Zero-density estimate of *L*-functions attached to Maass forms

by

A. SANKARANARAYANAN and J. SENGUPTA (Mumbai)

1. Introduction. Zero-density theorems for L-functions to the right of the critical line play a significant role in analytic number theory. These results have been established in various research papers by many mathematicians for different L-functions. As a sample we quote a few of them below. Let L(s) be any normalised L-function with the first coefficient being 1, which is absolutely convergent in $\Re s > 1$ and satisfies a functional equation of the Riemann zeta-type. We define, for $\sigma \geq 1/2$,

(1.1)
$$N_L(\sigma,T) := \#\{\varrho = \beta + i\gamma : L(\varrho) = 0, \beta \ge \sigma, |\gamma| \le T\}.$$

For the Riemann zeta-function $\zeta(s)$, we know for example the familiar result of Ingham (for $\sigma \geq 1/2$) that

(1.2)
$$N_{\zeta}(\sigma, T) \ll T^{3(1-\sigma)/(2-\sigma)} (\log T)^5.$$

In the case of Dirichlet *L*-functions, there is an averaging result of Bombieri (see [1]) which states that when $T \leq Q$,

(1.3)
$$\sum_{q \le Q} \sum_{\chi}^{*} N_{\chi}(\sigma, T) \ll T Q^{8(1-\sigma)/(3-2\sigma)} (\log Q)^{10}.$$

Here the superscript * means that the sum is over primitive characters. It is also known (see [5] or [21]) that

(1.4)
$$N_{\zeta}(\sigma, T) \ll T^{12(1-\sigma)/5} (\log T)^{100}.$$

We also refer to [3] for sharp density results for the zeros of $\zeta(s)$ in certain ranges of σ . Some zero-density theorems for *L*-functions can be found in [5], [13], [14] and [21]. As a sample, we quote a result due to Montgomery (see [12]) which we state as

²⁰⁰⁰ Mathematics Subject Classification: Primary 11F66; Secondary 11M41.

 $Key\ words\ and\ phrases:$ L-functions attached to Maass forms, zero-density theorems, mean-square bounds.

THEOREM A. For $T \geq 2$, let

$$M(T) = \max_{\substack{2 \le t \le T\\ \alpha \ge 1/2}} |\zeta(\alpha + it)|.$$

Then for $3/4 \leq \sigma \leq 1$, we have

$$N_{\zeta}(\sigma, T) \ll \{M(5T)(\log T)^6\}^{\frac{8(1-\sigma)(3\sigma-2)}{(4\sigma-3)(2\sigma-1)}} (\log T)^{11}.$$

The central idea is to study how frequently certain Dirichlet polynomials can be large. This main idea was developed and used first by Montgomery (see [12]) and later by many mathematicians (see [3], [8], and [16]). It should be mentioned that zero-density theorems have been established in various situations: for the Dedekind zeta-functions of a number field (see [2]), for the L-function attached to a holomorphic cusp form for the full modular group (see [6]), and for the symmetric square L-function attached to a holomorphic cusp form for the full modular group (see [20]).

Let $s = \sigma + it$ denote a complex variable. The parameter T > 0 will be chosen to be sufficiently large. The letters C, C' etc. denote positive constants which are not necessarily the same at each occurrence. Let fdenote a normalised (i.e. the first Fourier coefficient is 1) Maass cusp form for $SL(2,\mathbb{Z})$ which is an eigenfunction of all the Hecke operators T(n) as well as the reflection operator $T_{-1} : z \mapsto -\overline{z}$. We have $T(n)f = \lambda(n)f$ for $n \in \mathbb{N}$, and $\lambda(1) = 1$. For $\sigma > 1$, we define the standard *L*-function of f as

(1.5)
$$L(s,f) := \sum_{n=1}^{\infty} \frac{\lambda(n)}{n^s} = \prod_p (1 - \lambda(p)p^{-s} + p^{-2s})^{-1}.$$

We note that L(s, f) extends as an entire function to the whole complex plane and it satisfies a Riemann zeta-type functional equation under $s \mapsto 1-s$ (see [7]). We also note that $N_L(\sigma, T) \ll T \log T$ for $1/2 \leq \sigma \leq 1/2 + 1/\log T$. The zero-density estimates to the right of the critical line in the case of the standard *L*-function attached to a normalised Maass cusp form are of great interest and seem to be unavailable in the literature.

The main aim of this paper is to prove

THEOREM 1. For $\sigma \geq 1/2 + 1/\log T$, we have

$$N_L(\sigma, T) \ll T^{4(1-\sigma)/(3-2\sigma)} (\log T)^{26},$$

where the implied constant depends on f.

As an application, we can extend Theorem 1 of [19] by Ramachandra and the first author. Precisely, we can prove the local theorem on the zeros of L(s, f) in the neighbourhood of the critical line: THEOREM 2. If $L(s, f) \neq 0$ in the rectangle

$$\left\{\frac{1}{2} + \frac{1}{10\log\log T} < \sigma \le 1, \ T - H \le t \le T + H\right\}$$

with $H = C \log \log \log T$, $T \ge 100$, then there is at least one zero of L(s, f)in the disc of radius $C'(\log \log T)^{-1}$ with centre 1/2 + iT. Here C, C' are effective positive constants depending on f.

REMARK. The zero-counting argument adapted in this paper is somewhat familiar (see for example [17] and [20]). However, the real difficulty in this situation lies in getting certain mean-value estimates of the zero-detector function $F_2(s)$ on certain lines in terms of precise log powers. For this, we need to first establish upper bounds on the discrete mean involving certain arithmetical functions. We prove these estimates in a sequence of lemmas in Section 3.

Acknowledgements. The authors are grateful to Professor Jeffrey Hoffstein for useful e-mail discussions. The authors are also indebted to the anonymous referee for some helpful comments.

2. Notation and preliminaries. The letters C, A and B (with or without subscripts) denote effective positive constants unless otherwise specified. They need not be the same at every occurrence. Throughout the paper we assume $T \ge T_0$ where T_0 is a large positive constant. We write $f(x) \ll g(x)$ to mean $|f(x)| < C_1g(x)$ for $x \ge x_0$ where C_1 is some absolute positive constant (sometimes we denote this by the O notation also). Let $s = \sigma + it$ and w = u + iv. The implied constants are all effective but they will depend on the form f in question.

For $\sigma > 1$, let

(2.1)
$$\frac{1}{L(s,f)} = \sum_{n=1}^{\infty} \frac{\mu^*(n)}{n^s}.$$

Then $\mu^*(n)$ is a multiplicative function and its values on prime powers are as follows:

(2.2)
$$\mu^*(p^a) = \begin{cases} 1 & \text{if } a = 0, \\ -\lambda(p) & \text{if } a = 1, \\ 1 & \text{if } a = 2, \\ 0 & \text{if } a \ge 3. \end{cases}$$

We keep in mind that $\mu^*(n) = 0$ unless n is cube-free.

3. Some lemmas

LEMMA 3.1. We have the estimate

$$\sum_{n \le x} |\lambda(n)|^4 \ll x \log x.$$

Proof. Let $L_4(s) = \sum_{n=1}^{\infty} (\lambda(n))^4 / n^s$. There is a dominant Dirichlet series $L_4^*(s)$ with positive coefficients $\lambda^*(n)$ which has the property that

(3.1)
$$\sum_{n \le x} |\lambda(n)|^4 \le \sum_{n \le x} \lambda^*(n)$$

(see for example [4]). In fact, $L_4^*(s)$ has a pole of order 2 at s = 1, is otherwise analytic and is given by

$$L_4^*(s) = L(s, f, \vee^4) (L(s, f, \vee^2))^3 (\zeta(s))^2.$$

The two functions $L(s, f, \vee^4)$ and $L(s, f, \vee^2)$ on the right hand side are respectively the symmetric fourth and symmetric square *L*-series associated to *f*. As the analytic continuation and functional equations of these series are known (see for example [9], [10]), it follows from a standard Tauberian argument that

$$\sum_{n \le x} \lambda^*(n) \asymp Cx \log x$$

where the constant C depends on f. Now, the lemma follows from (3.1).

LEMMA 3.2. We have the estimate

$$\sum_{l \le x} \frac{(\mu^*(l))^2}{l} \ll \log x.$$

Proof. We note that $\mu^*(l) = 0$ unless l is cube-free. So we write $l = d_1^2 d_2$ with $(d_1, d_2) = 1$ and d_1, d_2 square-free. Then

(3.2)
$$(\mu^*(l))^2 = (\mu^*(d_1^2))^2 (\mu^*(d_2))^2 = (\lambda(d_2))^2.$$

Using (3.2), we have

$$\sum_{l \le x} \frac{(\mu^*(l))^2}{l} = \sum_{\substack{d_1^2 d_2 \le x \\ (d_1, d_2) = 1 \\ d_1, d_2 \text{ square-free}}} \frac{(\lambda(d_2))^2}{d_1^2 d_2}$$
$$= \sum_{d_1^2 \le x} \frac{1}{d_1^2} \sum_{d_2 \le x d_1^{-2}} \frac{(\lambda(d_2))^2}{d_2} \ll (\log x) \left(\sum_{d_1^2 \le x} \frac{1}{d_1^2}\right)$$
$$\ll \log x,$$

since $\sum_{m \leq Y} (\lambda(m))^2 \ll Y$ (see [7]). \blacksquare

LEMMA 3.3. We have the estimate

$$\sum_{l \le x} \frac{(\mu^*(l))^4}{l} \ll (\log x)^2.$$

Proof. From (3.2), we observe that

$$\sum_{l \le x} \frac{(\mu^*(l))^4}{l} = \sum_{\substack{d_1^2 d_2 \le x \\ (d_1, d_2) = 1 \\ d_1, d_2 \text{ square-free}}} \frac{(\mu^*(d_1^2 d_2))^4}{d_1^2 d_2}$$
$$\leq \sum_{\substack{d_1^2 d_2 \le x \\ d_1^2 d_2 \le x}} \frac{(\lambda(d_2))^4}{d_1^2 d_2} = \sum_{\substack{d_1^2 \le x \\ d_1^2 \le x d_1^{-2}}} \frac{1}{d_2} \sum_{\substack{d_2 \le x d_1^{-2} \\ d_2 \le x d_1^{-2}}} \frac{(\lambda(d_2))^4}{d_2}$$
$$\ll (\log x)^2,$$

on using the estimate in Lemma 3.1. \blacksquare

LEMMA 3.4. Let

$$c(n) = \sum_{\substack{d|n\\d \le T}} \mu^*(d)\lambda(n/d).$$

Then

$$\sum_{n \le x} |c(n)|^2 \ll x (\log x)^{17}.$$

Proof. For any $a_i \in \mathbb{R}$ and $m \in \mathbb{N}$, we have

$$\left(\sum_{i=1}^m a_i\right)^2 \le m^2 \sum_{i=1}^m a_i^2.$$

Therefore (with $\tau(n)$ being the number of positive divisors of n),

$$(c(n))^2 \le (\tau(n))^2 \sum_{\substack{d|n \\ d \le T}} (\mu^*(d))^2 (\lambda(n/d))^2.$$

Hence we have

$$S := \sum_{n \le x} (c(n))^2 \le \sum_{lm \le x} (\tau(lm))^2 (\mu^*(l))^2 (\lambda(m))^2$$

$$\le \sum_{l \le x} \sum_{m \le xl^{-1}} (\tau(l))^2 (\tau(m))^2 (\mu^*(l))^2 (\lambda(m))^2$$

$$= \sum_{l \le x} (\tau(l))^2 (\mu^*(l))^2 \sum_{m \le xl^{-1}} (\tau(m))^2 (\lambda(m))^2$$

$$\le \sum_{l \le x} (\tau(l))^2 (\mu^*(l))^2 \Big\{ \Big(\sum_{m \le xl^{-1}} (\tau(m))^4 \Big)^{1/2} \Big(\sum_{m \le xl^{-1}} (\lambda(m))^4 \Big)^{1/2} \Big\}.$$

Since $(\tau(m))^4 \leq \tau_{2^4}(m)$ (where $\tau_j(n)$ denotes the *j*-fold divisor function), we have

$$\sum_{m \le xl^{-1}} (\tau(m))^4 \ll \frac{x}{l} \, (\log x)^{15}.$$

Now, using Lemma 3.1, we note that the term within the curly bracket above is $\ll (x/l)(\log x)^8$. Thus, we obtain

$$S \ll x(\log x)^8 \sum_{l \le x} \frac{(\tau(l))^2 (\mu^*(l))^2}{l}$$
$$\ll x(\log x)^8 \left(\sum_{l \le x} \frac{(\tau(l))^4}{l}\right)^{1/2} \left(\sum_{l \le x} \frac{(\mu^*(l))^4}{l}\right)^{1/2}.$$

Now, using Lemma 3.3, we get

$$\sum_{n\leq x} (c(n))^2 \ll x (\log x)^{17}. \bullet$$

LEMMA 3.5 (Montgomery-Vaughan). If h_n is an infinite sequence of complex numbers such that $\sum_{n=1}^{\infty} n|h_n|^2$ is convergent, then

$$\int_{T}^{T+H} \left| \sum_{n=1}^{\infty} h_n n^{-it} \right|^2 dt = \sum_{n=1}^{\infty} |h_n|^2 (H+O(n))$$

Proof. See for example Lemma 3.3 of [15], or [18]. ■

LEMMA 3.6. If $N_L(\sigma, T, T+1)$ denotes the number of zeros $\rho = \beta + i\gamma$ of L(s, f) with $\beta \geq \sigma$, $T \leq \gamma < T+1$, then

 $N_L(\sigma, T, T+1) \ll \log T.$

Proof. We define

$$F_1(s) = \frac{L(s, f)}{\prod_{\varrho} \left(1 - \frac{s - s_0}{\varrho - s_0}\right)}$$

where ρ in the product runs over the zeros $\rho = \beta + i\gamma$ of L(s, f) with $0 \leq \beta \leq 1$ and $T < \gamma < T + 1$ and $s_0 = \sigma_0 + i\gamma$ with σ_0 sufficiently large. We note that

$$|F_1(s_0)| = |L(s_0, f)| \ge 1 - \sum_{n=2}^{\infty} \frac{|\lambda(n)|}{n^{\sigma_0}}$$
$$\ge 2 - \left(\sum_{n=1}^{\infty} \frac{|\lambda(n)|^2}{n^{\sigma_0}}\right)^{1/2} (\zeta(\sigma_0))^{1/2} \ge C$$

for sufficiently large σ_0 which may depend upon f (note that both the series $\sum_{n=1}^{\infty} |\lambda(n)|^2 n^{-\sigma_0}$ and $\zeta(\sigma_0)$ approach 1 as $\sigma_0 \to \infty$). Here C is a certain

positive constant. For $|s - s_0| = 3\sigma_0$, we have

$$1 - \frac{s - s_0}{\varrho - s_0} \ge \left| \frac{s - s_0}{\varrho - s_0} \right| - 1 \ge \frac{3\sigma_0}{\sigma_0 - \beta} - 1 \ge 2.$$

This implies that

$$C < |F_1(s_0)| < \max_{|s-s_0|=3\sigma_0} |F_1(s)| < \max_{|s-s_0|\le 3\sigma_0} \frac{|L(s,f)|}{2^N} \ll \frac{T^C}{2^N}$$

and hence we obtain the lemma. \blacksquare

LEMMA 3.7. For $\sigma > 1$, define

$$F_2(s) := L(s, f) \sum_{n \le T} \frac{\mu^*(n)}{n^s} - 1 = L(s, f) M_T(s) - 1 =: \sum_{n=1}^{\infty} \frac{c(n)}{n^s}.$$

Then

(3.3)
$$c(n) = \sum_{\substack{d|n\\d \le T}} \mu^*(d)\lambda(n/d).$$

and for $\sigma > 1$,

$$F_2(s) = \sum_{n>T} c(n)/n^s.$$

Proof. First we observe that

$$\sum_{d|n} \mu^*(d)\lambda(n/d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n \ge 2. \end{cases}$$

Now, we define

(3.4)
$$a(d) := \begin{cases} \mu^*(d) & \text{if } d \le T, \\ 0 & \text{if } d > T. \end{cases}$$

From the definition of $F_2(s)$, we notice that

(3.5)
$$c(n) = \sum_{d|n} a(d)\lambda(n/d) - \sum_{d|n} \mu^*(d)\lambda(n/d).$$

If $n \leq T$, then $d \leq T$ (since d is a divisor of n) so that $a(d) = \mu^*(d)$. Therefore c(n) = 0 for $n \leq T$. For n > T, the second sum in (3.5) is zero and hence from (3.4), we get (3.3).

4. Proof of the theorems

Proof of Theorem 1. By using dyadic partitions, it is enough to prove the theorem for $T \leq \gamma \leq 2T$. We divide the rectangle bounded by the lines with real parts σ , 1 and imaginary parts T, 2T into abutting smaller rectangles of height $2(\log T)^2$. From Lemma 3.6, the multiplicity of any zero ρ of L(s, f) is $\ll \log T$. Therefore, without loss, we can assume that the zeros are simple

in the counting process. We count the number of those smaller rectangles of height $2(\log T)^2$ which contain at least one zero and multiply by $C(\log T)^3$ to get a bound for $N_L(\sigma, T, 2T)$.

We define the zero-detector function

$$F_2(s) := L(s, f) \sum_{n \le T} \frac{\mu^*(n)}{n^s} - 1 = L(s, f) M_T(s) - 1 =: \sum_{n > T} \frac{c(n)}{n^s}.$$

From Lemma 3.7, we notice that

$$c(n) = \sum_{\substack{d|n\\d \le T}} \mu^*(d)\lambda(n/d).$$

For any fixed zero $\rho = \beta + i\gamma$, we let

$$G(s) = F_2(s)Y^{s-\varrho}e^{(s-\varrho)^2}$$

where Y is a parameter satisfying $T^{-A} \leq Y \leq T^A$. We select one zero ρ_j in each of the rectangles (for j = 1, 2, ...)

$$\bigg\{\frac{1}{2} + \frac{1}{\log T} \le \sigma \le 1, \, T + 2(j-1)(\log T)^2 \le t \le T + 2j(\log T)^2\bigg\}.$$

We partition these rectangles into odd and even ones. Note that for any two zeros ρ, ρ' in two even (respectively odd) rectangles, we have $|\gamma - \gamma'| \geq 2(\log T)^2$. Let \mathcal{A} and \mathcal{B} denote the sets of the chosen zeros corresponding to the sets of odd and even rectangles respectively. Let $\rho \in \mathcal{A}$ be any typical chosen zero. By Cauchy's residue theorem, we have

$$\left|\frac{1}{2\pi i}\int\limits_{R(\varrho)}\frac{G(s)}{s-\varrho}\,ds\right|=1$$

where the integral is taken over the rectangle $R(\varrho)$ defined by

$$R(\varrho) := \left\{ \frac{1}{2} \le \sigma \le 1 + \frac{1}{\log T}, |t - \gamma| \le B(\log T)^2 \right\}.$$

Here $1/4 \leq B \leq 1$ is chosen such that the horizontal sides of $R(\varrho)$ are free from zeros of L(s, f). If Y is chosen to satisfy $T^{-A} \leq Y \ll T^A$, then the contributions from the horizontal sides of $R(\varrho)$ to the integral are $O(T^{-10})$ owing to the exponentially decaying factor $e^{(s-\varrho)^2}$. We denote the vertical sides of $R(\varrho)$ by V_1 and V_2 so that we have

(4.1)
$$1 = O\left(\log T\left(\int_{V_1} |F_2(s)| \, dt\right) Y^{1/2-\beta} + \log T\left(\int_{V_2} |F_2(s)| \, dt\right) Y^{1+1/\log T-\beta}\right)$$

Zero-density estimate of L-functions attached to Maass forms

$$= O\Big(\log T\Big(1 + \int_{V_1} |F_2(s)| \, dt\Big) Y^{1/2-\beta} \\ + \log T\Big(T^{-10} + \int_{V_2} |F_2(s)| \, dt\Big) Y^{1+1/\log T-\beta}\Big).$$

We choose Y such that

$$Y^{1/2-\beta}\Big(1+\int_{V_1}|F_2(s)|\,dt\Big)=Y^{1-\beta}\Big(T^{-10}+\int_{V_2}|F_2(s)|\,dt\Big).$$

Let

$$J_1(\varrho) = 1 + \int_{V_1} |F_2(s)| dt,$$

$$J_2(\varrho) = T^{-10} + \int_{V_2} |F_2(s)| dt.$$

We notice that (from Lemmas 3.2 and 3.5)

$$\int_{T}^{2T} |M_T(1/2 + it)|^2 dt = \sum_{n \le T} \frac{|\mu^*(n)|^2}{n} \left(T + O(n)\right) \ll T \log T.$$

From (5.7) of [11], we have

$$\int_{T}^{2T} |L(1/2 + it)|^2 \, dt \ll T \log T.$$

Therefore by the Cauchy–Schwarz inequality, we find that

(4.2)
$$\int_{T}^{2T} |F_2(1/2 + it)| \, dt \ll T \log T$$

and using Lemma 3.5 (Montgomery–Vaughan theorem) and the estimate in Lemma 3.4, we have

$$(4.3) \quad \int_{T}^{2T} |F_2(1+1/\log T+it)|^2 dt = \sum_{n>T} \frac{|c(n)|^2}{n^{2+2/\log T}} (T+O(n)) \\ \ll \sum_{n>T} \frac{|c(n)|^2}{n^{1+2/\log T}} = \int_{T}^{\infty} \frac{d(\sum_{n\le u} |c(n)|^2)}{u^{1+2/\log T}} \\ \ll (\log T)^{19},$$

on integrating by parts.

Note that (from (4.2) and (4.3))

$$Y = \left(\frac{J_1}{J_2}\right)^2 \ge \frac{1}{T^{-10} + T^C}, \quad Y \le \frac{T^C}{T^{-10}},$$

so that the condition on Y is satisfied. Hence we have

$$1 \le 2C(\log T) \left(\frac{J_1}{J_2}\right)^{2(1-\beta)} J_2 = 2C(\log T) J_1^{2(1-\beta)} J_2^{2\beta-1}.$$

It follows from the above that

$$\sum_{\varrho \in \mathcal{A}} J_1(\varrho) \ll T \log T \quad \text{and} \quad \sum_{\varrho \in \mathcal{A}} (J_2(\varrho))^2 \ll (\log T)^{21}.$$

The same argument is applicable to the zeros in the set \mathcal{B} . Thus we obtain

$$\sum_{\varrho \in \mathcal{A}} J_1(\varrho) + \sum_{\varrho \in \mathcal{B}} J_1(\varrho) = \sum_{\varrho \in \mathcal{A} \cup \mathcal{B}} J_1(\varrho) \ll T \log T$$

and similarly

$$\sum_{\varrho \in \mathcal{A}} (J_2(\varrho))^2 + \sum_{\varrho \in \mathcal{B}} (J_2(\varrho))^2 = \sum_{\varrho \in \mathcal{A} \cup \mathcal{B}} (J_2(\varrho))^2 \ll (\log T)^{21}$$

and so

(4.4)
$$\#\{\varrho: J_1(\varrho) \ge W_1\} \le A \frac{T \log T}{W_1},$$
$$\#\{\varrho: J_2(\varrho) \ge W_2\} \le A \frac{(\log T)^{21}}{W_2^2}$$

Now we fix $W_1 = W_2^2 T$. Hence the total number of zeros coming from the two sets in (4.4) is at most

$$A(\log T)^{21} \bigg\{ \frac{T}{W_1} + \frac{1}{W_2^2} \bigg\}.$$

From (4.1), for the remaining zeros, we have

$$J_1(\varrho) < W_1$$
 and $J_2(\varrho) < W_2$

and also

$$\begin{split} 3/4 &\leq 2C(\log T)W_1^{2(1-\beta)}W_2^{2\beta-1} \\ &= 2C(\log T)W_1^{2(1-\sigma)}W_1^{2(\sigma-\beta)}W_2^{2\sigma-1}W_2^{2(\beta-\sigma)} \\ &= 2C(\log T)W_1^{2(1-\sigma)}W_2^{2\sigma-1}\left(\frac{W_2}{W_1}\right)^{2(\beta-\sigma)} \\ &= 2C(\log T)W_1^{2(1-\sigma)}W_2^{2\sigma-1}\left(\frac{1}{W_2T}\right)^{2(\beta-\sigma)}. \end{split}$$

Suppose that $W_2 > 1/T$ and so $(1/W_2T)^{2(\beta-\sigma)} \leq 1$. Then we get

(4.5)
$$3/4 \le 2C(\log T)W_1^{2(1-\sigma)}W_2^{2\sigma-1}$$

= $2C(\log T)(W_2^2T)^{2(1-\sigma)}W_2^{2\sigma-1} = 2C(\log T)T^{2(1-\sigma)}W_2^{3-2\sigma}.$

We choose

$$W_2 = (4C\log T)^{-\frac{1}{3-2\sigma}} T^{-\frac{2(1-\sigma)}{3-2\sigma}}.$$

Clearly $W_2 > T^{-1}$. For this choice of W_2 , (4.5) implies that $3/4 \le 1/2$, which is absurd; this means that we should count only those zeros which satisfy (4.4). Hence we get

$$N_L(\sigma, T, 2T) \ll \frac{(\log T)^{21}}{W_2^2} (\log T)^3 \ll T^{4(1-\sigma)/(3-2\sigma)} (\log T)^{26},$$

which proves the theorem.

Proof of Theorem 2. The proof is entirely similar to the proof of Theorem 1 of [19] and hence is omitted.

References

- [1] E. Bombieri, On the large sieve, Mathematika 12 (1965), 201–225.
- D. R. Heath-Brown, On the density of the zeros of the Dedekind zeta-function, Acta Arith. 33 (1977), 169–181.
- [3] —, Zero density estimates for the Riemann zeta-function and Dirichlet L-functions, J. London Math. Soc. (2) 19 (1979), 221–232.
- J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. 140 (1994), 161–181.
- [5] A. Ivić, The Riemann Zeta-Function, Wiley, 1985.
- [6] —, On zeta-functions associated with Fourier coefficients of cusp forms, in: Proc. Amalfi Conf. on Analytic Number Theory (Maiori, 1989), E. Bombieri et al. (eds.), Univ. di Salerno, 1992, 231–246.
- [7] H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Rev. Mat. Iberoamer., Madrid, 1995.
- [8] M. Jutila, Zero density estimates for L-functions, Acta Arith. 32 (1977), 55–62.
- [9] H. H. Kim and F. Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), 177–197.
- [10] —, —, Functorial products for GL₂ × GL₃ and the symmetric cube for GL₂, Ann. of Math. (2) 155 (2002), 837–893.
- [11] W. Kohnen, A. Sankaranarayanan and J. Sengupta, *The quadratic mean of automorphic L-functions*, in: Automorphic Forms and Zeta Functions, S. Böcherer *et al.* (eds.), World Sci., 2005, 262–279.
- H. L. Montgomery, Mean and large values of Dirichlet polynomials, Invent. Math. 8 (1969), 334–345.
- [13] —, Zeros of L-functions, ibid., 346–354.
- [14] —, Topics in Multiplicative Number Theory, Springer, Berlin, 1971.
- [15] H. L. Montgomery and R. C. Vaughan, *Hilbert's inequality*, J. London Math. Soc. (2) 8 (1974), 73–82.
- [16] K. Ramachandra, Some new density estimates for the zeros of the Riemann zetafunction, Ann. Acad. Sci. Fenn. Ser AI 1 (1975), 177–182.
- [17] —, Riemann Zeta-Function, Ramanujan Inst. Publ., Madras Univ., Chennai, 1979.
- [18] —, Some remarks on a theorem of Montgomery and Vaughan, J. Number Theory 11 (1979), 465–471.

- [19] K. Ramachandra and A. Sankaranarayanan, On some theorems of Littlewood and Selberg, IV, Acta Arith. 70 (1995), 79–84.
- [20] A. Sankaranarayanan, Fundamental properties of symmetric square L-functions, II, Funct. Approx. Comment. Math. 30 (2002), 89–115.
- [21] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., edited by D. R. Heath-Brown, Clarendon Press, Oxford, 1986.

School of Mathematics

Tata Institute of Fundamental Research

Homi Bhabha Road

Mumbai 400 005, India

E-mail: sank@math.tifr.res.in

sengupta@math.tifr.res.in

Received on 7.6.2006 and in revised form on 18.12.2006 (5215)