
ACTA ARITHMETICA

XCIX.1 (2001)

Upper bounds for the coefficients of irreducible
integer polynomials in several variables
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Francesco Amoroso (Caen) and Maurice Mignotte (Strasbourg)

1. Introduction. Let P (X) = P (X1, . . . ,Xn) be a polynomial over
C in n variables. There are several measures for the growth of the coeffi-
cients of P , for instance: the “naive” height H(P ) (maximum modulus of
the coefficients), the length L(P ) (sum of the absolute values of the co-
efficients), the euclidean norm ‖P‖ (quadratic mean of the absolute val-
ues of the coefficients) and the maximum modulus |P | over the polydisk
|z1| = . . . = |zn| = 1. They are all equivalent up to a multiplicative factor
which grows polynomially in the total degree degP of the polynomial. More
precisely, we have

H(P ) ≤ ‖P‖ ≤ |P | ≤ L(P ) ≤
(

degP + n

n

)
H(P ).

Let us introduce the Mahler measure M(P ) by the analytic formula

M(P ) = exp
{ 1�

0

. . .

1�

0

log |P (e2iπt1 , . . . , e2iπtn)| dt1 . . . dtn
}
.

From this formula, we obtain (see [M2], Theorem 4.4 bis, for details)

M(P ) ≤ ‖P‖.
In the opposite direction, since the coefficient of the monomial Xλ1

1 . . .Xλn
n

of P is bounded by (degP )!
λ1!...λn! ·M(P ) (see for instance [P], Lemme 1.13), we

have
L(P ) ≤ (n+ 1)degP ·M(P ).

For further references we also notice the upper bound

L(P ) ≤ 2deg1 P+...+degn P ·M(P )

(see again [M2], Theorem 4.4 bis), where degi P = degXiP is the partial
degree of P relative to Xi.
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We are interested in relations between the Mahler measure and the max-
imum modulus of a polynomial. From the above discussion we obtain

(1) M(P ) ≤ |P | ≤ (n+ 1)degP ·M(P ).

These inequalities are clearly sharp when the degree is fixed andM(P ) grows
to infinity. Moreover, the upper bound for |P | is also sharp, except per-
haps for the constant n+ 1, for general polynomials when M(P ) is bounded
and degP tends to infinity. To see this, consider, for a fixed multi-index
(λ1, . . . , λn), the polynomials

P = (1−Xλ1
1 . . .Xλn

n )D

having Mahler’s measure 1 and maximum modulus 2D. However, in the one-
dimensional case the second author sharpened the upper bound (1) when P
is an irreducible polynomial with integer coefficients having small Mahler’s
measure. As a special case of this result, we have (see [M1], Theorem 1)

‖P‖ ≤ e
√
D(D + 2

√
D + 2)1+

√
DM(P )1+

√
D

if P ∈ Z[X] is irreducible of degree D.
The aim of this paper is to generalize Mignotte’s result to several vari-

ables. Our main inequality (Theorem 1) is rather technical; hence we prefer
to state here a simpler result (see §4 for the proof):

Corollary 1. Let P be an irreducible polynomial in n variables with
integer coefficients and of degree D. Then

|P | ≤ ((n+ 2)3D3M(P ))2Dn/(n+1)
.

As in [M1], we can deduce from this upper bound an estimate for the
coefficients of an irreducible factor of a multivariate integer polynomial. Let
F be a nonzero polynomial in n variables with integer coefficients and let P
be an irreducible factor of F of degree D. Then, since M(P ) ≤M(F ),

|P | ≤ ((n+ 2)3D3M(F ))2Dn/(n+1)
.

Corollary 1 also has some applications in Diophantine analysis. Con-
sider for instance the classical Liouville inequality. Let P ∈ Z[X1, . . . ,Xn]
be of partial degrees Dj = degj P and let α1, . . . , αn ∈ Q

∗
be such that

P (α1, . . . , αn) 6= 0. Put d = [Q(α1, . . . , αn) : Q] and let M(αj) be the
Mahler measure of αj (i.e. the Mahler measure of the minimal equation of
αj over the integers) and dj be its degree. Then (see for instance [MW],
Lemma 5)

|P (α1, . . . , αn)| ≥ L(P )−d+1M(α1)−D1d/d1 . . .M(αn)−Dnd/dn .

In the previous lower bound, it can be useful to have a dependence in
terms of the Mahler measure of P instead of its length. To do this we may
use the inequality L(P ) ≤ (n + 1)degP · M(P ), but then an extra factor
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(n+ 1)(−d+1) degP will appear in the right hand side. Using Corollary 1, we
obtain (see §4 for the proof):

Corollary 2. Let P ∈ Z[X] be an irreducible polynomial of partial
degrees D1, . . . ,Dn and of total degree D. Let also α1, . . . , αn be nonzero
algebraic numbers such that P (α1, . . . , αn) 6= 0. Then

|P (α1, . . . , αn)|
≥ ((n+ 2)3D3M(P ))−2(d−1)Dn/(n+1)

M(α1)−D1d/d1 . . .M(αn)−Dnd/dn ,

where d = [Q(α1, . . . , αn) : Q] and dj = [Q(αj) : Q] for j = 1, . . . , n.

The proof of Theorem 1 (§4) is a natural extension of the proof of [M1].
The main ingredients are an inequality on the size of the factors of multivari-
ate polynomials (§2) and a generalization of Siegel’s lemma proved in [AD]
(see §3). We also show (§5) that our results are essentially sharp. A gener-
alization to several variables of a well known algorithm for the computation
of the Mahler measure (§6) finishes this paper.

Acknowledgements. The authors are indebted to the referee for his
interesting comments. The remark that follows the proof of Proposition 1
is due to the referee and also the first one after the proof of Theorem 1 is
inspired by the referee’s report.

2. Size of factors. The aim of this section is to generalize an inequality
on the size of the factors of univariate polynomials due to the second author
(see [M1], Theorem 3). We first recall this inequality and, for the reader’s
convenience, its proof.

Proposition 1. Let P , Q ∈ C[X] be nonzero polynomials with degP =
D and degQ = d. Then (1)

|P | ·M(Q) ≤ (D + d)D+d

DDdd
· |P ·Q|.

Proof. We can assume D, d ≥ 1 (otherwise the result is trivial). Recall
that the Blaschke factor associated with a nonzero complex number α is

Bα(z) =
αz − 1
z − α .

Also notice that Bα(z) has modulus 1 when |z| = 1. Define

Q̃ = Q(X) ·
∏

α;Q(α)=0
|α|>1

Bα(X)

(1) With the convention 00 = 1.
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and F̃ = P · Q̃. By the maximum principle and by the definition of Q̃, we
have, for any R > 1,

|P | =
∣∣∣∣
F̃

Q̃

∣∣∣∣ ≤
∣∣∣∣
F̃

Q̃

∣∣∣∣
R

≤ |F̃ |RD+d

|b|(R− 1)d
,

where b is the leading coefficient of Q̃, hence b = M(Q). Notice also that
|F̃ | = |P ·Q| by the above property of Blaschke factors. To conclude, choose
R = 1 + d/D.

Remark. As noticed by the referee, the inequality of Proposition 1 can
be reformulated as follows. Define α : [0, 1] → [0,+∞) by α(0) = α(1) = 0
and α(x) = −x log x − (1− x) log(1− x) for x ∈ (0, 1). Then α(x) is easily
seen to be nonnegative, positive on the open interval (0, 1) and concave. Also
define β : [0, 1]→ [0,+∞) by β(x) = x log 2. Then the bound in Proposition
1 can be written as

|P | ·M(Q) ≤ exp{(D + d)α(θ)} · |P ·Q|, where θ =
D

D + d
.

And the basic inequality (1) (in case n = 1) is

|P | ·M(Q) ≤ exp{(D + d)β(θ)} · |P ·Q|.
Plainly, these can be combined as

|P | ·M(Q) ≤ exp{(D + d) min{α(θ), β(θ)}} · |P ·Q|,
and the unique solution to α(x) = β(x) in (0, 1) determines when the bound
of Proposition 1 is sharper than (1). It would be of considerable interest
to replace min{α(θ), β(θ)} by some more natural smooth function of the
parameter θ.

From Proposition 1 we obtain, by induction:

Proposition 2. Let P , Q ∈ C[X] be nonzero polynomials. Put Dj :=
degj P for j = 1, . . . , n. Let also qXd1

1 . . .Xdn
n be the monomial of Q for

which (d1, . . . , dn) is maximal with respect to the anti-lexicographic order ,
among the exponent vectors of all monomials appearing with nonzero coeffi-
cients in Q. Then

|P | · |q| ≤ (D1 + d1)D1+d1

DD1
1 dd1

1

. . .
(Dn + dn)Dn+dn

DDn
n ddnn

· |P ·Q|.

Proof. We write

Q(X1, . . . ,Xn)

= Q1(X1, . . . ,Xn−1)Xdn
n + lower order terms (with respect to Xn).
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Let z1, . . . , zn−1 be arbitrary complex numbers and apply Proposition 1 to
the univariate polynomial

F0(X) = P (z1, . . . , zn−1,X) ·Q(z1, . . . , zn−1,X).

We obtain

|P (z1, . . . , zn−1,X) ·Q1(z1, . . . , zn−1)| ≤ (Dn + dn)Dn+dn

DDn
n ddnn

· |F0|,

where we have used the fact that the absolute value of the leading coefficient
of a univariate polynomial is bounded by its measure. Since the previous
inequality is true for any complex numbers z1, . . . , zn−1 of modulus 1 and
since |F0| ≤ |P ·Q|, we have

(2) |P ·Q1| ≤
(Dn + dn)Dn+dn

DDn
n ddnn

· |P ·Q|.

Now write

Q1(X1, . . . ,Xn−1) = Q2(X1, . . . ,Xn−2)Xdn−1
n−1

+ lower order terms (with respect to Xn−1).

Let z1, . . . , zn−2, zn be arbitrary complex numbers and apply Proposition 1
to the univariate polynomial

F1(X) = P (z1, . . . , zn−2,X, zn) ·Q1(z1, . . . , zn−2,X).

As before, we obtain

|P (z1, . . . , zn−2,Xn−1, zn) ·Q2(z1, . . . , zn−2)|

≤ (Dn−1 + dn−1)Dn−1+dn−1

D
Dn−1
n−1 d

dn−1
n−1

· |F1|.

Hence, using inequality (2) gives

|P ·Q2| ≤
(Dn−1 + dn−1)Dn−1+dn−1

D
Dn−1
n−1 d

dn−1
n−1

· (Dn + dn)Dn+dn

DDn
n ddnn

· |P ·Q|.

After n steps, we get the announced upper bound for the product |P | · |q|.
In particular, we have

Corollary 3. Let P ∈ C[X] and Q ∈ Z[X] be nonzero polynomials.
Let d, D be two integers with D ≥ maxj degj P and d ≥ degQ. Then

|P | ≤ ed(1 +D)d · |P ·Q|.
Proof. We apply Proposition 2, using the inequalities |q| ≥ 1,

(x+ y)x+y

xxyy
=
(

1 +
y

x

)x
·
(

1 +
x

y

)y
≤ ey(1 + x)y

(valid for reals x > 0 and y ≥ 1), and d1 + . . .+ dn ≤ d.
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3. A generalization of Siegel’s lemma. We shall need a generaliza-
tion of Siegel’s lemma for univariate polynomials to the multivariate case,
due to the first author and S. David (indeed the quoted result is more general
but for our purposes we only need a special case).

We denote by h(F ) the Weil height of the polynomial F ∈ Q[X], i.e.
the Weil height of the vector of the coefficients of P in a suitable projective
space.

Proposition 3. Let P ∈ Z[X] be an irreducible polynomial of total de-
gree D and let T , L be integers such that L ≥ TD. Then there exists a
nonzero polynomial F ∈ Z[X] of degree ≤ L which is a multiple of P T and
such that

h(F ) ≤
((

L+ 1
L− TD + 1

)n
− 1
)
·
{

(n+ T ) log(L+ 1) +
L

D
logM(P )

}
.

Proof. Let N =
(
L+n
n

)
and let

r = H((hPT );L) =
(
L+ n

n

)
−
(
L− TD + n

n

)

be the value at L of the Hilbert function of the principal ideal generated by
the homogenization hPT ∈ Z[X0, . . . ,Xn] of PT . We apply Théorème 4.1 of
[AD] to the hypersurface

V = {P = 0} ⊂ Gnm ⊂ Pn.
Let V (θ) be the set of points of V (Q) ⊂ Pn(Q) having Weil’s height ≤ θ.
We define the essential minimum µ̂ess(V ) of V as the infimum of the set of
θ > 0 such that V (θ) is Zariski-dense in V . Then the quoted result of [AD]
gives at once a nonzero polynomial F ∈ Z[X] of degree ≤ L which vanishes
on V with multiplicity ≥ T (hence P T divides F ) and has

h(F ) ≤ r

N − r{(n+ T ) log(L+ 1) + Lµ̂ess(V )}.

We now notice that

µ̂ess(V ) ≤ 1
D

logM(P )

by a particular case of a theorem of Zhang (for an elementary proof of this
inequality, see also [AD], Proposition 2.7). Finally, to simplify the upper
bound for h(F ), we use the inequality

r

N − r =
(L+ n) . . . (L+ 1)

(L− TD + n) . . . (L− TD + 1)
− 1 ≤

(
L+ 1

L− TD + 1

)n
− 1.

4. Upper bounds for the coefficients. Combining Proposition 3 and
Corollary 3, we find the following general upper bound for the maximum
modulus:
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Theorem 1. Let P be an irreducible polynomial in n variables with in-
teger coefficients and of degree at most D. Then, for any positive number x,
we have
log |P | ≤ x log(e(D + 1))

+
(

1 +
D

x

)n
·
{

(n+ 1) log(D + x+ 1) +
(

1 +
x

D

)
logM(P )

}
.

Proof. We apply Proposition 3 choosing T = 1 and L = D + d, with
d = [x]. Since log |F | ≤ h(F ) + n log(L+ 1), we have

log |F | ≤
(

1 +
D

d+ 1

)n
·
{

(n+ 1) log(D + d+ 1) +
(

1 +
d

D

)
logM(P )

}

≤
(

1 +
D

x

)n
·
{

(n+ 1) log(D + x+ 1) +
(

1 +
x

D

)
logM(P )

}
.

Now, by Corollary 3,

log |P | ≤ d log(e(D + 1)) + log |F |
≤ x log(e(D + 1))

+
(

1 +
D

x

)n
·
{

(n+ 1) log(D + x+ 1) +
(

1+
x

D

)
logM(P )

}
.

Remarks. As suggested by the referee, we could prove an apparently
more general result without choosing T = 1 at the beginning of the previous
proof. More precisely, using Proposition 3 we can find a multiple of P T

of degree ≤ L = TD + d. Then, using the more precise bound for the
factors given by Proposition 2 instead of Corollary 3, we obtain an upper
bound for |P T | = |P |T . In this way, we can prove an inequality of the shape
log |P | ≤ f(T, d), where

f(T, d) = nD log
(

1 +
d

TD

)
+
nd

T
log
(

1 +
TD

d

)

+
(

1 +
TD

d

)n
·
{

(n+ T ) log(TD + d+ 1) +
(

1 +
d

TD

)
logM(P )

}
.

Both the integer parameters T and d are now at our disposal. Unfortunately,
the optimal choice of T turns out to be T = 1. This is due to the term
log(TD+ d+ 1) in the last displayed formula, which comes from log(L+ 1)
in Proposition 3. As noticed by the referee, this can be viewed as a signal that
the argument used to obtain our main result is not the best possible. This
phenomenon occurs very often in Diophantine’s proofs (see, for instance,
Dobrowolski’s lower bound for the height).

We also notice that the main result of [M1] (Theorem 5) is just the
special case n = 1 of Theorem 1, the proof of Theorem 1 being a natural
extension of the proof of [M1]. One can also notice that the main result of
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[M1] was extended to complex univariate polynomials in [A3] (under some
hypothesis on the discriminant). It is an interesting open problem to extend
Theorem 1 to complex polynomials (under suitable hypotheses).

Proof of Corollary 1. Assume first D ≤ D0 := (n + 1)n+3 and consider
the function

f(t) = log((n+ 1)t)− t1/(n+1) log(n+ 1).

By standard analysis, we see that min t∈[1,D0] f(t) = min{f(1), f(D0)}.
Since f(1) = 0 and

f(D0) = ((n+ 4)− (n+ 1)(n+3)/(n+1)) log(n+ 1) > 0,

we have
(n+ 1)D ≤ ((n+ 1)D)D

n/(n+1)

for D ≤ D0. Hence, in this range, Corollary 1 follows directly from the
inequality L(P ) ≤ (n+ 1)DM(P ). Assume now D > D0 and choose

x = (n+ 1)1/(n+1)Dn/(n+1)

in Theorem 1. Since D > D0 we have

x ≤ (n+ 1)−(n+2)/(n+1)D ≤ D − 1.

Hence log(D + x+ 1) ≤ log(2D) and

1 + x/D ≤ 1 + (n+ 1)−(n+2)/(n+1),

1 +
D

x
=
(

1 +
x

D

)
D

x
≤ (1 + (n+ 1)−(n+2)/(n+1))(n+ 1)−1/(n+1)D1/(n+1).

Therefore

(3) (n+ 1)
(

1 +
D

x

)n
log(D + x+ 1)

≤ (1 + (n+ 1)−(n+2)/(n+1))n(n+ 1)1/(n+1)Dn/(n+1) log(2D)

≤ eDn/(n+1) log((n+ 2)D)

and

(4)
(

1 +
D

x

)n(
1 +

x

D

)
logM(P )

≤ (1 + (n+ 1)−(n+2)/(n+1))n+1(n+ 1)−n/(n+1)Dn/(n+1) logM(P )

≤ 2Dn/(n+1) logM(P ).

Moreover, since D0 ≥ 10, we also have

x log(e(D + 1)) ≤ (n+ 1)1/(n+1)Dn/(n+1) log(3D)(5)

≤ 2Dn/(n+1)((n+ 2)D).
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Using inequalities (3)–(5) in Theorem 1, we obtain

log |P | ≤ 6Dn/(n+1) log((n+ 2)D) + 2Dn/(n+1) logM(P ).

Proof of Corollary 2. Let z1, . . . , zn ∈ C; applying the maximum princi-
ple to the polynomial

XD1
1 . . .XDn

n P (X−1
1 , . . . ,X−1

n )

on the polydisk X1 = max{1, |z1|}, . . . , Xn = max{1, |zn|}, we get

|P (z1, . . . , zn)| ≤ |P | ·max{1, |z1|}D1 . . .max{1, |zn|}Dn .
Hence, by standard arguments (see for instance [MW], Lemma 4),

|P (α1, . . . , αn)| ≥ |P |−d+1M(α1)−D1d/d1 . . .M(αn)−Dnd/dn .

Now we apply Corollary 1 to get an upper bound for |P |.
The following result is sharper than Corollary 1 in the range

(3n)1+1/n ≤ 1 +
logM(P )

log((n+ 2)D)
≤ D

4
.

Corollary 4. Let P be an irreducible polynomial in n variables with
integer coefficients and of degree at most D. Assume

(6) 1 +
logM(P )

log((n+ 2)D)
≤ D

4
.

Then

log |P | ≤ (n+ 1)
(

1 +
logM(P )

log((n+ 2)D)

)1/(n+1)

Dn/(n+1) log(4(n+ 2)D2).

Proof. To simplify the notations, put

c = 1 +
logM(P )

log((n+ 2)D)

and choose x = (n + 1)c1/(n+1)Dn/(n+1) in Theorem 2. By (6) we have
x ≤ (n+ 1)4−1/(n+1)D ≤ nD; hence

log(D + x+ 1) ≤ log((n+ 2)D), 1 +
x

D
≤ n+ 1,

1 +
D

x
=
(

1 +
x

D

)
D

x
≤ c−1/(n+1)D1/(n+1)

and (notice that e(1 +D) ≤ 4D since D ≥ 4) also

x log(e(D + 1)) ≤ (n+ 1)c1/(n+1)Dn/(n+1) log(4D).

Putting these inequalities in Theorem 1 we obtain the assertion.

5. Examples. Corollary 4 is sharp (except perhaps for a power of logD)
if logM(P ) ≥ D(log((n + 2)D))−c with c > 0. In fact, for any polynomial
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of degree D satisfying the previous inequality, we have

log |P | ≥ logM(P )

≥
(

logM(P )
log((n+ 2)D)

)1/(n+1)

Dn/(n+1) log((n+ 2)D)(1−c)/(n+1).

In this section, using some ideas from [A2], §4, and from [D], §6 and
§7, we construct a family of irreducible polynomials Pk (k ∈ N) such that
logM(Pk) is “small” and the upper bound for |Pk| given by Corollary 3 is
sharp (except perhaps for some power of logD).

Consider the set

Λk = {λ = (λ1, . . . , λn) ∈ Zn : 0 ≤ λj ≤ k − 1, j = 1, . . . , n}
of cardinality kn. We fix an arbitrary total order < on Λk and we introduce
the polynomial

Fk(X) = Det((Xλ)j)λ∈Λk; j=0,...,kn−1 =
∏

λ,µ∈Λ
µ<λ

(Xλ −Xµ),

where Xλ = Xλ1
1 . . .Xλn

n . An easy computation shows that Fk has partial
degree

degj Fk =
kn(k − 1)(4kn + kn−1 − 3)

12
∼ 1

3
k2n+1.

Therefore degFk . (n/3)k2n+1. Moreover, by the Hadamard inequality,

|Fk| ≤ knk
n/2.

We now fix a polynomial Ak ∈ Z[X] of total degree degAk = degFk and
with coefficients ∈ {0, 1}, which is irreducible mod 2. Define

Pk(X) := Ak(X) + 2
Fk(X2

1 , . . . ,X
2
n)

Fk(X1, . . . ,Xn)
= Ak(X) + 2

∏

λ,µ∈Λ
µ<λ

(Xλ + Xµ).

This polynomial is irreducible and

Dk := degPk .
n

3
k2n+1.

Moreover, since M(Fk) = 1 and H(Ak) = 1,

M(Pk) = M(Ak(X)Fk(X) + 2Fk(X2
1 , . . . ,X

2
n)) ≤ (|Ak|+ 2)|Fk|

≤
(

2 +
(
Dk + n

n

))
knk

n/2.

Therefore,

logM(Pk) . n

2
kn log k.
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Corollary 4 gives the upper bound

log |Pk| ≤ (n+ 1)
(

1 +
logM(Pk)

log((n+ 2)Dk)

)1/(n+1)

Dn/(n+1) log(4(n+ 2)D2
k)

. 2(n+ 1)3k2n log k.

On the other hand, for large k,

log |Pk| ≥ log |Pk(1, . . . , 1)| ≥ log
(

21+ 1
2k
n(kn−1) −

(
Dk + n

n

))
& log 2

2
k2n.

Remark. In [A1] there was exhibited a family of irreducible univariate
polynomials PD(X) ∈ Z[X] of degree at most D and Mahler’s measure
≤ 1

2D
2 such that

log |PD(1)| &
√

2D logD.

It would be nice to extend this construction to several variables.

6. Appendix: how to compute M(P ). As in the univariate case, the
following algorithm is based on Graeffe’s method.

Let P (X) be a polynomial with complex coefficients. We define recur-
sively n+ 1 polynomials P0, P1, . . . , Pn ∈ C[X] as follows. We put P0 := P .
Let now j be an index with 1 ≤ j ≤ n; write

Pj−1(X) = Aj(X1, . . . ,Xj−1,X
2
j ,Xj+1, . . . ,Xn)

+Bj(X1, . . . ,Xj−1,X
2
j ,Xj+1, . . . ,Xn) ·Xj

and define
Pj(X) := Aj(X)2 −Bj(X)2 ·Xj .

Lemma 1. We have degi Pj ≤ 2 degi Pj−1 for i = 1, . . . , n; moreover
degj Pj = degj Pj−1. We also have M(Pj) = M(Pj−1)2.

Proof. The first two claims are obvious. In order to prove the third one,
we remark that

Pj(X1, . . . ,Xj−1,X
2
j ,Xj+1, . . . ,Xn)

= Pj−1(X) · Pj−1(X1, . . . ,Xj−1,−Xj ,Xj+1, . . . ,Xn).

Therefore, by simple changes of variables in the integral defining the Mahler
measure,

M(Pj) = M(Pj(X1, . . . ,Xj−1,X
2
j ,Xj+1, . . . ,Xn)) = M(Pj−1)2.

We now define a transformation τ : C[X] → C[X] by putting τP = Pn.
By the previous lemma we have

M(τP ) = M(P )2n , degi(τP ) ≤ 2n−1 degi P (i = 1, . . . , n).
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Therefore, using the inequalities (see §1)
M(F ) ≤ ‖F‖ ≤ 2deg1 F+...+degn F ·M(F ),

with F = τ (m)P , we obtain the following generalization of the main result
of [CMP]:

Proposition 4. The real sequence {‖τ (m)P‖2−n·m}m∈N tends to M(P ).
More precisely ,

M(P ) ≤ ‖τ (m)P‖2−n·m ≤ 22−m·(deg1 P+...+degn P ) ·M(P ).

References
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