Multiple p-adic log-gamma functions and their characterization theorem

by

KEN KAMANO (Tokyo)

1. Introduction and main results. Morita's p-adic gamma function $\Gamma_p(x)$ is the unique continuous function on the ring of p-adic integers \mathbb{Z}_p satisfying

(1.1)
$$\frac{\Gamma_p(x+1)}{\Gamma_p(x)} = \begin{cases} -x & (x \in \mathbb{Z}_p^{\times}), \\ -1 & (x \in p\mathbb{Z}_p), \end{cases}$$

and the initial condition $\Gamma_p(0) = 1$. By (1.1), we have

$$\log_p \Gamma_p(x+1) - \log_p \Gamma_p(x) = \begin{cases} \log_p x & (x \in \mathbb{Z}_p^{\times}), \\ 0 & (x \in p\mathbb{Z}_p), \end{cases}$$

where \log_p is the Iwasawa p-adic logarithm. It is easy to see that there is no continuous function ψ on \mathbb{Z}_p such that $\psi(x+1) - \psi(x) = \log_p x$ for all $x \in \mathbb{Z}_p \setminus \{0\}$ (see [10, p. 182]). However, there exists a continuous function ψ on $\mathbb{C}_p \setminus \mathbb{Z}_p$ satisfying $\psi(x+1) - \psi(x) = \log_p x$ for all $x \in \mathbb{C}_p \setminus \mathbb{Z}_p$ where \mathbb{C}_p is the completion of the algebraic closure of the p-adic field \mathbb{Q}_p . An example of such a function is Diamond's p-adic log-gamma function $\operatorname{Log} \Gamma_{\mathbb{D}}(x)$, which is defined by

$$\operatorname{Log} \Gamma_{\mathcal{D}}(x) = \int_{\mathbb{Z}_p} ((x+t) \log_p(x+t) - (x+t)) dt \quad (x \in \mathbb{C}_p \setminus \mathbb{Z}_p),$$

where $\int_{\mathbb{Z}_p} f(t) dt$ is the Volkenborn integral of f defined by

$$\int_{\mathbb{Z}_p} f(t) \, dt = \lim_{N \to \infty} p^{-N} \sum_{a=0}^{p^N - 1} f(a)$$

(see Section 2). This function satisfies the expected difference equation

(1.2)
$$\operatorname{Log} \Gamma_{\mathcal{D}}(x+1) - \operatorname{Log} \Gamma_{\mathcal{D}}(x) = \operatorname{log}_{p} x$$

2010 Mathematics Subject Classification: Primary 11S80; Secondary 11B68.

Key words and phrases: p-adic log-gamma function, Volkenborn integral, multiple Bernoulli polynomials.

for all $x \in \mathbb{C}_p \setminus \mathbb{Z}_p$. Although the difference equation (1.2) cannot characterize the function Log $\Gamma_D(x)$, Cohen and Friedman [3] proved that (1.2) and a certain integro-differential equation characterize it.

THEOREM 1.1 (Cohen–Friedman [3, Section 1]). Diamond's p-adic loggamma function Log $\Gamma_{\rm D}(x)$ satisfies

(1.3)
$$\int_{\mathbb{Z}_p} \operatorname{Log} \Gamma_{\mathcal{D}}(x+t) dt = (x-1)(\operatorname{Log} \Gamma_{\mathcal{D}})'(x) - x + \frac{1}{2} \quad (x \in \mathbb{C}_p \setminus \mathbb{Z}_p).$$

It is the unique strictly differentiable function $f: \mathbb{C}_p \setminus \mathbb{Z}_p \to \mathbb{C}_p$ satisfying the difference equation

$$f(x+1) - f(x) = \log_p x$$

and the Volkenborn integro-differential equation

$$\int_{\mathbb{Z}_n} f(x+t) \, dt = (x-1)f'(x) - x + \frac{1}{2}.$$

As stated in [3, Section 1], formula (1.3) above can be regarded as a p-adic analogue of Raabe's classical formula:

$$\int_{0}^{1} \log \left(\frac{\Gamma(x+t)}{\sqrt{2\pi}} \right) dt = x \log x - x \quad (x > 0),$$

where $\log x$ is the ordinary logarithm function on \mathbb{R} .

There are many studies on multiple analogues of the gamma function and the log-gamma function. In the complex case, around 1900, Barnes studied multiple gamma functions which are defined by using multiple Hurwitz zeta functions (see e.g. [1]). Vignéras [12] redefined these multiple gamma functions to be functions satisfying a Bohr-Mollerup type theorem. These functions have many applications. For example, Shintani [11] used the double gamma function to study Kronecker's limit formula for certain algebraic fields. In the p-adic case, Cassou-Noguès [2] defined multiple p-adic log-gamma functions. Variants of multiple p-adic log-gamma functions have also been investigated by many authors (e.g. Imai [6] and Kashio [7]).

In this paper, we focus on a simple multiple analogue of Diamond's p-adic log-gamma function, denoted by $\operatorname{Log} \Gamma_{\mathrm{D},r}(x)$. For more general forms of these functions $\operatorname{Log} \Gamma_{\mathrm{D},r}(x)$, see Cassou-Noguès [2, p. 53] and Kashio [7, Section 5]. The function $\operatorname{Log} \Gamma_{\mathrm{D},r}(x)$ ($r \geq 1$) satisfies the difference equation $\operatorname{Log} \Gamma_{\mathrm{D},r}(x+1) - \operatorname{Log} \Gamma_{\mathrm{D},r}(x) = \operatorname{Log} \Gamma_{\mathrm{D},r-1}(x)$ for all $x \in \mathbb{C}_p \setminus \mathbb{Z}_p$ (Proposition 3.4). As a main result, we show that the function $\operatorname{Log} \Gamma_{\mathrm{D},r}(x)$ satisfies a Raabe-type formula and a characterization theorem. This result is a generalization of Theorem 1.1 because $\operatorname{Log} \Gamma_{\mathrm{D},1}(x) = \operatorname{Log} \Gamma_{\mathrm{D}}(x)$ and $\operatorname{Log} \Gamma_{\mathrm{D},0}(x) = \operatorname{log}_p x$.

Main Theorem.

(i) For a positive integer r and $x \in \mathbb{C}_p \setminus \mathbb{Z}_p$, we have

(1.4)
$$r \int_{\mathbb{Z}_p} \operatorname{Log} \Gamma_{D,r}(x+t) dt = (x-r)(\operatorname{Log} \Gamma_{D,r})'(x) - S_r(x),$$
 where $S_r(x) \in \mathbb{Q}[x]$ is the multiple Bernoulli polynomial defined by (2.8).

(ii) For a positive integer r, the multiple p-adic log-gamma function $\operatorname{Log} \Gamma_{D,r}(x)$ is the unique strictly differentiable function $f: \mathbb{C}_p \setminus \mathbb{Z}_p \to \mathbb{C}_p$ satisfying the following conditions:

(A)
$$f(x+1) - f(x) = \text{Log } \Gamma_{D,r-1}(x)$$
.
(B) $r \int_{\mathbb{Z}_p} f(x+t) dt = (x-r)f'(x) - S_r(x)$.

The plan of this paper is as follows. In Section 2, we review Volkenborn integrals and multiple Bernoulli polynomials. In Section 3, we define multiple p-adic log-gamma functions $\text{Log } \Gamma_{D,r}(x)$ on $\mathbb{C}_p \setminus \mathbb{Z}_p$ and give some properties of them. In Section 4, we prove our Main Theorem. In the last Section 5, we deal with multiple p-adic log-gamma functions on \mathbb{Z}_p . They are generalizations of the logarithm of Morita's p-adic gamma function.

2. Multiple Bernoulli polynomials. For a positive integer n, we set

$$\nabla^n \mathbb{Z}_p = \{ (x_1, \dots, x_n) \in \mathbb{Z}_p^n \mid x_i \neq x_j \text{ if } i \neq j \}.$$

The nth (order) difference quotient $\Phi_n f: \nabla^{n+1}\mathbb{Z}_p \to \mathbb{C}_p$ of a function $f: \mathbb{Z}_p \to \mathbb{C}_p$ is inductively given by $\Phi_0 f = f$ and for $(x_1, \dots, x_{n+1}) \in \nabla^{n+1}\mathbb{Z}_p$ by

$$\Phi_n f(x_1, \dots, x_{n+1}) = \frac{\Phi_{n-1} f(x_1, x_3, \dots, x_{n+1}) - \Phi_{n-1} f(x_2, x_3, \dots, x_{n+1})}{x_1 - x_2}.$$

A function f is called a C^n -function if $\Phi_n f$ can be extended to a continuous function $\bar{\Phi}_n f: \mathbb{Z}_p^{n+1} \to \mathbb{C}_p$. The set of all C^n -functions from \mathbb{Z}_p to \mathbb{C}_p is denoted by $C^n(\mathbb{Z}_p \to \mathbb{C}_p)$. Moreover, we set $C^\infty(\mathbb{Z}_p \to \mathbb{C}_p) = \bigcap_{n=1}^{\infty} C^n(\mathbb{Z}_p \to \mathbb{C}_p)$ (e.g. [10, Section 29]). We note that C^1 -functions and strictly differentiable functions are exactly the same.

For a function $f \in C^1(\mathbb{Z}_p \to \mathbb{C}_p)$, the limit value

$$\lim_{N\to\infty} p^{-N} \sum_{a=0}^{p^N-1} f(a)$$

exists. It is called the Volkenborn integral of f and is denoted by

$$\int_{\mathbb{Z}_n} f(t) dt$$

(e.g. [10, p. 167]). For a continuous function $f: \mathbb{Z}_p \to \mathbb{C}_p$, we denote the indefinite sum of f by Sf, that is, Sf is the unique continuous function on \mathbb{Z}_p satisfying $Sf(n) = \sum_{j=0}^{n-1} f(j)$ for any positive integer n (e.g. [10, p. 106]). For $f \in C^1(\mathbb{Z}_p \to \mathbb{C}_p)$ and $x \in \mathbb{Z}_p$, the following identities are known (cf. [10, p. 168]):

(2.1)
$$\int_{\mathbb{Z}_p} f(x+t) dt = (Sf)'(x),$$

(2.2)
$$\int_{\mathbb{Z}_p} f(x+t) dt - \int_{\mathbb{Z}_p} f(t) dt = (Sf')(x),$$

(2.3)
$$\int_{\mathbb{Z}_p} f(x+t+1) \, dt - \int_{\mathbb{Z}_p} f(x+t) \, dt = f'(x),$$

(2.4)
$$\int_{\mathbb{Z}_p} f(-t) dt = \int_{\mathbb{Z}_p} f(t+1) dt.$$

Moreover, for $f \in C^2(\mathbb{Z}_p \to \mathbb{C}_p)$, we have

(2.5)
$$\frac{d}{dx} \int_{\mathbb{Z}_p} f(x+t) dt = \int_{\mathbb{Z}_p} f'(x+t) dt$$

for $x \in \mathbb{Z}_p$ ([9, p. 268]).

The Bernoulli polynomials $B_n(x)$ are defined by the generating function

$$\frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} \frac{B_n(x)}{n!} t^n.$$

When x = 0, the numbers $B_n(0) = B_n$ are the ordinary Bernoulli numbers. It is known that the Bernoulli polynomials are expressed by using a Volkenborn integral:

(2.6)
$$\int_{\mathbb{Z}_p} (x+t)^n dt = B_n(x) \quad (n \ge 0).$$

In particular, we have

(2.7)
$$\int_{\mathbb{Z}_n} t^n dt = B_n \quad (n \ge 0)$$

(e.g. [9, p. 271]).

Let r be a positive integer and $x \in \mathbb{C}_p$. As a generalization of (2.6), we define multiple Bernoulli polynomials as

(2.8)
$$S_r(x) = \frac{1}{r!} \int_{\mathbb{Z}_r^r} (x + t_1 + \dots + t_r)^r dt_1 \dots dt_r,$$

where $\int_{\mathbb{Z}_p^r}$ means $\underbrace{\int_{\mathbb{Z}_p} \dots \int_{\mathbb{Z}_p}}$. From the multinomial expansion and equations

(2.6) and (2.7), we have

(2.9)
$$S_r(x) = \sum \frac{B_{k_1}(x)B_{k_2}\cdots B_{k_r}}{k_1!\cdots k_r!},$$

where the summation is over all non-negative integers k_1, \ldots, k_r with $k_1 + \cdots + k_r = r$. Thus $S_r(x)$ is a polynomial with rational coefficients of degree r. We note that $S_r(x)$ is a special case of Barnes's multiple Bernoulli polynomials (cf. Ota [8, Section 2]).

3. Multiple *p*-adic log-gamma functions. For an integer $r \geq 0$, Endo [5] introduced the function $\varphi_r : \mathbb{C}_p^{\times} \to \mathbb{C}_p$ defined by

$$\varphi_r(x) = \begin{cases} \frac{x^r}{r!} \left(\log_p x - \sum_{i=1}^r \frac{1}{i} \right) & (r \ge 1), \\ \log_p x & (r = 0). \end{cases}$$

Using this function, he defined multiple p-adic log-gamma functions on \mathbb{Z}_p , which are generalizations of the logarithm of Morita's p-adic gamma function. Endo's multiple p-adic log-gamma functions will be dealt with in the last section.

From the definition, it is easily proved that for $r \geq 1$,

(3.1)
$$x\varphi_{r-1}(x) = r\varphi_r(x) + \frac{x^r}{r!}.$$

Since $(\log_p x)' = 1/x$ for $x \in \mathbb{C}_p^{\times}$, we have $\frac{d}{dx}\varphi_r(x) = \varphi_{r-1}(x)$ for $r \geq 1$. Moreover, since $\log_p(xy) = \log_p x + \log_p y$ for all $x, y \in \mathbb{C}_p^{\times}$, we deduce that, for integers $r \geq 0$ and $k \geq 1$,

(3.2)
$$\varphi_r(kx) = k^r \varphi_r(x) + \frac{(kx)^r}{r!} \log_p k.$$

In particular, since $\log_p p = \log_p(-1) = 0$, we have $\varphi_r(px) = p^r \varphi_r(x)$ and $\varphi_r(-x) = (-1)^r \varphi_r(x)$.

LEMMA 3.1. Let $f \in C^r(\mathbb{Z}_p \to \mathbb{C}_p)$ $(r \ge 2)$. Then $F(x) = \int_{\mathbb{Z}_p} f(x+t) dt$ $\in C^{r-1}(\mathbb{Z}_p \to \mathbb{C}_p)$. Therefore, the integral

$$\int_{\mathbb{Z}_p^r} f(t_1 + \dots + t_r) dt_1 \dots dt_r$$

can be defined if $f \in C^r(\mathbb{Z}_p \to \mathbb{C}_p)$.

Proof. If $f \in C^r(\mathbb{Z}_p \to \mathbb{C}_p)$, then $Sf \in C^r(\mathbb{Z}_p \to \mathbb{C}_p)$ (e.g. [10, Corollary 54.3]). Moreover, if $Sf \in C^r(\mathbb{Z}_p \to \mathbb{C}_p)$, then $(Sf)' \in C^{r-1}(\mathbb{Z}_p \to \mathbb{C}_p)$ (cf. [10, Theorem 78.2]). By (2.1), we obtain the first part of the lemma. The second part can be proved by induction on r.

DEFINITION 3.2. For any integer $r \geq 0$ and $x \in \mathbb{C}_p \setminus \mathbb{Z}_p$, we define multiple p-adic log-gamma functions by

$$\operatorname{Log} \Gamma_{D,r}(x) = \begin{cases} \int_{\mathbb{Z}_p^r} \varphi_r(x + t_1 + \dots + t_r) dt_1 \dots dt_r & (r \ge 1), \\ \log_n x & (r = 0). \end{cases}$$

Since locally analytic functions are C^{∞} -functions (e.g. [10, Corollary 29.11]), we have $\varphi_r \in C^{\infty}(\mathbb{Z}_p \to \mathbb{C}_p)$ for all $r \geq 0$. Therefore, by Lemma 3.1, this definition makes sense and $t \mapsto \operatorname{Log} \Gamma_{D,r}(x+t)$ is also a C^{∞} -function from \mathbb{Z}_p to \mathbb{C}_p for a fixed $x \in \mathbb{C}_p \setminus \mathbb{Z}_p$. When r = 1, we have

$$\operatorname{Log} \Gamma_{D,1}(x) = \int_{\mathbb{Z}_p} ((x+t) \log_p(x+t) - (x+t)) dt \quad (x \in \mathbb{C}_p \setminus \mathbb{Z}_p)$$

and this function is nothing but Diamond's p-adic log-gamma function $\operatorname{Log} \Gamma_{\mathcal{D}}(x)$ (it was originally denoted by $G_p(x)$, see [4]). Diamond proved that $\operatorname{Log} \Gamma_{\mathcal{D}}(x+1) - \operatorname{Log} \Gamma_{\mathcal{D}}(x) = \log_p x$ for all $x \in \mathbb{C}_p \setminus \mathbb{Z}_p$.

We prove the following lemma which is needed to give properties of multiple p-adic log-gamma functions. This identity (3.3) has appeared in [10, p. 170] without proof, and we give its proof here.

LEMMA 3.3. Let k be a positive integer. For $f \in C^1(\mathbb{Z}_p \to \mathbb{C}_p)$, we have

(3.3)
$$\int_{\mathbb{Z}_p} f(t) dt = \frac{1}{k} \sum_{i=0}^{k-1} \int_{\mathbb{Z}_p} f(i+ks) ds.$$

Proof. From the definition of Volkenborn integrals, we have

$$\sum_{i=0}^{k-1} \int_{\mathbb{Z}_p} f(i+ks) \, ds = \sum_{i=0}^{k-1} \lim_{N \to \infty} \frac{1}{p^N} \sum_{j=0}^{p^N - 1} f(i+kj) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{l=0}^{kp^N - 1} f(l)$$
$$= \sum_{i=0}^{k-1} \lim_{N \to \infty} \frac{1}{p^N} \sum_{j=0}^{p^N - 1} f(ip^N + j).$$

Hence, by using the uniform convergence of the series, we obtain

$$\lim_{N \to \infty} \frac{1}{p^N} \sum_{j=0}^{p^N - 1} f(ip^N + j) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{j=0}^{p^N - 1} \lim_{M \to \infty} f(ip^M + j)$$
$$= \lim_{N \to \infty} \frac{1}{p^N} \sum_{j=0}^{p^N - 1} f(j) = \int_{\mathbb{Z}_p} f(t) dt$$

for any integer i. This proves the lemma. \blacksquare

Now we give some properties of multiple p-adic log-gamma functions, which are generalizations of those of Diamond's p-adic log-gamma function (see [10, Theorem 60.2]).

PROPOSITION 3.4. Let r and k be positive integers. For $x \in \mathbb{C}_p \setminus \mathbb{Z}_p$, the following identities hold:

(i)
$$\operatorname{Log} \Gamma_{D,r}(x+1) - \operatorname{Log} \Gamma_{D,r}(x) = \operatorname{Log} \Gamma_{D,r-1}(x)$$
.

(ii)
$$\operatorname{Log} \Gamma_{D,r}(-x) = (-1)^r \operatorname{Log} \Gamma_{D,r}(x+r)$$
.

(iii)
$$\operatorname{Log} \Gamma_{D,r}(x)$$

$$= \sum_{i_1=0}^{k-1} \dots \sum_{i_r=0}^{k-1} \log \Gamma_{D,r} \left(\frac{x+i_1+\dots+i_r}{k} \right) + (\log_p k) S_r(x).$$

In particular, when k = p, we have

$$\operatorname{Log} \Gamma_{\mathrm{D},r}(x) = \sum_{i_1=0}^{p-1} \dots \sum_{i_r=0}^{p-1} \operatorname{Log} \Gamma_{\mathrm{D},r} \left(\frac{x+i_1+\dots+i_r}{p} \right).$$

Proof. Assertion (i) is easily proved by (2.3) and (2.5). By the identity $\varphi_r(-x) = (-1)^r \varphi_r(x)$ and (2.4), we have

$$\operatorname{Log} \Gamma_{D,r}(-x) = \int_{\mathbb{Z}_p^r} \varphi_r(-x + t_1 + \dots + t_r) dt_1 \dots dt_r$$

$$= (-1)^r \int_{\mathbb{Z}_p^r} \varphi_r(x - t_1 - \dots - t_r) dt_1 \dots dt_r$$

$$= (-1)^r \int_{\mathbb{Z}_p^r} \varphi_r(x + (t_1 + 1) + \dots + (t_r + 1)) dt_1 \dots dt_r$$

$$= (-1)^r \operatorname{Log} \Gamma_{D,r}(x + r)$$

and this proves (ii). Assertion (iii) follows by (3.2) and Lemma 3.3. In fact,

$$\operatorname{Log} \Gamma_{\mathbf{D},r}(x) = \int_{\mathbb{Z}_{p}^{r}} \varphi_{r}(x+t_{1}+\cdots+t_{r}) dt_{1} \dots dt_{r}
= \frac{1}{k^{r}} \sum_{i_{1}=0}^{k-1} \dots \sum_{i_{r}=0}^{k-1} \int_{\mathbb{Z}_{p}^{r}} \varphi_{r}(x+(i_{1}+ks_{1})+\cdots+(i_{r}+ks_{r})) ds_{1} \dots ds_{r}
= \frac{1}{k^{r}} \sum_{i_{1}=0}^{k-1} \dots \sum_{i_{r}=0}^{k-1} \int_{\mathbb{Z}_{p}^{r}} \left(k^{r} \varphi_{r} \left(\frac{x+i_{1}+\cdots+i_{r}}{k} + s_{1}+\cdots+s_{r} \right) \right) ds_{1} \dots ds_{r}
+ \frac{\log_{p} k}{r!} (x+i_{1}+\cdots+i_{r}+ks_{1}+\cdots+ks_{r})^{r} ds_{1} \dots ds_{r}
= \sum_{i_{1}=0}^{k-1} \dots \sum_{i_{r}=0}^{k-1} \operatorname{Log} \Gamma_{\mathbf{D},r} \left(\frac{x+i_{1}+\cdots+i_{r}}{k} \right)
+ \frac{1}{k^{r}} \sum_{i_{1}=0}^{k-1} \dots \sum_{i_{r}=0}^{k-1} \frac{\log_{p} k}{r!} \int_{\mathbb{Z}_{r}^{r}} (x+i_{1}+\cdots+i_{r}+ks_{1}+\cdots+ks_{r})^{r} ds_{1} \dots ds_{r}.$$

By using Lemma 3.3 again, we have

$$\operatorname{Log} \Gamma_{D,r}(x) = \sum_{i_1=0}^{k-1} \dots \sum_{i_r=0}^{k-1} \operatorname{Log} \Gamma_{D,r} \left(\frac{x + i_1 + \dots + i_r}{k} \right) \\
+ \frac{\operatorname{log}_p k}{r!} \int_{\mathbb{Z}_p^r} (x + t_1 + \dots + t_r)^r dt_1 \dots dt_r \\
= \sum_{i_1=0}^{k-1} \dots \sum_{i_r=0}^{k-1} \operatorname{Log} \Gamma_{D,r} \left(\frac{x + i_1 + \dots + i_r}{k} \right) + (\operatorname{log}_p k) S_r(x).$$

The last formula immediately follows because $\log_p p = 0$.

4. Proof of the Main Theorem. We first give lemmas to prove our Main Theorem.

LEMMA 4.1. For $f \in C^2(\mathbb{Z}_p \to \mathbb{C}_p)$, we have

(4.1)
$$\int_{\mathbb{Z}_p} (t+1)f'(t) dt = \int_{\mathbb{Z}_p} f(t) dt - \int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} f(x+t) dx dt.$$

Proof. It is known that

(4.2)
$$\int_{\mathbb{Z}_p} (t+1)f(t) dt = -\int_{\mathbb{Z}_p} Sf(t) dt$$

(cf. [10, p. 170]). By (2.2), we have

(4.3)
$$\int_{\mathbb{Z}_p} (t+1)f'(t) dt = -\int_{\mathbb{Z}_p} (Sf')(t) dt = \int_{\mathbb{Z}_p} f(t) dt - \int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} f(x+t) dx dt,$$

and this proves the lemma. \blacksquare

LEMMA 4.2. Let $f \in C^r(\mathbb{Z}_p \to \mathbb{C}_p)$ $(r \ge 1)$. Then

$$\int_{\mathbb{Z}_p^r} (t_i + 1) f(t_1 + \dots + t_r) dt_1 \dots dt_r = \int_{\mathbb{Z}_p^r} (t_j + 1) f(t_1 + \dots + t_r) dt_1 \dots dt_r$$

for any $1 \le i, j \le r$.

Proof. We only have to prove the case r = 2:

(4.4)
$$\int_{\mathbb{Z}_p^2} (t_1 + 1) f(t_1 + t_2) dt_1 dt_2 = \int_{\mathbb{Z}_p^2} (t_2 + 1) f(t_1 + t_2) dt_1 dt_2$$

for
$$f \in C^2(\mathbb{Z}_p \to \mathbb{C}_p)$$
. We put $F_{t_2}(t_1) = f(t_1 + t_2)$. Then

$$SF_{t_2}(t_1) = Sf(t_1 + t_2) - Sf(t_2).$$

By (4.2), the left-hand side of (4.4) is equal to

$$\begin{split} \int_{\mathbb{Z}_p^2} (t_1 + 1) F_{t_2}(t_1) \, dt_1 \, dt_2 &= -\int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} (SF_{t_2})(t_1) \, dt_1 \, dt_2 \\ &= -\int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} ((Sf)(t_1 + t_2) - (Sf)(t_2)) \, dt_1 \, dt_2 \\ &= -\int_{\mathbb{Z}_p^2} (Sf)(t_1 + t_2) \, dt_1 \, dt_2 + \int_{\mathbb{Z}_p} (Sf)(t_2) \, dt_2. \end{split}$$

On the other hand, the right-hand side of (4.4) is equal to

$$\int_{\mathbb{Z}_p} (t_2 + 1) \int_{\mathbb{Z}_p} f(t_1 + t_2) dt_1 dt_2 = \int_{\mathbb{Z}_p} (t_2 + 1)(Sf)'(t_2) dt_2$$

$$= -\int_{\mathbb{Z}_p^2} (Sf)(t_1 + t_2) dt_1 dt_2 + \int_{\mathbb{Z}_p} (Sf)(t_2) dt_2$$

because of Lemma 4.1. As a consequence, equation (4.4) holds.

We are now in a position to prove our Main Theorem.

Proof of the Main Theorem. First we prove the uniqueness (ii). This actually follows from a more general result in [3, Section 1], but we give a proof to make the paper self-contained. We assume that strictly differentiable functions f(x) and g(x) satisfy conditions (A) and (B). Set h(x) = f(x) - g(x). By (B), we have $r \int_{\mathbb{Z}_p} h(x+t) dt = (x-r)h'(x)$. By (A), we have h(x+1) = h(x) for all $x \in \mathbb{Z}_p$. Therefore $\int_{\mathbb{Z}_p} h(x+t) dt = h(x)$. Moreover, h'(x) = 0 because

$$\lim_{n \to \infty} \frac{h(x + p^n) - h(x)}{p^n} = 0.$$

As a consequence, h(x) = 0, and this proves (ii).

Now we prove (i). We calculate the following integral in two ways:

$$(4.5) \qquad \int_{\mathbb{Z}_p^r} (x+t_1+\cdots+t_r)\varphi_{r-1}(x+t_1+\cdots+t_r) dt_1 \dots dt_r.$$

By equation (3.1), we obtain

$$(4.6) \qquad \int_{\mathbb{Z}_p^r} (x+t_1+\dots+t_r)\varphi_{r-1}(x+t_1+\dots+t_r) dt_1 \dots dt_r$$

$$= \int_{\mathbb{Z}_p^r} \left(r\varphi_r(x+t_1+\dots+t_r) + \frac{(x+t_1+\dots+t_r)^r}{r!} \right) dt_1 \dots dt_r$$

$$= r \operatorname{Log} \Gamma_{D,r}(x) + S_r(x).$$

On the other hand, by Lemma 4.2,

$$\int_{\mathbb{Z}_p^r} (x+t_1+\cdots+t_r)\varphi_{r-1}(x+t_1+\cdots+t_r) dt_1 \dots dt_r$$

$$= \sum_{i=1}^r \int_{\mathbb{Z}_p^r} (t_i+1)\varphi_{r-1}(x+t_1+\cdots+t_r) dt_1 \dots dt_r$$

$$+ (x-r) \int_{\mathbb{Z}_p^r} \varphi_{r-1}(x+t_1+\cdots+t_r) dt_1 \dots dt_r$$

$$= r \int_{\mathbb{Z}_p^r} (t_1+1)\varphi_{r-1}(x+t_1+\cdots+t_r) dt_1 \dots dt_r$$

$$+ (x-r) \int_{\mathbb{Z}_p^r} \varphi_{r-1}(x+t_1+\cdots+t_r) dt_1 \dots dt_r.$$

By Lemma 4.1 and the relation $\varphi'_r(x) = \varphi_{r-1}(x)$, we have

$$\int_{\mathbb{Z}_p^r} (t_1+1)\varphi_{r-1}(x+t_1+\dots+t_r) dt_1 \dots dt_r$$

$$= \int_{\mathbb{Z}_p^r} \varphi_r(x+t_1+\dots+t_r) dt_1 \dots dt_r$$

$$- \int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p^r} \varphi_r(x+t_1+\dots+t_r+t) dt_1 \dots dt_r dt$$

$$= \operatorname{Log} \Gamma_{D,r}(x) - \int_{\mathbb{Z}_p} \operatorname{Log} \Gamma_{D,r}(x+t) dt.$$

Moreover, by (2.5),

$$\int_{\mathbb{Z}_p^r} \varphi_{r-1}(x+t_1+\dots+t_r) dt_1 \dots dt_r = \frac{d}{dx} \int_{\mathbb{Z}_p^r} \varphi_r(x+t_1+\dots+t_r) dt_1 \dots dt_r$$
$$= (\operatorname{Log} \Gamma_{D,r})'(x).$$

Therefore

$$(4.7) \qquad \int_{\mathbb{Z}_p^r} (x+t_1+\dots+t_r)\varphi_{r-1}(x+t_1+\dots+t_r) dt_1\dots dt_r$$
$$= r\operatorname{Log} \Gamma_{D,r}(x) - r \int_{\mathbb{Z}_p} \operatorname{Log} \Gamma_{D,r}(x+t) dt + (x-r)(\operatorname{Log} \Gamma_{D,r})'(x).$$

Combining (4.6) and (4.7), we obtain (1.4).

5. Multiple p-adic log-gamma functions on \mathbb{Z}_p . In this last section, we deal with multiple p-adic log-gamma functions defined on \mathbb{Z}_p . For

a continuous function $f: \mathbb{Z}_p \to \mathbb{C}_p$, we use the notation

$$f^*(x) = \begin{cases} f(x) & (\text{if } x \in \mathbb{Z}_p^{\times}), \\ 0 & (\text{if } x \in p\mathbb{Z}_p). \end{cases}$$

It is clear that $f^*(x)$ is also continuous on \mathbb{Z}_p and $\frac{d}{dx}(f^*) = \left(\frac{d}{dx}f\right)^*$ if f is differentiable (cf. [5]). For an integer $r \geq 0$ and $x \in \mathbb{Z}_p$, we define multiple p-adic log-gamma functions on \mathbb{Z}_p as

(5.1)
$$\operatorname{Log} \Gamma_{M,r}(x) = \begin{cases} \int_{\mathbb{Z}_p^r} \varphi_r^*(x + t_1 + \dots + t_r) dt_1 \dots dt_r & (r \ge 1), \\ \mathbb{Z}_p^r & (r = 0). \end{cases}$$

The function Log $\Gamma_{M,r}(x)$ satisfies the difference equation

(5.2)
$$\operatorname{Log} \Gamma_{M,r}(x+1) - \operatorname{Log} \Gamma_{M,r}(x) = \operatorname{Log} \Gamma_{M,r-1}(x) \quad (x \in \mathbb{Z}_p)$$

for all $r \geq 1$. When r = 1, the function $\operatorname{Log} \Gamma_{M,1}(x)$ is the logarithm of Morita's p-adic gamma function, i.e. $\operatorname{Log} \Gamma_{M,1}(x) = \operatorname{log}_p \Gamma_p(x)$ (e.g. [3, p. 370]).

REMARK 1. Endo [5, p. 45] introduced multiple p-adic log-gamma functions $G_r(x)$ for $r \geq 1$ and $x \in \mathbb{Z}_p$ as

(5.3)
$$G_r(x)$$

= $\int_{\mathbb{Z}_p^r} \left[\varphi_r^*(x + t_1 + \dots + t_r) - \sum_{k=0}^r \binom{x}{r-k} \varphi_k^*(t_1 + \dots + t_k) \right] dt_1 \dots dt_r.$

He showed that the function G_r satisfies not only the difference equation $G_{r+1}(x+1) - G_{r+1}(x) = G_r(x)$ but the good initial condition $G_r(0) = 0$ for all $r \ge 1$ ([5, Theorem 5]). Therefore the function G_r can be considered as a modification of (5.1), but for the sake of simplicity, we consider (5.1) in this paper.

The following proposition gives a relation between Log $\Gamma_{M,r}(x)$ and Log $\Gamma_{D,r}(x)$. This is a generalization of the known formula (e.g. [10, Theorem 60.2]):

(5.4)
$$\operatorname{Log} \Gamma_{\mathrm{M},1}(x) = \sum_{\substack{i=0\\p\nmid (x+i)}}^{p-1} \operatorname{Log} \Gamma_{\mathrm{D},1}\left(\frac{x+i}{p}\right) \quad (x \in \mathbb{Z}_p).$$

PROPOSITION 5.1. For a positive integer r and $x \in \mathbb{Z}_p$, we have

$$\operatorname{Log} \Gamma_{M,r}(x) = \sum_{\substack{i_1 = 0 \\ p \nmid (x + i_1 + \dots + i_r)}}^{p-1} \operatorname{Log} \Gamma_{D,r} \left(\frac{x + i_1 + \dots + i_r}{p} \right).$$

Proof. By (3.3), we obtain

$$\operatorname{Log} \Gamma_{\mathbf{M},r}(x) = \int_{\mathbb{Z}_p^r} \varphi_r^*(x + t_1 + \dots + t_r) dt_1 \dots dt_r
= \frac{1}{p^r} \sum_{i_1=0}^{p-1} \dots \sum_{i_r=0}^{p-1} \int_{\mathbb{Z}_p^r} \varphi_r^*(x + (i_1 + ps_1) + \dots + (i_r + ps_r)) ds_1 \dots ds_r
= \frac{1}{p^r} \sum_{i_1=0}^{p-1} \dots \sum_{i_r=0}^{p-1} \int_{\mathbb{Z}_p^r} \varphi_r(x + i_1 + \dots + i_r + ps_1 + \dots + ps_r) ds_1 \dots ds_r.$$

By the equation $\varphi_r(px) = p^r \varphi_r(x)$, we have

$$\operatorname{Log} \Gamma_{\mathrm{M},r}(x) \\
= \sum_{i_{1}=0}^{p-1} \dots \sum_{i_{r}=0}^{p-1} \int_{\mathbb{Z}_{p}^{r}} \varphi_{r} \left(\frac{x+i_{1}+\dots+i_{r}}{p} + s_{1}+\dots+s_{r} \right) ds_{1} \dots ds_{r} \\
= \sum_{i_{1}=0}^{p-1} \dots \sum_{i_{r}=0}^{p-1} \operatorname{Log} \Gamma_{\mathrm{D},r} \left(\frac{x+i_{1}+\dots+i_{r}}{p} \right). \quad \blacksquare$$

In the last part of this paper, we show that the function Log $\Gamma_{M,r}(x)$ satisfies the following integro-differential equation similar to (1.4).

PROPOSITION 5.2. For a positive integer r and $x \in \mathbb{Z}_p$, we have

$$r \int_{\mathbb{Z}_p} \operatorname{Log} \Gamma_{M,r}(x+t) dt$$

$$= (x-r)(\operatorname{Log} \Gamma_{M,r})'(x) - S_r(x) + \sum_{r=1}^{r} S_r\left(\frac{x+i_1+\cdots+i_r}{p}\right),$$

where the summation is over all integers i_1, \ldots, i_r with $0 \le i_l \le p-1$ $(1 \le l \le r)$ and $p \mid (x + i_1 + \cdots + i_r)$.

This proposition is a generalization of the formula in [3, Proposition 2.4]:

(5.5)
$$\int_{\mathbb{Z}_p} \operatorname{Log} \Gamma_{M,1}(x+t) dt = (x-1) (\operatorname{Log} \Gamma_{M,1})'(x) - x + \left\lceil \frac{x}{p} \right\rceil \quad (x \in \mathbb{Z}_p),$$

where $\lceil x/p \rceil$ $(x \in \mathbb{Z}_p)$ is the *p*-adic limit of the usual integer ceiling function $\lceil x_n/p \rceil$ as $x_n \to x$ through $x_n \in \mathbb{Z}$. In fact, when r = 1 in Proposition 5.2,

then $S_r(x) = B_1(x) = x - 1/2$ and the last term of (5.2) is equal to

(5.6)
$$\sum_{\substack{0 \le i \le p-1 \\ p \mid (x+i)}} B_1\left(\frac{x+i}{p}\right) = B_1\left(\left\lceil \frac{x}{p}\right\rceil\right) = \left\lceil \frac{x}{p}\right\rceil - \frac{1}{2}.$$

In a way similar to the proof of the Main Theorem, we have

(5.7)
$$r \int_{\mathbb{Z}_p} \operatorname{Log} \Gamma_{M,r}(x+t) dt$$
$$= (x-r)(\operatorname{Log} \Gamma_{M,r})'(x) - \frac{1}{r!} \int_{\mathbb{Z}_p^r} (x+t_1+\dots+t_r)^{r*} dt_1 \dots dt_r.$$

Therefore Proposition 5.2 follows from the next lemma.

LEMMA 5.3. For a positive integer r and $x \in \mathbb{Z}_p$, we have

$$\int_{\mathbb{Z}_r^r} (x+t_1+\cdots+t_r)^{r*} dt_1 \dots dt_r = r! S_r(x) - r! \sum_{r=1}^r S_r\left(\frac{x+i_1+\cdots+i_r}{p}\right),$$

where the summation is the same as in Proposition 5.2.

Proof. By (3.3), we have

$$\int_{\mathbb{Z}_p^r} (x+t_1+\dots+t_r)^{r*} dt_1 \dots dt_r
= \int_{\mathbb{Z}_p^r} \frac{1}{p^r} \sum_{i_1=0}^{p-1} \dots \sum_{i_r=0}^{p-1} (x+(i_1+ps_1)+\dots+(i_r+ps_r))^{r*} ds_1 \dots ds_r
= \int_{\mathbb{Z}_p^r} \frac{1}{p^r} \sum_{i_1=0}^{p-1} \dots \sum_{i_r=0}^{p-1} (x+i_1+\dots+i_r+ps_1+\dots+ps_r)^r ds_1 \dots ds_r
- \int_{\mathbb{Z}_p^r} \frac{1}{p^r} \sum_{i_1=0}^{p-1} \dots \sum_{i_r=0}^{p-1} (x+i_1+\dots+i_r+ps_1+\dots+ps_r)^r ds_1 \dots ds_r
- \int_{\mathbb{Z}_p^r} (x+t_1+\dots+t_r)^r dt_1 \dots dt_r
= \int_{\mathbb{Z}_p^r} (x+t_1+\dots+t_r)^r dt_1 \dots dt_r
- \sum_{\mathbb{Z}_p^r} \left(\frac{x+i_1+\dots+i_r}{p} + s_1 + \dots + s_r \right)^r ds_1 \dots ds_r
= r! S_r(x) - r! \sum_{i_1=0}^{r} \left(\frac{x+i_1+\dots+i_r}{p} \right). \quad \blacksquare$$

Acknowledgements. The author wishes to thank the referee for many useful comments and for pointing out some references.

References

- [1] E. W. Barnes, On the theory of the multiple gamma functions, Trans. Cambridge Philos. Soc. 19 (1904), 374–425.
- [2] P. Cassou-Noguès, Analogues p-adiques des fonctions Γ-multiples, Astérisque 61 (1979), 43–55.
- [3] H. Cohen and E. Friedman, Raabe's formula for p-adic gamma and zeta functions, Ann. Inst. Fourier (Grenoble) 58 (2008), 363–376.
- [4] J. Diamond, The p-adic log gamma function and p-adic Euler constants, Trans. Amer. Math. Soc. 233 (1977), 321–337.
- [5] M. Endo, p-adic multiple gamma functions, Comment. Math. Univ. St. Pauli 43 (1994), 35–54.
- [6] H. Imai, Values of p-adic L-functions at positive integers and p-adic log multiple gamma functions, Tohoku Math. J. 45 (1993), 505-510.
- [7] T. Kashio, On a p-adic analogue of Shintani's formula, J. Math. Kyoto Univ. 45 (2005), 99–128.
- [8] K. Ota, On Kummer-type congruences for derivatives of Barnes' multiple Bernoulli polynomials, J. Number Theory 92 (2002), 1–36.
- [9] A. M. Robert, A Course in p-adic Analysis, Grad. Texts in Math. 198, Springer, 2000.
- [10] W. H. Schikhof, *Ultrametric Calculus*, Cambridge Univ. Press, 1984.
- [11] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. IA 24 (1977), 167–199.
- [12] M.-F. Vignéras, L'équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire PSL(2, Z), Astérisque 61 (1979), 235–249.

Ken Kamano Department of General Education Salesian Polytechnic 4-6-8, Oyamagaoka, Machida-city Tokyo 194-0215, Japan E-mail: kamano@salesio-sp.ac.jp

> Received on 4.4.2009 and in revised form on 27.1.2010 (5992)