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Multiple p-adic log-gamma functions and
their characterization theorem

by

KEN KAaMANO (Tokyo)

1. Introduction and main results. Morita’s p-adic gamma function
I'y(x) is the unique continuous function on the ring of p-adic integers Z,
satisfying
(1.1) Iy(z+1) _ {—a: (x €Zy),

() —1 (z € pLyp),
and the initial condition I},(0) = 1. By (L.1)), we have
X
g, Ty(a-+ 1) = log, 1) = { 7 7<)

where log,, is the Iwasawa p-adic logarithm. It is easy to see that there is
no continuous function ¢ on Z, such that ¢(z + 1) — ¢ (z) = log, z for all
x € Z,\ {0} (see [10, p. 182]). However, there exists a continuous function
on C, \ Zy, satistying ¢(z +1) —¢(z) = log, = for all z € Cp\ Z), where C,, is
the completion of the algebraic closure of the p-adic field Q,. An example of
such a function is Diamond’s p-adic log-gamma function Log I'h(z), which
is defined by

LogI'p(z) = | ((z+t)log,(z +t) — (x+1)dt (x€Cpy\Zp),
Zp
where Szp f(t) dt is the Volkenborn integral of f defined by

V-1
tydt = lim p=
[ f@)d = im 5" sa)
L a=0
(see Section . This function satisfies the expected difference equation
(1.2) Log I'n(x + 1) — Log I'p(v) = log, x
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for all z € C,\Z,. Although the difference equation ([1.2)) cannot characterize
the function Log I'p(z), Cohen and Friedman [3] proved that (1.2) and a
certain integro-differential equation characterize it.

THEOREM 1.1 (Cohen—Friedman [3|, Section 1]). Diamond’s p-adic log-
gamma function Log I'n(x) satisfies

1
(1.3) S Log I'n(z +t)dt = (z — 1)(Log ID)'(x) — x + 3 (x € Cp\ Zp).
ZP
It is the unique strictly differentiable function f : C, \ Z, — C, satisfying
the difference equation

flx+1) = f(x) =log,x

and the Volkenborn integro-differential equation

1
| fle+t)dt = (:v—l)f’(a:)—x+§.
ZP
As stated in [3, Section 1], formula (1.3) above can be regarded as a
p-adic analogue of Raabe’s classical formula:

L (D(z+1)
log| —=—— | dt =zlogz —z (z>0),
[S) g< = > g

where log x is the ordinary logarithm function on R.

There are many studies on multiple analogues of the gamma function
and the log-gamma function. In the complex case, around 1900, Barnes stud-
ied multiple gamma functions which are defined by using multiple Hurwitz
zeta functions (see e.g. [I]). Vignéras [12] redefined these multiple gamma
functions to be functions satisfying a Bohr—Mollerup type theorem. These
functions have many applications. For example, Shintani [I1] used the dou-
ble gamma function to study Kronecker’s limit formula for certain alge-
braic fields. In the p-adic case, Cassou-Nogues [2] defined multiple p-adic
log-gamma functions. Variants of multiple p-adic log-gamma functions have
also been investigated by many authors (e.g. Imai [6] and Kashio [7]).

In this paper, we focus on a simple multiple analogue of Diamond’s p-
adic log-gamma function, denoted by Log I ,(x). For more general forms
of these functions Log I'p ,(x), see Cassou-Nogues [2, p. 53] and Kashio [7]
Section 5]. The function Log I ,(z) (r > 1) satisfies the difference equa-
tion Log I ,(xz + 1) — LogIp () = LogIp,—1(z) for all z € C, \ Z,
(Proposition [3.4). As a main result, we show that the function Log I'p ()
satisfies a Raabe-type formula and a characterization theorem. This result
is a generalization of Theorem because LogIp i(x) = LogIp(z) and
Log I'po(z) = log, z.
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MAIN THEOREM.
(i) For a positive integer r and x € Cp, \ Zy, we have

(1.4) r | Log I'vr(z +t) dt = (z — r)(Log I'p»)' () — Sr(x),
ZP
where Sy(z) € Q[z] is the multiple Bernoulli polynomial defined by
2.
(ii) For a positive integer r, the multiple p-adic log-gamma function
Log I ,(x) is the unique strictly differentiable function f : C,\Z, —
C, satisfying the following conditions:

(A) f(z+1) — f(x) = Log I'p 1 ().
B) riy, fle+t)dt=(z—r)f'(z) - S (2).

The plan of this paper is as follows. In Section 2, we review Volken-
born integrals and multiple Bernoulli polynomials. In Section 3, we define
multiple p-adic log-gamma functions Log I'p »(x) on C, \ Z,, and give some
properties of them. In Section 4, we prove our Main Theorem. In the last
Section 5, we deal with multiple p-adic log-gamma functions on Z,. They
are generalizations of the logarithm of Morita’s p-adic gamma function.

2. Multiple Bernoulli polynomials. For a positive integer n, we set
V" = {(w1,...,20) € Ly | xi # x5 if i # j}.

The nth (order) difference quotient ®,f : V"7, — C, of a function f :
Z, — C, is inductively given by @ f = f and for (z1,...,7n41) € V7,
by

@nflf(xla Z3, ... 7xn+1) B @nflf(x% L3y .., Ili'n+1)

@nf(l‘l, . ,$n+1) = 71 — 79 .

A function f is called a C"-function if @, f can be extended to a continuous
function @, f : Zg“ — C,. The set of all C"-functions from Z, to C, is de-
noted by C™(Z, — C,). Moreover, we set C*°(Z,—C,) =2, C"(Z, — C,)
(e.g. [10, Section 29]). We note that C*-functions and strictly differentiable
functions are exactly the same.

For a function f € C*(Z, — C,), the limit value

pN-1

lim p~™ )" f(a)
a=0

N—oo
exists. It is called the Volkenborn integral of f and is denoted by
| £t at

Zyp
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(e.g. [10, p. 167]). For a continuous function f : Z, — C,, we denote the
indefinite sum of f by Sf, that is, Sf is the unique continuous function
on Zj, satisfying Sf(n) = Z;:& f(j) for any positive integer n (e.g. [10,
p. 106)). For f € CY(Z, — C,) and = € Z,, the following identities are
known (cf. [I0) p. 168]):

(2.1) ZS fla+t)dt=(Sf) (@),
(2:2) prf@c + 1) dt —ZS f(tydt = (Sf) (@),
(2.3) ngf(x+t+ 1)dtp—ZS flz+t)dt = f'(x),
(2.4) gp f(—tydt = | f(t#—pl)dt.

Zy Zp

Moreover, for f € C%*(Z, — C,), we have

(2.5) % | fa+tydt=\ f'(a+1)dt
Zy Zyp

for x € Z, ([9, p. 268]).
The Bernoulli polynomials B,,(x) are defined by the generating function

et B i B, (x) m
et —1 n! ’
n=0
When z = 0, the numbers B,(0) = B, are the ordinary Bernoulli num-
bers. It is known that the Bernoulli polynomials are expressed by using a

Volkenborn integral:

(2.6) | (@+t)"dt = Bu(z) (n>0).
ZP
In particular, we have
(2.7) \t"dt=B, (n>0)
Zp
(e.g. [9 p. 271]).

Let r be a positive integer and x € C,. As a generalization of (2.6), we
define multiple Bernoulli polynomials as

1
(2.8) Sp(w) == V@+ti+--+1) diy ... dty,
7! i
where SZ; means SZp . SZP‘ From the multinomial expansion and equations

N—_——

r
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and , we have

_ ~ B (@)By, - - By,
(2.9) Sr(z) = Z kyl- - k! ’
where the summation is over all non-negative integers ki, ..., k, with k; +

-+ 4+ k, = r. Thus S,(z) is a polynomial with rational coefficients of de-
gree r. We note that S,.(x) is a special case of Barnes’s multiple Bernoulli
polynomials (cf. Ota [8, Section 2]).

3. Multiple p-adic log-gamma functions. For an integer r > 0,
Endo [5] introduced the function ¢, : C} — C,, defined by

x" "1

T (og,z -5 = >1
o) = r!(ogpx z::) =

log, x (r=0).

Using this function, he defined multiple p-adic log-gamma functions on Z,,
which are generalizations of the logarithm of Morita’s p-adic gamma func-
tion. Endo’s multiple p-adic log-gamma functions will be dealt with in the
last section.

From the definition, it is easily proved that for r > 1,

x?"
(3.1) ror—1(x) = ror(z) + R
Since (log, z)" = 1/z for x € C}, we have Lor(z) = or(z) for r > 1.
Moreover, since logp(xy) = log, = +log, y for all z,y € C, we deduce that,
for integers r > 0 and k > 1,

(3.2) or(kx) = k" pr(x) + (k;U')T log,, k.

In particular, since log, p = log,(—1) = 0, we have ¢, (pr) = p"¢,(x) and
er(—z) = (=1)"pr(z).
LeMMA 3.1. Let f € C"(Zy, — Cp) (r > 2). Then F(x) = S.Zp flx+1t)dt
€ C""Y(Z, — C,). Therefore, the integral
| ftr+- +t)dty . dt,
Zy
can be defined if f € C"(Z, — C,).
Proof. If f € C"(Z, — C,), then Sf € C"(Z, — C,) (e.g. [10, Corollary
54.3]). Moreover, if Sf € C"(Z, — Cp), then (Sf) € C"~Y(Z, — C,) (cf.

[10, Theorem 78.2]). By (12.1), we obtain the first part of the lemma. The
second part can be proved by induction on r. =
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DEFINITION 3.2. For any integer r > 0 and =z € C, \ Z,, we define
multiple p-adic log-gamma functions by

Vor@+ti+- -+t dty...dty (r>1),
Log FD,T (:E) = Zy,
log,, = (r=0).

Since locally analytic functions are C*°-functions (e.g. [10, Corollary
29.11]), we have ¢, € C*°(Z, — C,) for all r > 0. Therefore, by Lemma[3.1]
this definition makes sense and ¢t — Log I (z + ) is also a C*°-function
from Z, to C, for a fixed z € C,, \ Z,. When r = 1, we have

LogIpi(z) = | ((z+t)log,(x+1t) — (z+ 1) dt (v €Cp\ZLp)
Zyp

and this function is nothing but Diamond’s p-adic log-gamma function
Log I'h(x) (it was originally denoted by G,(x), see [4]). Diamond proved
that Log I'n(z + 1) — Log I'n(z) = log,, z for all z € C,, \ Z,,.

We prove the following lemma which is needed to give properties of
multiple p-adic log-gamma functions. This identity has appeared in
[10, p. 170] without proof, and we give its proof here.

LEMMA 3.3. Let k be a positive integer For f € CY(Z, — C,), we have

(3.3) S k‘z S (i+ks)d

Lp =0 Zp
Proof. From the definition of Volkenborn integrals, we have
k—1 k-1 pN-1 kpN—1

fliths)ds =Y Jim = 3 f(z'+kj)=Nn§1wiN S A

=0 Zp =0 7=0 =0
k—1 1 pN—1
= lim — N
A Z f@p™ +5)
= 7=0
Hence, by using the uniform convergence of the series, we obtain
pN -1
A}gnoopN Z flipN + ) = hm o Z hm f(ip™ + 5)
pN—1
= lim — dt

for any integer ¢. This proves the lemma. u

Now we give some properties of multiple p-adic log-gamma functions,
which are generalizations of those of Diamond’s p-adic log-gamma function
(see [10, Theorem 60.2]).
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PROPOSITION 3.4. Let r and k be positive integers. For x € C,\ Zy,, the
following identities hold:

(i) LogIp,(z+1) —Log Ip,(z) = Log I r—1(x).

(ii) Log I y(—x) = (—1)"Log I'n v (z + 7).
(ili) LogIp ()

k—1
-y ZLogrD,,<““+ s )—i—(logpk)&(x).

11=0 1»=0 k
In particular, when k = p, we have

p—1 p—1

x4i1+- i
Log T, (a) = 3 .. 3 Log T, (£ 510,

i1=0 =0 p

Proof. Assertion (i) is easily proved by ([2.3) and (2.5). By the identity
or(—z) = (—1)"p,(x) and (2.4), we have

LogIp ,(—z) = S or(—x 4+t + -+ t,)dty ... dt,

Zy

:(_1)r S @r(x_tl_"'—tr)dtl...dtr
z

= (1" {or@+ L+ 1)+ + (& + 1) dty ... dt,
Zy
= (—1)"Log Ip,(z+ )
and this proves (ii). Assertion (iii) follows by (3.2) and Lemma In fact,

LogIp,(z) =\ or(z+ti 4+ +t,)dt;...dL,

Zy
R
:ﬁz Z Sgorx—k (i1 + ks1) 4+ -+ (i + ksy))dsy .. .ds,
=0  i,=0Zr
k—1 k-1
1 - T+i1+ iy
)RR (k <Pr< : ? +s1+F r)
=0 =021
log,, k , r
+ (x+ir+--+ir+ksi+---+ks) ) dsy...ds,
rl
_’“il leOgFD <x+i1+-~+ir>
= -
i1=0  ip=0 k
k— k—1
1 log, k ) ]
+ﬁ Z 7"2'7 S(:c+21+~~-+zr—1—k:51+---+k:s,n)rd51...dsr
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By using Lemma [3.3| again, we have

k—1 k—1 . .
r+i+---+1
Log I'p r(x) = Z"'ZLOgFDW( ! ? r>
i1=0  i,=0
log,, k

;" V@+ti+-+t) dty .. dt,

k=1 k-1 . ,
-y ..y LogrD,r<"3 Tt “’“) + (log, k) Sy ().

The last formula immediately follows because log,p = 0. =

4. Proof of the Main Theorem. We first give lemmas to prove our
Main Theorem.

LEMMA 4.1. For f € C?*(Z, — C,), we have
(4.1) Ve+vf@wdt= 1\ fydt— | | f(z+1t)dzdt.
Zp Zp Zp Zp

Proof. It is known that

(4.2) VE+1)f@)dt=— | Sf(t)at

Zyp Zp

(cf. [10} p. 170]). By (2.2), we have
43) {e+1fwdt=—\(Swdt=\ftydt—\ | fz+1)dudt,

Zp Zp Zp Zp Zp

and this proves the lemma. m

LEMMA 4.2. Let f € C"(Zy, — C,) (r > 1). Then

VE+Dft++t)dt . dty = (G + 1)t + -+ ) dty . dty
L, L,
forany 1 <i,57 <r.
Proof. We only have to prove the case r = 2:

(4.4) S (tl + 1)f(t1 + tg) dt1 dty = S (tQ + 1)f(t1 + tg) dt1 dto
Z z

for f € C?(Z, — Cp). We put Fy,(t1) = f(t1 + t2). Then
SFy,(t1) = Sf(t1+t2) = Sf(ta).
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By (4.2), the left-hand side of (4.4]) is equal to
(1 + 1) By (1) dtydty = — | | (SE,)(1) dty dty

72 Ly Zp
= — | V(SHt1+12) = (SF)(t2)) dtr dts
Zp Ly
= — [ (SF)(t1 +t2) dtr dts + | (Sf)(t2) dts.
72 Ly

On the other hand, the right-hand side of (4.4) is equal to

V@t + 1) | fts+ta)dtydty = | (t2 + 1)(SF) (t2) dta
ZLU ZP Zp

= (St +ta) dtrdts + [ (SF)(t2) dts

z2 Zy

because of Lemma As a consequence, equation (4.4]) holds. =
We are now in a position to prove our Main Theorem.

Proof of the Main Theorem. First we prove the uniqueness (ii). This
actually follows from a more general result in [3, Section 1], but we give
a proof to make the paper self-contained. We assume that strictly dif-
ferentiable functions f(x) and g(z) satisfy conditions (A) and (B). Set
h(z) = f(x) —g(x). By (B), we have r SZP h(z+t)dt = (x—r)h'(z). By (A),
we have h(z + 1) = h(z) for all € Z,. Therefore {, h(x +t)dt = h(x).

P
Moreover, h'(z) = 0 because

. 1@+ D7) = h(a)

n—00 pn

=0.

As a consequence, h(z) = 0, and this proves (ii).
Now we prove (i). We calculate the following integral in two ways:
(4.5) V@+ti+-+t)ora(e+ti - +1t,)dty ... dt,.
Ly

By equation (3.1)), we obtain

46)  J@H+t+ -+t a(z+ti -+ t)dh .. dt,
Ly

(T4t + - +t)"
7!

— S(T(Pr(x“‘tl"i_"'"’_tr)"i_ >dt1...dtr

Zy
= rLog FD,T(x) + ST('I)
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On the other hand, by Lemma

@+t + o +t)er i@ttt +t,)dty ... dt,
Zy

I8
=Y Vit Dppa(@+ta+-+t,)dty ... dt,
i=1 ZZ

+(x—r) S Or—1(x +t1+ -+ t,)dty ... dt,

Zy
=r |t +Dera(@+tr+-+1t,)dt ... dt,
z;
+(x—r) S Or—1(x 4+t + -+ t,)dty ... dt,.
Z’I’

D

By Lemma |4.1| and the relation ¢} (z) = ¢,—1(x), we have

Vit + Dora(@+to - +t,) dty . dty
Zy
= Vor@+ti+- -+t dty .. dt,

Zy

~{ Vorlattit ottt t)dtr .. dtdt
Zp 25

= LogIp(x) — S Log I'n ,(x +t) dt.
Zp

Moreover, by ([2.5)),

d
Scp,,_l(x—i—tl+-~~+t,,)dt1...dtr:% S Or(x+t1+ -+ t,)dty ... dt,
Zy, Zy,

= (Log I'p,) ().
Therefore
7)) N@+ti+ o+ t)pea (@t 4+t dty . dty
L,
=rLogIp,(z)—r S Log I (x4 t)dt + (x — r)(Log Ip ) (2).
Zp

Combining (4.6) and (4.7)), we obtain (1.4). m

5. Multiple p-adic log-gamma functions on Z,. In this last sec-
tion, we deal with multiple p-adic log-gamma functions defined on Z,. For
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a continuous function f : Z, — C,, we use the notation

win [ flx) (fzeZ)),
G {0 (if x € pZy).

It is clear that f*(z) is also continuous on Z, and %(f*) = (%f)* if fis
differentiable (cf. [5]). For an integer > 0 and x € Z,, we define multiple

p-adic log-gamma functions on Zj, as

Vor@+ti+-+t)dty...dte (r>1),
(5.1) Log I'vir(7) = § zp
log;‘,(a:) (r=0).
The function Log I'vi - (x) satisfies the difference equation
(5.2) Log Ivi,r(x + 1) — Log I'vi» (x) = Log I'vip—1(z)  (z € Zp)
for all » > 1. When r = 1, the function Log I i(z) is the logarithm

of Morita’s p-adic gamma function, i.e. Log I 1(x) = log, I'x(7) (e.g. [3}
p. 370]).

REMARK 1. Endo [3, p. 45] introduced multiple p-adic log-gamma func-
tions G, (x) for r > 1 and = € Z, as

(5.3)  Gr(x)

= S [¢i(m+t1+---+tr)—z<Tfk)go7;(t1+-~+tk) dty ...dt,.
zy k=0

He showed that the function G, satisfies not only the difference equation
Gri1(z+1)—Gry1(x) = Gy (x) but the good initial condition G,(0) = 0 for
all 7 > 1 ([5, Theorem 5]). Therefore the function G, can be considered as

a modification of (5.1)), but for the sake of simplicity, we consider (5.1)) in
this paper.

The following proposition gives a relation between Log I\ ,(z) and
Log I'p »(x). This is a generalization of the known formula (e.g. [10, Theorem
60.2]):

p—1 .
(5.4) Log ()= Y Loglp <m;”> (x € Z,).
pllzti)
PROPOSITION 5.1. For a positive integer v and x € Zj,, we have
p—1 p—1 . .
Log I'viyr(z) = Z Z Ijoglﬂlgﬂn(x—'_l1 —; — +ZT>.
11=0 ir=0

PHa-+in+ir)
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Proof. By (3.3]), we obtain

Log Ivir(z) = S or(z+t1 4+ t,)dty...dt,

Z'r
1 p—1 p—1
- Z or(z+ (i1 +ps1) + -+ (ir +psy))dsy ... dsy
p 11=0 =0 ;
1 =
p Z Z S¢r33+11+ “F iy +psi+ -+ psy)dsy ... ds,

11=0 1-=0 Z7
R ——

By the equation ¢, (px) = p"p,(x), we have

Log I'vi ()

p—1 p—1
ZZ S(pr<x+“+ i + 51+ - sr>d31...dsT

11=0 ir=0 Zg p
platiy+-+ir)

p—1 p—1
- Y.y LogIbT<1*+Zl+' i )..

i1=0 1,-=0 p
PH(a-tintotir)

In the last part of this paper, we show that the function Log I ,(x)
satisfies the following integro-differential equation similar to (|1.4]).

PROPOSITION 5.2. For a positive integer v and x € Zj,, we have

r S Log I'vir(x +t) dt

ZP
P (T it
= (z — r)(Log Iwiy)' () — Sp(2) + Y ST< 5 >
where the summation is over all integers iq,...,4, with 0 < 3 < p—1

(1<i<r)andpl|(x+ii+- - +ip).
This proposition is a generalization of the formula in [3| Proposition 2.4]:
(5.5) S Log Ivii(z +t)dt = (x —1)(Log Iv1) (z) —z + ﬁ;—‘ (x € Zyp),
ZP

where [2/p] (z € Zp) is the p-adic limit of the usual integer ceiling function
[x,/p]| as x, — x through z,, € Z. In fact, when r = 1 in Proposition
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then S,(z) = Bi(z) = © — 1/2 and the last term of (5.2) is equal to

o x aC)n(E)[E

pl(z+i)
In a way similar to the proof of the Main Theorem, we have

DO |

(5.7 r S Log I'viy(x +t) dt
Zp

— (¢ — r)(Log I, (&) % [ @ttt dby . dty
L,
Therefore Proposition follows from the next lemma.
LEMMA 5.3. For a positive integer v and x € Z,, we have
THir+ -+
p )

S(w+t1+-~-+t7«)r*dt1 dt, =r!S.(z —r'ZS(
Zy

where the summation is the same as in Proposition [5.2].

Proof. By (3.3]), we have

V@+tit o +t,) ™ dty .ty

Zy,
1 p—1 p—1
= | = (@ (i +psi) o+ (i +pse)) " dsy . ds,
Z;p 11=0 ir=0
1 p—1 p—1
= 87 ...Z(:U+i1+-~+ir+p51+~-+ps,n)rdsl...dsr
Zzp i1=0 ir-=0

- 72 Z T+ i+ sy 4+ psp) dsy ... ds,
11=0 =0
pl(z+ir+-+ir)

_ S(m—l—tl—l—""FtT)rdtl"'dtr

Ly
refxtint-+ iy "
-y S< ! s 4 7«) dsy ... ds,
zy p
THi+ -ty
=rlS,(z) —r! S< >.-
2 .
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