that

{

p − n0 + R − 1

R − 1
: n0 ∈ [R, p − 1]

}

generates G. Assume therefore R = 6. Thus, 5D ≤ C and 6D > C. Consider
the binomial coefficient b =

(10Cpe+4C
10Dpe+4D

)

. We obtain

[10Cpe + 4C]p = 12(p − 1)e−10(p − 1)e−13,

[10Dpe + 4D]p = 1w10w20,

where w1, w2 are of length e − 1 with 1w10 = [10D]p and w20 = [4D]p. By
Lucas’ theorem we have

b ≡

(

1

0

)(

2

1

)(

pe−1 − 1

(1/p)(10D − pe)

)(

0

0

)(

pe−1 − 1

4D/p

)(

3

0

)

(modp).

Note that for every c ∈ [0, pe−1−1] we have
(

pe−1−1
c

)

≡ (−1)c (mod p). Since
4D/p is even and (1/p)(10D − pe) is odd, we obtain b ≡ −2 (mod p), which
is a generator of (Z/7Z)×.
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Lemma 23. Assume that ⌈2p/3⌉ + 1 < R ≤ ⌈2p/3⌉pv−1 + 1. Then
(

Cn
Dn

)

is p-solvable for every prime p ≥ 7.

Proof. Observe that our assumptions imply v > 1, and thus R + k < pv

for each k ∈ [0, p − 1]. Hence, [(R + k)C]p = wa(p − 1)e−vw1, where w1 is
a word with l(w1) = v and a is a digit with a ≡ R + k − 1 (mod p). Take
an integer k in the interval I = [0, ⌈2p/3⌉]. Since R > ⌈2p/3⌉ + 1, and so
k < R − 1, the most significant digit of (R + k)D is 1. Thus, [(R + k)D]p =
1w′0v for some word w′ of length e − v. Lucas’ theorem implies that

(

(R + k)C

(R + k)D

)

≡

(

a

1

)

·

(

pe − 1

(R + k)D − pe

)

(mod p).

Since
(

pe−1
c

)

≡ (−1)c (modp) for c ≤ pe − 1, we conclude that
(

(R + k)C

(R + k)D

)

≡ (−1)(R+k)D−pe

a ≡ (−1)RD−1+kD(R + k − 1) (modp)

belongs to G for every k ∈ I, with one possible exception in case a = 0.
If D is even, then those values are distinct and so #(G) > (p − 1)/2,

which implies that G = (Z/pZ)×. Assume that D is odd. Take t = RD − 1,
and let d denote the residue of R − 1 modulo p. We have

(3) (−1)t+k(d + k) ∈ G ∪ {0}, k ∈ I.

If p ∈ {7, 11, 13, 17, 19}, then one can easily check that the nonzero values
in (3) generate (Z/pZ)× for each t ∈ {0, 1} and d ∈ Z/pZ. Assume therefore
that p ≥ 23, and assume to the contrary that G 6= (Z/pZ)×. Since #(I) >
(p + 1)/2, it follows that {d + k : k ∈ I} \ {0} generates G. This implies
that −1 6∈ G and G is a subgroup of index 2 in (Z/pZ)× (i.e., G is the
group of nonzero quadratic residues modulo p). If d > ⌈p/3⌉, then, taking
k0 = p − 1 − d, k1 = p + 1 − d, we obtain

{(−1)t+ki(d + ki) (mod p) : i = 0, 1} = {1, p − 1}.

This contradicts the fact that −1 /∈ G. Assume therefore 0 ≤ d ≤ ⌈p/3⌉.
Take an even number a ∈ [0, 8] such that a ≡ 2p (mod5). Put

n0 =
2p − a

5
, n1 =

2p + 4a

5
.

Since p ≥ 23, we get n0, n1 ∈ [⌈p/3⌉, ⌈2p/3⌉]. Thus, n0, n1 ∈ {d + k : k ∈ I}.
Recall that n1 − n0 = a is even. Using (3) we obtain (−1)tn0, (−1)tn1 ∈ G
for some t. In particular, n0/n1 ∈ G. Since

n0

n1
=

2p + 4a

2p − a
≡ −4 (modp)

and 4 = 22 ∈ G, we obtain −1 ∈ G, which is a contradiction.

Lemma 24. Assume that R > ⌈2p/3⌉pv−1 + 1. Then
(

Cn
Dn

)

is p-solvable
for every prime p ≥ 7.
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Proof. Let t = ⌈2p/3⌉, n0 = tpv−1 + 1 and take n1 = pv + r for
some r ∈ [2, t]. Our assumption implies that l(Dn0) ≤ e. Since [Cn0]p =
t0v−1(p − 1)e−vw′ for some word w′ of length v, we obtain Dn0 � Cn0.
Write

[Cn0]p = tw0, [Dn0]p = z0,

where w0, z0 are words with l(w0) ≥ l(z0). Take a = e + 1 − l(Dn1), and
note that

[Cn1]p = 10v−1(r−1)(p−1)e−v−1(p−2)(p−1)v−1(p−r), 0a[Dn1]p = bw0v,

where l(w) = e − v and b ∈ {0, 1, 2}. Note that the case b = 2 is possible
only when v = 1. Moreover, it implies that n1 ≥ 2R − 1 and so p + r ≥
2R − 1 ≥ 2⌈2p/3⌉ + 3, which gives r ≥ 3. Thus, b ≤ r − 1. Let s denote
the least significant digit of w. Assuming s 6= p − 1, we obtain Dn1 � Cn1.
Write

[Cn1]p = w1(p − 2)(p − 1)v−1(p − r), [Dn1]p = z1s0
v.

Take n = pl(Cn0)−1n1 + n0. Since p − r + t ≥ p, we obtain

[Cn]p = w1(p − 1)0v−1(t − r)w0, [Dn]p = z1s0
l(w0)−l(z0)+vz0.

Lucas’ theorem gives
(

Cn0

Dn0

)(

Cn1

Dn1

)

(

Cn
Dn

) ≡

(

p−2
s

)

(

p−1
s

) (mod p).

Thus, s + 1 =
(p−2

s

)

/
(p−1

s

)

∈ G. Denote by d ∈ (Z/pZ)× the residue of
D/pv modulo p. We have s ≡ dr (modp). Thus, dr + 1 ∈ G for every
r ∈ [2, t] \ {−1/d}. If p ≥ 11, this implies #(G) > (p − 1)/2, and so
G = (Z/pZ)×. For p = 7, it can be easily checked that the set Sd =
{dr + 1 : r ∈ [2, t] \ {−1/d}} generates G for each 1 ≤ d ≤ 6.

Lemmas 22–24 prove Theorem 1 in the cases D ≡ 0, C (mod p).

3.3. Proofs of Corollaries 2 and 3. Recall that, apart from the cases
D ≡ 0, C/2, C (modp), we have proved Theorem 1 for the prime 5 also.

Proof of Corollary 2. If (C, D, p) 6= (2, 1, 3), (2, 1, 5), then this is a direct
consequence of Theorem 1. In the cases (C, D, p) = (2, 1, 3), (2, 1, 5), we infer
that 2 =

(

2
1

)

∈ G is a generator of (Z/pZ)×.

Proof of Corollary 3. If C 6≡ 1, 2 (modp) or p > 5, then this is a direct
consequence of Theorem 1. If p = 2, then it follows from Lemmas 10 and 11.
For the cases C ≡ 2 (mod p) and p = 3, 5, note that

(

C
1

)

≡ 2 (mod p) is a
generator of (Z/pZ)×.

Assume therefore C ≡ 1 (mod p) and p = 3, 5. Take n0 = 1 and let n1 < p
be such that the most significant digit of Cn1 is 1. Lemma 12 shows that
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2 =
(

1+1
1+0

)

/
(

1
1

)(

1
0

)

∈ G. Since 2 is a generator of (Z/pZ)× for p = 3, 5, this
implies the corollary.

4. WEAK WELL-DISTRIBUTION

In this section we prove Lemma 5 and Theorems 6 and 8. It turns out
to be convenient to begin with Theorem 8 and to use it to obtain Lemma 5
and Theorem 6.

4.1. Proof of Theorem 8(i)–(iii). One can easily prove the following
two lemmas (cf. [15, Lemma 11, Proposition 22]).

Lemma 25. Let X ⊆ N and 0 ≤ α ≤ 1. Assume that

max
j≥1

∣

∣

∣

∣

#(X ∩ [jpl, (j + 1)pl))

pl
− α

∣

∣

∣

∣

−→
l→∞

0.

Then X is of Banach density α.

Lemma 26. Let Pw(l) denote the probability that a random word z, cho-
sen uniformly from (Z/pZ)l, does not contain w as a subword. Then

lim
l→∞

Pw(l) = 0.

In fact, we will prove (Lemma 33) a more general version of Lem-
ma 26. (We will also prove (Lemma 29) a claim which is very similar to
Lemma 25.)

Lemma 27. Let w be a word over Z/pZ. Denote by X the set of numbers
n ∈ N such that [n]p does not contain w as a subword. Then BD(X) = 0.

Proof. Let j, l ≥ 1 and choose uniformly at random an integer n in the
interval [jpl, (j + 1)pl). Note that [n]p = [j]pz where z is a random word of
length l. Thus, the probability that [n]p does not contain w as a subword
is ≤ Pw(l) and the lemma follows from Lemmas 25 and 26.

Let An =
((

C1n
D1n

)

,
(

C2n
D2n

)

, . . . ,
(

Cmn
Dmn

))

and G be as in Theorem 8. Put

L = maxm
i=1 l(Ci). The following lemma is a direct consequence of Lemma 9.

Lemma 28. Let n, n0, n1 > 0 be integers and assume that [n]p =
[n0]p0

l[n1]p for some l ≥ L. Then

An ≡ An0An1 (mod p).

Proof of the first three parts in Theorem 8. (i) Lemma 28 implies that
G is a group.

(ii) follows by observing that Apin ≡ An (modp) for each i and n.
(iii) Note that the set in question is a subset of

X =

{

n ∈ N :

(

C1n

D1n

)

6≡ 0 (modp)

}

.
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Thus, it suffices to prove that BD(X) = 0. By Lemma 11 there exists an n′

with
(

C1n′

D1n′

)

≡ 0 (mod p). Put w = 0l1 [n′]p0
l1 , where l1 = l(C1). Lemma 9

implies that for each integer n > 0 whose base p representation contains
the word w we have

(C1n
D1n

)

≡ 0 (mod p) and so n 6∈ X. Thus, the assertion

follows from Lemma 27.

4.2. Proof of Theorem 8(iv). Take r ∈ G and let Xr = {n ∈ N :
A′

n = r}. For every j, l ≥ 1 put

Ij,l = [jpl, (j + 1)pl), I ′j,l = {n ∈ Ij,l : An ∈ ((Z/pZ)×)m (mod p)}.

Denote by Nl the set of numbers j ≥ 1 such that I ′j,l 6= ∅.

Let us first sketch the proof: We start by showing (Lemma 29) that,
in order to prove that BD(Xr) = 1/#(G), it is enough to consider the
distribution of (An (mod p))n∈I on the sets I = I ′j,l with large l’s. Then we

define a partition P of I ′j,l such that the size of each Y ∈ P is either 1 or
#(G). Moreover, taking a large l, we prove that “almost every” Y ∈ P is
of cardinality #(G), where (An (mod p))n∈Y takes each value in G exactly
once. This implies that

#{n ∈ I ′j,l : An ≡ g (mod p)}

#(I ′j,l)
≈

1

#(G)
for each g ∈ G.

Lemma 29. Assume that

(4) max
j∈Nl

∣

∣

∣

∣

#{n ∈ I ′j,l : An ≡ r (modp)}

#(I ′j,l)
−

1

#(G)

∣

∣

∣

∣

−→
l→∞

0.

Then BD(Xr) = 1/#(G).

Proof. Let M be a (large) positive integer. Take an interval I = [a, b)
such that I ′ = {n ∈ I : An ∈ ((Z/pZ)×)m (mod p)} contains at least
M elements. Put l = ⌊l(M)/2⌋ and consider the sets I ′j,l for integers j in

[a/pl, b/pl − 1]. Note that those I ′j,l are disjoint subsets of I ′. If M (and

hence l) is large, most of the elements of I ′ belong to some I ′j,l with j in

[a/pl, b/pl − 1]. In fact, we have

#(I ′) −
⌊b/pl⌋−1

∑

j=⌈a/pl⌉

#(I ′j,l)

#(I ′)
≤

2pl

M
=

2p⌊l(M)/2⌋

M
−→

M→∞
0.

Let ε > 0. If M (and hence l) is large, then (4) implies that
∣

∣

∣

∣

#{n ∈ I ′j,l : An ≡ r (modp)}

#(I ′j,l)
−

1

#(G)

∣

∣

∣

∣

< ε
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for every j ∈ Nl. Thus, for large enough M we have
∣

∣

∣

∣

#{n ∈ I ′ : An ≡ r (mod p)}

#(I ′)
−

1

#(G)

∣

∣

∣

∣

< ε

for every set I ′ of the form I ′ = {n ∈ [a, b) : An ∈ ((Z/pZ)×)m (mod p)} of
size #(I ′) ≥ M .

Lemma 30. There exist #(G) integers (Rg)g∈G such that

(i) ARg ≡ g (modp) for each g ∈ G.
(ii) The base p representations ([Rg]p)g∈G are of the same length, and

end with a nonzero digit.

Proof. For each g ∈ G take a positive integer ng such that Ang ≡ g
(modp). Since Apin ≡ An (mod p) for each i, we may assume that each ng

is prime to p and so [ng]p ends with a nonzero digit.
Put l = maxg∈G l(ng). For each g ∈ G let Rg be the integer whose base p

representation contains #(G) + 1 occurrences of [ng]p which are separated
by blocks of 0’s as follows:

[Rg]p = ([ng]p0
L)#(G)0(#(G)+1)(l−l(ng))[ng]p.

Obviously, l(Rg) = (#(G) + 1)l + #(G)L. By Lemma 28,

ARg ≡ (Ang)
#(G)+1 ≡ Ang ≡ g (modp).

Let (Rg)g∈G be as in Lemma 30 and L0 = l(Rg) be the length of the
base p representation of each Rg. For every g ∈ G let sg = 0L0 [Rg]p0

L0 . Put

G = {sg : g ∈ G}.

Let j, l ≥ 1. Consider the bijection ω between Ij,l and the set of words
w ∈ (Z/pZ)l, where ω(n) is the (unique) word satisfying [n]p = [j]pω(n).
Take n ∈ Ij,l. Assume that ω(n) contains one of the words in G and
write ω(n) = w′sw′′ with s ∈ G and w′′ as short as possible. The G-class
Xn = Xn(l, j) of n is the following subset of Ij,l:

(5) Xn = {k ∈ Ij,l : ω(k) ∈ w′Gw′′}

(where we write w′Gw′′ for the set {w′sgw
′′ : sg ∈ G}). If ω(n) contains none

of the words of G, then the G-class of n is Xn = {n} and called trivial . Note
that every nontrivial G-class is of cardinality #(G). Put

P (= P(j, l)) = {Xn : n ∈ I ′j,l}.

Lemma 31. For every nontrivial G-class Xn ∈ P(j, l) and g ∈ G, we
have Ak ≡ g (modp) for exactly one element k ∈ Xn.

Proof. Write ω(n) = w′sgw
′′ where sg ∈ G and w′′ is as short as possible.

Let t be the integer whose base p representation is [t]p = [j]pw
′0Lw′′. The

definition of Xn and Lemma 28 imply that the elements in {Ak : k ∈ Xn}
are congruent to {Atg : g ∈ G} modulo p. This implies the lemma.
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Lemma 32. P is a partition of I ′j,l.

Proof. Since each [Rg]p begins and ends with a nonzero letter, we eas-
ily see that any two G-classes are either equal or disjoint. Since n ∈ Xn,
we have I ′j,l ⊆

⋃

P. Lemma 31 shows that for each Xn ∈ P we have

{Ak mod p : k ∈ Xn} ⊆ ((Z/pZ)×)m and so Xn ⊆ I ′j,l. Thus,
⋃

P = I ′j,l.

Our next goal is to prove (taking a “large” l) that for most numbers
n ∈ I ′j,l we have [n]p = [j]pw for some word w ∈ (Z/pZ)l containing a sub-
word s ∈ G. (See Proposition 39 for the precise formulation.) This will show
that most of the G-classes Y ∈ P are of cardinality #(Y ) = #(G). We will
relate this problem to a walk on a certain graph Γ0 whose paths correspond
to subwords in base p representations of elements in I ′j,l. Therefore we in-
troduce some terminology from graph theory:

Definition. A directed (multi)graph Γ = (V, E) is strongly connected
if, for every pair (u, v) of vertices, there exists a directed path from u to v.
Γ is a primitive graph (cf. [10]) if there exists a K > 0 such that, for every
l ≥ K and u, v ∈ V , there exists a path from u to v of length l. This is
equivalent to the property that some power of the adjacency matrix MΓ is
strictly positive (i.e., MΓ is a primitive matrix ).

The property of primitive graphs that we need is the following

Lemma 33. Let Γ = (V, E) be a directed primitive multigraph, u, v ∈ V
and P be a directed path in Γ . For every l ≥ 0, let Nu,v(l) denote the number
of paths of length l from u to v, and NP

u,v(l) the number of those paths which
contain P as a subpath. Then

lim
l→∞

NP
u,v(l)

Nu,v(l)
= 1.

Proof. Since Γ is primitive, there exists a K such that NP
u,v(l) ≥ 1 for

every u, v ∈ V and l ≥ K. Take l ≥ K, and decompose the interval I = [0, l)
into a disjoint union of t = ⌊l/K⌋ subintervals ∆i = [δi, δi+1) where δi = Ki
for i ∈ [0, t) and δt = l. Thus, K ≤ #(∆i) ≤ 2K for every i. For each
sequence a0a1 . . . at of length t + 1 over V , let Ma0,...,at denote the number
of paths of length l from a0 to at which visit ai at the δith step (i ≤ t).

Let MP
a0,...,at

denote the number of those paths which do not contain P as

a subpath. Since δi+1 − δi ≥ K, we have NP
ai,ai+1

(δi+1 − δi) ≥ 1. Thus,

MP
a0,...,at

Ma0,...,at

≤

∏t−1
i=0(Nai,ai+1(δi+1 − δi) − 1)
∏t−1

i=0 Nai,ai+1(δi+1 − δi)
≤

(

1 −
1

M

)t

,
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where M = max{Nu,v(l) : u, v ∈ V, l ≤ 2K}. This implies

Na0,at(l) − NP
a0,at

(l)

Na0,at(l)
≤

(

1 −
1

M

)t

.

Since t = ⌊l/K⌋ → ∞ as l → ∞, we obtain

lim
l→∞

Na0,at(l) − NP
a0,at

(l)

Na0,at(l)
= 0.

Remark. Lemma 26 can be considered as a special case of Lemma 33
by taking Γ to be the complete directed graph on the vertex set Z/pZ.

Let n, k, i ≥ 0. We write k �i n if the ith digit of k does not exceed the ith
digit of n. (Thus, k � n if k �i n for each i.) Given a word w = nl−1 . . . n0

over Z/pZ, put nw =
∑l−1

i=0 nip
i. For each t ∈ {1, . . . , m}, let ft be the

function from the set of all words over (Z/pZ) to N2 given by

ft(w) =

(⌊

Ctnw

pl(w)

⌋

,

⌊

Dtnw

pl(w)

⌋)

.

That is, ft(w) = (c, d) if [Ctnw]p = [c]pz0 and [Dtnw]p = [d]pz1 for some
words z0, z1 of length l = l(w) (where we put c = 0 if l(Ctnw) ≤ l(w) and
d = 0 if l(Dtnw) ≤ l(w)). Note that Ctnw/pl(w) < Ct and thus Im(ft) ⊆
[0, Ct)

2 is finite.

Lemma 34. Let z, w be words over Z/pZ and (c, d) = ft(w). Then

ft(zw) =

(⌊

c + Ctnz

pl(z)

⌋

,

⌊

d + Dtnz

pl(z)

⌋)

.

In particular , for any words w1, w2 over Z/pZ with ft(w1) = ft(w2) we have
ft(zw1) = ft(zw2).

Proof. The definition of ft yields Ctnw = cpl(w) + q1 and Dtnw = dpl(w)

+ q2 for some q1, q2 < pl(w). Thus,

Ct(nzp
l(w) + nw) = (c + Ctnz)p

l(w) + q1,

Dt(nzp
l(w) + nw) = (d + Dtnz)p

l(w) + q2,

which implies the lemma.

Put
f(w) = (f1(w), . . . , fm(w)),

and for every v = f(w) ∈ Im(f) and a ∈ Z/pZ let va = f(aw). Note that,
by Lemma 34, va depends only on v, a (and not on w), and thus it is well
defined.

Define a directed multigraph Γ whose set of vertices is V = Im(f). Let
v = ((c1, d1), . . . , (cm, dm)) be an element in V . For every a ∈ Z/pZ such
that dt + Dta �0 ct + Cta for each t ≤ m, we put a directed edge (called an
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a-edge) from v to va. It may happen that va = vb for distinct a, b ∈ Z/pZ and
thus we may have multiedges (with different labeling) in Γ . Our definitions
yield

Lemma 35. Let v = f(w) ∈ Im(f). Then (v, va) is an a-edge in Γ if and
only if

(6) Dtnaw �
l(w)

Ctnaw, t = 1, . . . , m.

Note that (6) implies that Dtnzaw �
l(w)

Ctnzaw for any word z.

Let z = al−1 . . . a0 ∈ (Z/pZ)l. A directed path P of length l in Γ is a
z-path if the ith edge in P is an ai-edge for i ≤ l − 1.

Let V0 denote the strongly connected component of f(Λ) = (0, 0)m ∈ V
in Γ . That is, V0 consists of those vertices v for which there is a closed
path containing both v and (0, 0)m. Let Γ0 = (V0, E0) be the graph on the
vertices V0 induced by Γ . A vertex ((c1, d1), . . . , (cm, dm)) ∈ V is admissible
if dt � ct for each t ≤ m.

Lemma 36.

(i) A vertex v ∈ V is admissible if and only if there exists a 0l-path in
Γ from v to (0, 0)m for some l.

(ii) Let n ≥ 0 be an integer. Then An ∈ ((Z/pZ)×)m (modp) if and only
if there is an [n]p-path P in Γ0 from (0, 0)m to an admissible vertex.

Proof. (i) follows directly from the definition of the 0-edges in Γ .
(ii) Assume that An ∈ ((Z/pZ)×)m (mod p) and let [n]p = nl−1 . . . n0.

Then Dtn � Ctn for each t ≤ m, so that

f(Λ) = (0, 0)m, f(n0), f(n1n0), f(n2n1n0), . . . , f([n]p)

is an [n]p-path in Γ from (0, 0)m to an admissible vertex. By (i), there is a
path from f([n]p) to (0, 0)m. Thus the above path is also contained in the
graph Γ0.

Assume now that there is an [n]p-path P in Γ0 from (0, 0)m to an admis-
sible vertex. The definition of the edges in Γ implies that each digit of Dtn
does not exceed the corresponding digit of Ctn for each t. Hence

(

Ctn
Dtn

)

6≡ 0
(modp).

Lemma 37. For every s ∈ G there exists an s-path in Γ0.

Proof. Write s = 0L0 [Rg]p0
L0 and put s′ = [Rg]p0

L0 , n = ns (= ns′).
Recall that An ≡ g (modp). Thus, by Lemma 36(ii), there is an s′-path in
Γ0 from (0, 0)m to an admissible vertex v. This implies that for each a ≥ 0
there is a 0as′-path in Γ0 starting at (0, 0)m.

Lemma 38. The graph Γ0 is primitive.

Proof. Γ0 is a strongly connected graph by its definition. Since it contains
a loop (over the vertex (0, 0)m), it is primitive.
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Proposition 39. Let Xn(j, l) be as in (5). Then

max
j∈Nl

#(n ∈ I ′j,l : Xn(j, l) = {n})

#(I ′j,l)
−→
l→∞

0.

Proof. Take l ≥ 1 and j ∈ Nl. Denote by Vj the set of vertices v such that
there is a [j]p-path in Γ0 from v to an admissible vertex. Let w ∈ (Z/pZ)l.
Lemma 36(ii) implies that jpl + nw ∈ I ′j,l if and only if there is a w-path

in Γ0 from (0, 0)m to a vertex in Vj . If we take l large, we deduce from
Lemmas 33, 37, 38 that most of the paths of length l from (0, 0)m to a
vertex in Vj contain an s-path for some s ∈ G. This implies that, for most
of the elements n ∈ I ′j,l, we have [n]p = [j]pw for some word w ∈ (Z/pZ)l

which contains a subword s ∈ G (and so Xn(j, l) is of cardinality #(G)).

Proof of Theorem 8(iv). Lemma 31 and Proposition 39 show that

max
j∈Nl

∣

∣

∣

∣

#{n ∈ I ′j,l : An ≡ r (mod p)}

#(I ′j,l)
−

1

#(G)

∣

∣

∣

∣

−→
l→∞

0.

Thus the theorem follows from Lemma 29.

Remark. Let L denote the set of all words w over Ω = Z/pZ such
that Anw ∈ ((Z/pZ)×)m (modp). Our construction of Γ0 implies that L is
a regular language. In fact, let A be the automaton on the state set Q = V0

which is given by the graph Γ0, taking (0, 0)m as the starting state and
the admissible vertices as the final states. Lemma 36(ii) shows that L is
the language which is accepted by A (when we agree that A reads words
w from right to left). In particular, the binary sequence (bn)∞n=0, obtained
from (An) by putting bn = 1 if An ∈ ((Z/pZ)×)m (modp), is an automatic
sequence. We refer the reader to [2] for an excellent book on automatic
sequences.

4.3. Multinomial coefficients. In this subsection An =
(

Kn
K1n,...,Kmn

)

where K1, . . . , Km are positive integers whose sum is K. Let GA ⊆
(Z/pZ)× be the set of nonzero residues modulo p which are visited by
(An mod p)∞n=1. Note that each An can be represented as a product of bino-
mial coefficients:

An =

(

Kn

K1n

)(

(K − K1)n

K2n

)(

(K − K1 − K2)n

K3n

)

. . .

(

(Km−1 + Km)n

Km−1n

)

.

Let Bn be the sequence in (Z/pZ)m−1 given by

Bn =

((

Kn

K1n

)

,

(

(K−K1)n

K2n

)

,

(

(K−K1−K2)n

K3n

)

, . . . ,

(

(Km−1 +Km)n

Km−1n

))

,
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and GB be the corresponding subgroup of ((Z/pZ)×)m−1 given in The-
orem 8(i). Define the function ϕ : (Z/pZ)m−1 → Z/pZ by

ϕ(a1, . . . , am−1) =
m−1
∏

i=1

ai.

Since An = ϕ(Bn), we easily obtain Lemma 5 from the first three parts of
Theorem 8. In particular, GA is a group.

Proof of Theorem 6. Note that ϕ induces a homomorphism from GB

onto GA. Let r ∈ GA. There are exactly #(GB)/#(GA) elements r′ ∈ GB

with ϕ(r′) = r. Since each of them is visited by the sequence B′
n with the

same (Banach) frequency 1/#(GB), we conclude that

BD({n ∈ N : A′
n ≡ r (modp)}) =

#(GB)

#(GA)
·

1

#(GB)
=

1

#(GA)
.
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