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Zero-density estimate of L-functions

attached to Maass forms

by

A. Sankaranarayanan and J. Sengupta (Mumbai)

1. Introduction. Zero-density theorems for L-functions to the right
of the critical line play a significant role in analytic number theory. These
results have been established in various research papers by many mathe-
maticians for different L-functions. As a sample we quote a few of them
below. Let L(s) be any normalised L-function with the first coefficient be-
ing 1, which is absolutely convergent in ℜs > 1 and satisfies a functional
equation of the Riemann zeta-type. We define, for σ ≥ 1/2,

(1.1) NL(σ, T ) := #{̺ = β + iγ : L(̺) = 0, β ≥ σ, |γ| ≤ T}.

For the Riemann zeta-function ζ(s), we know for example the familiar result
of Ingham (for σ ≥ 1/2) that

(1.2) Nζ(σ, T ) ≪ T 3(1−σ)/(2−σ)(log T )5.

In the case of Dirichlet L-functions, there is an averaging result of Bombieri
(see [1]) which states that when T ≤ Q,

(1.3)
∑

q≤Q

∑

χ

∗
Nχ(σ, T ) ≪ TQ8(1−σ)/(3−2σ)(log Q)10.

Here the superscript ∗ means that the sum is over primitive characters. It
is also known (see [5] or [21]) that

(1.4) Nζ(σ, T ) ≪ T 12(1−σ)/5(log T )100.

We also refer to [3] for sharp density results for the zeros of ζ(s) in certain
ranges of σ. Some zero-density theorems for L-functions can be found in [5],
[13], [14] and [21]. As a sample, we quote a result due to Montgomery (see
[12]) which we state as
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Theorem A. For T ≥ 2, let

M(T ) = max
2≤t≤T
α≥1/2

|ζ(α + it)|.

Then for 3/4 ≤ σ ≤ 1, we have

Nζ(σ, T ) ≪ {M(5T )(log T )6}
8(1−σ)(3σ−2)
(4σ−3)(2σ−1) (log T )11.

The central idea is to study how frequently certain Dirichlet polynomials
can be large. This main idea was developed and used first by Montgomery
(see [12]) and later by many mathematicians (see [3], [8], and [16]). It should
be mentioned that zero-density theorems have been established in various
situations: for the Dedekind zeta-functions of a number field (see [2]), for the
L-function attached to a holomorphic cusp form for the full modular group
(see [6]), and for the symmetric square L-function attached to a holomorphic
cusp form for the full modular group (see [20]).

Let s = σ + it denote a complex variable. The parameter T > 0 will
be chosen to be sufficiently large. The letters C, C ′ etc. denote positive
constants which are not necessarily the same at each occurrence. Let f
denote a normalised (i.e. the first Fourier coefficient is 1) Maass cusp form
for SL(2, Z) which is an eigenfunction of all the Hecke operators T (n) as
well as the reflection operator T−1 : z 7→ −z. We have T (n)f = λ(n)f for
n ∈ N, and λ(1) = 1. For σ > 1, we define the standard L-function of f as

(1.5) L(s, f) :=
∞
∑

n=1

λ(n)

ns
=

∏

p

(1 − λ(p)p−s + p−2s)−1.

We note that L(s, f) extends as an entire function to the whole complex
plane and it satisfies a Riemann zeta-type functional equation under s 7→
1 − s (see [7]). We also note that NL(σ, T ) ≪ T log T for 1/2 ≤ σ ≤ 1/2 +
1/log T . The zero-density estimates to the right of the critical line in the
case of the standard L-function attached to a normalised Maass cusp form
are of great interest and seem to be unavailable in the literature.

The main aim of this paper is to prove

Theorem 1. For σ ≥ 1/2 + 1/log T , we have

NL(σ, T ) ≪ T 4(1−σ)/(3−2σ)(log T )26,

where the implied constant depends on f .

As an application, we can extend Theorem 1 of [19] by Ramachandra
and the first author. Precisely, we can prove the local theorem on the zeros
of L(s, f) in the neighbourhood of the critical line:
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Theorem 2. If L(s, f) 6= 0 in the rectangle
{

1

2
+

1

10 log log T
< σ ≤ 1, T − H ≤ t ≤ T + H

}

with H = C log log log T, T ≥ 100, then there is at least one zero of L(s, f)
in the disc of radius C ′(log log T )−1 with centre 1/2 + iT . Here C, C ′ are

effective positive constants depending on f .

Remark. The zero-counting argument adapted in this paper is some-
what familiar (see for example [17] and [20]). However, the real difficulty in
this situation lies in getting certain mean-value estimates of the zero-detector
function F2(s) on certain lines in terms of precise log powers. For this, we
need to first establish upper bounds on the discrete mean involving certain
arithmetical functions. We prove these estimates in a sequence of lemmas in
Section 3.

Acknowledgements. The authors are grateful to Professor Jeffrey Hoff-
stein for useful e-mail discussions. The authors are also indebted to the
anonymous referee for some helpful comments.

2. Notation and preliminaries. The letters C, A and B (with or with-
out subscripts) denote effective positive constants unless otherwise specified.
They need not be the same at every occurrence. Throughout the paper we
assume T ≥ T0 where T0 is a large positive constant. We write f(x) ≪ g(x)
to mean |f(x)| < C1g(x) for x ≥ x0 where C1 is some absolute positive
constant (sometimes we denote this by the O notation also). Let s = σ + it
and w = u+ iv. The implied constants are all effective but they will depend
on the form f in question.

For σ > 1, let

(2.1)
1

L(s, f)
=

∞
∑

n=1

µ∗(n)

ns
.

Then µ∗(n) is a multiplicative function and its values on prime powers are
as follows:

(2.2) µ∗(pa) =



















1 if a = 0,

−λ(p) if a = 1,

1 if a = 2,

0 if a ≥ 3.

We keep in mind that µ∗(n) = 0 unless n is cube-free.
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3. Some lemmas

Lemma 3.1. We have the estimate
∑

n≤x

|λ(n)|4 ≪ x log x.

Proof. Let L4(s) =
∑∞

n=1 (λ(n))4/ns. There is a dominant Dirichlet se-
ries L∗

4(s) with positive coefficients λ∗(n) which has the property that

(3.1)
∑

n≤x

|λ(n)|4 ≤
∑

n≤x

λ∗(n)

(see for example [4]). In fact, L∗
4(s) has a pole of order 2 at s = 1, is otherwise

analytic and is given by

L∗
4(s) = L(s, f,∨4)(L(s, f,∨2))3(ζ(s))2.

The two functions L
(

s, f,∨4
)

and L(s, f,∨2) on the right hand side are
respectively the symmetric fourth and symmetric square L-series associated
to f . As the analytic continuation and functional equations of these series
are known (see for example [9], [10]), it follows from a standard Tauberian
argument that

∑

n≤x

λ∗(n) ≍ Cx log x

where the constant C depends on f . Now, the lemma follows from (3.1).

Lemma 3.2. We have the estimate
∑

l≤x

(µ∗(l))2

l
≪ log x.

Proof. We note that µ∗(l) = 0 unless l is cube-free. So we write l = d2
1d2

with (d1, d2) = 1 and d1, d2 square-free. Then

(3.2) (µ∗(l))2 = (µ∗(d2
1))

2(µ∗(d2))
2 = (λ(d2))

2.

Using (3.2), we have

∑

l≤x

(µ∗(l))2

l
=

∑

d2
1d2≤x

(d1,d2)=1
d1,d2 square-free

(λ(d2))
2

d2
1d2

=
∑

d2
1≤x

1

d2
1

∑

d2≤xd−2
1

(λ(d2))
2

d2
≪ (log x)

(

∑

d2
1≤x

1

d2
1

)

≪ log x,

since
∑

m≤Y (λ(m))2 ≪ Y (see [7]).
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Lemma 3.3. We have the estimate

∑

l≤x

(µ∗(l))4

l
≪ (log x)2.

Proof. From (3.2), we observe that

∑

l≤x

(µ∗(l))4

l
=

∑

d2
1d2≤x

(d1,d2)=1
d1,d2 square-free

(µ∗(d2
1d2))

4

d2
1d2

≤
∑

d2
1d2≤x

(λ(d2))
4

d2
1d2

=
∑

d2
1≤x

1

d2
1

∑

d2≤xd−2
1

(λ(d2))
4

d2

≪ (log x)2,

on using the estimate in Lemma 3.1.

Lemma 3.4. Let

c(n) =
∑

d|n
d≤T

µ∗(d)λ(n/d).

Then
∑

n≤x

|c(n)|2 ≪ x(log x)17.

Proof. For any ai ∈ R and m ∈ N, we have
(

m
∑

i=1

ai

)2
≤ m2

m
∑

i=1

a2
i .

Therefore (with τ(n) being the number of positive divisors of n),

(c(n))2 ≤ (τ(n))2
∑

d|n
d≤T

(µ∗(d))2(λ(n/d))2.

Hence we have

S :=
∑

n≤x

(c(n))2 ≤
∑

lm≤x

(τ(lm))2(µ∗(l))2(λ(m))2

≤
∑

l≤x

∑

m≤xl−1

(τ(l))2(τ(m))2(µ∗(l))2(λ(m))2

=
∑

l≤x

(τ(l))2(µ∗(l))2
∑

m≤xl−1

(τ(m))2(λ(m))2

≤
∑

l≤x

(τ(l))2(µ∗(l))2
{(

∑

m≤xl−1

(τ(m))4
)1/2( ∑

m≤xl−1

(λ(m))4
)1/2}

.
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Since (τ(m))4 ≤ τ24(m) (where τj(n) denotes the j-fold divisor function),
we have

∑

m≤xl−1

(τ(m))4 ≪
x

l
(log x)15.

Now, using Lemma 3.1, we note that the term within the curly bracket above
is ≪ (x/l)(log x)8. Thus, we obtain

S ≪ x(log x)8
∑

l≤x

(τ(l))2(µ∗(l))2

l

≪ x(log x)8
(

∑

l≤x

(τ(l))4

l

)1/2(
∑

l≤x

(µ∗(l))4

l

)1/2

.

Now, using Lemma 3.3, we get
∑

n≤x

(c(n))2 ≪ x(log x)17.

Lemma 3.5 (Montgomery–Vaughan). If hn is an infinite sequence of

complex numbers such that
∑∞

n=1 n|hn|
2 is convergent , then

T+H\
T

∣

∣

∣

∞
∑

n=1

hnn−it
∣

∣

∣

2
dt =

∞
∑

n=1

|hn|
2(H + O(n)).

Proof. See for example Lemma 3.3 of [15], or [18].

Lemma 3.6. If NL(σ, T, T + 1) denotes the number of zeros ̺ = β + iγ
of L(s, f) with β ≥ σ, T ≤ γ < T + 1, then

NL(σ, T, T + 1) ≪ log T.

Proof. We define

F1(s) =
L(s, f)

∏

̺

(

1 − s−s0
̺−s0

)

where ̺ in the product runs over the zeros ̺ = β + iγ of L(s, f) with
0 ≤ β ≤ 1 and T < γ < T + 1 and s0 = σ0 + iγ with σ0 sufficiently large.
We note that

|F1(s0)| = |L(s0, f)| ≥ 1 −
∞

∑

n=2

|λ(n)|

nσ0

≥ 2 −

( ∞
∑

n=1

|λ(n)|2

nσ0

)1/2

(ζ(σ0))
1/2 ≥ C

for sufficiently large σ0 which may depend upon f (note that both the series
∑∞

n=1 |λ(n)|2n−σ0 and ζ(σ0) approach 1 as σ0 → ∞). Here C is a certain
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positive constant. For |s − s0| = 3σ0, we have
∣

∣

∣

∣

1 −
s − s0

̺ − s0

∣

∣

∣

∣

≥

∣

∣

∣

∣

s − s0

̺ − s0

∣

∣

∣

∣

− 1 ≥
3σ0

σ0 − β
− 1 ≥ 2.

This implies that

C < |F1(s0)| < max
|s−s0|=3σ0

|F1(s)| < max
|s−s0|≤3σ0

|L(s, f)|

2N
≪

TC

2N

and hence we obtain the lemma.

Lemma 3.7. For σ > 1, define

F2(s) := L(s, f)
∑

n≤T

µ∗(n)

ns
− 1 = L(s, f)MT (s) − 1 =:

∞
∑

n=1

c(n)

ns
.

Then

(3.3) c(n) =
∑

d|n
d≤T

µ∗(d)λ(n/d),

and for σ > 1,

F2(s) =
∑

n>T

c(n)/ns.

Proof. First we observe that
∑

d|n

µ∗(d)λ(n/d) =

{

1 if n = 1,

0 if n ≥ 2.

Now, we define

(3.4) a(d) :=

{

µ∗(d) if d ≤ T ,

0 if d > T .

From the definition of F2(s), we notice that

(3.5) c(n) =
∑

d|n

a(d)λ(n/d) −
∑

d|n

µ∗(d)λ(n/d).

If n ≤ T , then d ≤ T (since d is a divisor of n) so that a(d) = µ∗(d).
Therefore c(n) = 0 for n ≤ T . For n > T , the second sum in (3.5) is zero
and hence from (3.4), we get (3.3).

4. Proof of the theorems

Proof of Theorem 1. By using dyadic partitions, it is enough to prove the
theorem for T ≤ γ ≤ 2T . We divide the rectangle bounded by the lines with
real parts σ, 1 and imaginary parts T, 2T into abutting smaller rectangles of
height 2(log T )2. From Lemma 3.6, the multiplicity of any zero ̺ of L(s, f)
is ≪ log T . Therefore, without loss, we can assume that the zeros are simple
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in the counting process. We count the number of those smaller rectangles of
height 2(log T )2 which contain at least one zero and multiply by C(log T )3

to get a bound for NL(σ, T, 2T ).

We define the zero-detector function

F2(s) := L(s, f)
∑

n≤T

µ∗(n)

ns
− 1 = L(s, f)MT (s) − 1 =:

∑

n>T

c(n)

ns
.

From Lemma 3.7, we notice that

c(n) =
∑

d|n
d≤T

µ∗(d)λ(n/d).

For any fixed zero ̺ = β + iγ, we let

G(s) = F2(s)Y
s−̺e(s−̺)2

where Y is a parameter satisfying T−A ≤ Y ≤ TA. We select one zero ̺j in
each of the rectangles (for j = 1, 2, . . .)

{

1

2
+

1

log T
≤ σ ≤ 1, T + 2(j − 1)(log T )2 ≤ t ≤ T + 2j(log T )2

}

.

We partition these rectangles into odd and even ones. Note that for any
two zeros ̺, ̺′ in two even (respectively odd) rectangles, we have |γ − γ′| ≥
2(log T )2. Let A and B denote the sets of the chosen zeros corresponding to
the sets of odd and even rectangles respectively. Let ̺ ∈ A be any typical
chosen zero. By Cauchy’s residue theorem, we have

∣

∣

∣

∣

1

2πi

\
R(̺)

G(s)

s − ̺
ds

∣

∣

∣

∣

= 1

where the integral is taken over the rectangle R(̺) defined by

R(̺) :=

{

1

2
≤ σ ≤ 1 +

1

log T
, |t − γ| ≤ B(log T )2

}

.

Here 1/4 ≤ B ≤ 1 is chosen such that the horizontal sides of R(̺) are free
from zeros of L(s, f). If Y is chosen to satisfy T−A ≤ Y ≪ TA, then the
contributions from the horizontal sides of R(̺) to the integral are O(T−10)

owing to the exponentially decaying factor e(s−̺)2 . We denote the vertical
sides of R(̺) by V1 and V2 so that we have

1 = O
(

log T
(\

V1

|F2(s)| dt
)

Y 1/2−β(4.1)

+ log T
( \

V2

|F2(s)| dt
)

Y 1+1/log T−β
)
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= O
(

log T
(

1 +
\

V1

|F2(s)| dt
)

Y 1/2−β

+ log T
(

T−10 +
\

V2

|F2(s)| dt
)

Y 1+1/log T−β
)

.

We choose Y such that

Y 1/2−β
(

1 +
\

V1

|F2(s)| dt
)

= Y 1−β
(

T−10 +
\

V2

|F2(s)| dt
)

.

Let

J1(̺) = 1 +
\

V1

|F2(s)| dt,

J2(̺) = T−10 +
\

V2

|F2(s)| dt.

We notice that (from Lemmas 3.2 and 3.5)

2T\
T

|MT (1/2 + it)|2 dt =
∑

n≤T

|µ∗(n)|2

n
(T + O(n)) ≪ T log T.

From (5.7) of [11], we have

2T\
T

|L(1/2 + it)|2 dt ≪ T log T.

Therefore by the Cauchy–Schwarz inequality, we find that

(4.2)

2T\
T

|F2(1/2 + it)| dt ≪ T log T

and using Lemma 3.5 (Montgomery–Vaughan theorem) and the estimate in
Lemma 3.4, we have

2T\
T

|F2(1 + 1/log T + it)|2 dt =
∑

n>T

|c(n)|2

n2+2/log T
(T + O(n))(4.3)

≪
∑

n>T

|c(n)|2

n1+2/log T
=

∞\
T

d(
∑

n≤u |c(n)|2)

u1+2/log T

≪ (log T )19,

on integrating by parts.

Note that (from (4.2) and (4.3))

Y =

(

J1

J2

)2

≥
1

T−10 + TC
, Y ≤

TC

T−10
,
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so that the condition on Y is satisfied. Hence we have

1 ≤ 2C(log T )

(

J1

J2

)2(1−β)

J2 = 2C(log T )J
2(1−β)
1 J2β−1

2 .

It follows from the above that
∑

̺∈A

J1(̺) ≪ T log T and
∑

̺∈A

(J2(̺))2 ≪ (log T )21.

The same argument is applicable to the zeros in the set B. Thus we obtain
∑

̺∈A

J1(̺) +
∑

̺∈B

J1(̺) =
∑

̺∈A∪B

J1(̺) ≪ T log T

and similarly
∑

̺∈A

(J2(̺))2 +
∑

̺∈B

(J2(̺))2 =
∑

̺∈A∪B

(J2(̺))2 ≪ (log T )21

and so

(4.4)

#{̺ : J1(̺) ≥ W1} ≤ A
T log T

W1
,

#{̺ : J2(̺) ≥ W2} ≤ A
(log T )21

W 2
2

.

Now we fix W1 = W 2
2 T . Hence the total number of zeros coming from the

two sets in (4.4) is at most

A(log T )21

{

T

W1
+

1

W 2
2

}

.

From (4.1), for the remaining zeros, we have

J1(̺) < W1 and J2(̺) < W2

and also

3/4 ≤ 2C(log T )W
2(1−β)
1 W 2β−1

2

= 2C(log T )W
2(1−σ)
1 W

2(σ−β)
1 W 2σ−1

2 W
2(β−σ)
2

= 2C(log T )W
2(1−σ)
1 W 2σ−1

2

(

W2

W1

)2(β−σ)

= 2C(log T )W
2(1−σ)
1 W 2σ−1

2

(

1

W2T

)2(β−σ)

.

Suppose that W2 > 1/T and so (1/W2T )2(β−σ) ≤ 1. Then we get

3/4 ≤ 2C(log T )W
2(1−σ)
1 W 2σ−1

2(4.5)

= 2C(log T )(W 2
2 T )2(1−σ)W 2σ−1

2 = 2C(log T )T 2(1−σ)W 3−2σ
2 .
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We choose

W2 = (4C log T )−
1

3−2σ T−
2(1−σ)
3−2σ .

Clearly W2 > T−1. For this choice of W2, (4.5) implies that 3/4 ≤ 1/2,
which is absurd; this means that we should count only those zeros which
satisfy (4.4). Hence we get

NL(σ, T, 2T ) ≪
(log T )21

W 2
2

(log T )3 ≪ T 4(1−σ)/(3−2σ)(log T )26,

which proves the theorem.

Proof of Theorem 2. The proof is entirely similar to the proof of Theo-
rem 1 of [19] and hence is omitted.
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