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1. Introduction. In 1951 and 1953, Linnik [16], [17] proved that each
large even integer N is a sum of two primes and a bounded number of powers
of 2,

(1.1) N = p1 + p2 + 2v1 + · · ·+ 2vk ,

where p and v, with or without subscripts, denote a prime number and a
positive integer respectively. Later Gallagher [3] established a stronger result
by a different method. An explicit value for the number k of powers of 2
was first established by Liu, Liu and Wang [21], who found that k = 54000
is acceptable. This value was subsequently improved by Li [12], Wang [30]
and Li [13]. In 2002, Heath-Brown and Puchta [6] applied a rather different
approach to this problem and showed that k = 13 is acceptable. In 2003,
Pintz and Ruzsa [25] announced that k = 8 is acceptable.

In 1999, Liu, Liu and Zhan [22] proved that every large even integer N
can be written as a sum of four squares of primes and a bounded number of
powers of 2,

(1.2) N = p2
1 + p2

2 + p2
3 + p2

4 + 2v1 + · · ·+ 2vk .

Later Liu and Liu [18] showed that k = 8330 is acceptable. This value was
subsequently improved by Liu and Lü [23] and Li [14].

In 1938, Hua [7] proved that each large odd integer is the sum of nine
cubes of primes. It seems reasonable to conjecture that every sufficiently
large integer satisfying some necessary congruence conditions is the sum of
eight cubes of primes, i.e.

(1.3) N = p3
1 + p3

2 + · · ·+ p3
8,

but unfortunately, such a conjecture is out of reach at present.
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Motivated by this conjecture and the above works of Linnik and Gal-
lagher for two primes and powers of 2, and the result of Liu, Liu and Zhan
for four squares of primes and powers of 2, we extend the above results (1.1)
and (1.2) to sums of eight cubes of primes and powers of 2, i.e.

(1.4) N = p3
1 + · · ·+ p3

8 + 2v1 + · · ·+ 2vk .

In 2000, Liu and Liu [20] proved that such a k exists.
In this paper we bound the value of k in (1.4) by proving the following

theorem.

Theorem 1.1. Every large even integer is a sum of eight cubes of primes
and 358 powers of 2.

There are other approximations to the conjecture (1.3), and our theorem
can be compared with them. In [31], Wooley got an upper bound for the ex-
ceptional set for (1.3): he showed that with at most O(N11/36+ε) exceptions,
all positive even integers not exceeding N can be written as in (1.3). Later
Kumchev [10] improved this estimate to O(N23/84+ε). Roth [28] proved that
every large integer N can be written as

(1.5) N = m3 + p3
2 + · · ·+ p3

8

with a positive integer m. Brüdern [1] combined the circle method with
sieves to show that (1.5) is solvable when m is a product P4 of at most four
primes. Kawada [9] improved the above P4 to P3.

Notation. As usual, ϕ(n) and Λ(n) denote the Euler totient function
and the von Mangoldt function, respectively. We write N for a large integer,
and L = logN . Further, r ∼ R means R < r ≤ 2R, and A � B means
c1A ≤ B ≤ c2A. The letters ε and A denote positive constants, which are
arbitrarily small and arbitrarily large, respectively.

2. Outline of the method. Here we outline the proof of Theorem 1.1.
In order to apply the circle method, we set

(2.1) P = N1/9−2ε, Q = N8/9+ε.

By Dirichlet’s lemma ([29, Lemma 2.1]), each α ∈ [1/Q, 1 + 1/Q] may be
written in the form

(2.2) α = a/q + λ, |λ| ≤ 1/qQ,

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. Denote byM(a, q)
the set of α satisfying (2.2), and define the major arcs M and the minor
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arcs C(M) as follows:

(2.3) M :=
⋃

1≤q≤P

⋃
1≤a≤q
(a,q)=1

M(a, q), C(M) =
[

1
Q
, 1 +

1
Q

]
\M.

It follows from 2P ≤ Q that the major arcs M(a, q) are mutually disjoint.
As in [27], let δ = 10−4, and

(2.4) U =
(

N

16(1 + δ)

)1/3

, V = U5/6.

As usual in the circle method, let

(2.5) S(α) =
∑
p∼U

(log p)e(p3α), T (α) =
∑
p∼V

(log p)e(p3α),

(2.6) G(α) =
∑

2υ≤N
e(2υα) =

∑
υ≤log2N

e(2υα),

and

(2.7) rk(N) =
∑

N=p31+···+p38+2υ1+···+2υk
p1,...,p4∼U, p5,...,p8∼V

(log p1) . . . (log p8).

Then rk(N) can be written as

rk(N) =
1�

0

S4(α)T 4(α)Gk(α)e(−Nα) dα(2.8)

=
{ �

M
+

�

C(M)

}
S4(α)T 4(α)Gk(α)e(−Nα) dα.

To handle the integral on the major arcs, we prove the following lemma.

Lemma 2.1. Let M be as in (2.3), with P and Q determined by (2.1).
Then for N/2 ≤ n ≤ N , we have

(2.9)
�

M
S4(α)T 4(α)e(−nα) dα =

1
38

S(n)J(n) +O(UV 4L−1).

Here S(n) is a singular series, which is defined by

(2.10) S(n) :=
∞∑
q=1

1
ϕ8(q)

q∑
a=1

(a,q)=1

( q∑
h=1

(h,q)=1

e

(
ah3

q

))8

e

(
−an
q

)
,

and satisfies S(n)� 1 for n ≡ 0 (mod 2). J(n) is defined as

(2.11) J(n) :=
∑

m1+···+m8=n
U3<m1,...,m4≤8U3, V 3<m5,...,m8≤8V 3

(m1 . . .m8)−2/3,
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and satisfies

(2.12) UV 4 � J(n)� UV 4.

In this paper, the constants in the � and � symbols are of importance.
If we write S(n) > C1 and J(n) > C2UV

4, in the following parts, we
determine explicit values of C1, C2.

A crucial step in bounding the contributions of minor arcs is an upper
bound for the number of solutions of the equation

(2.13) n = p3
1 + · · ·+ p3

4 − p3
5 − · · · − p3

8, 0 ≤ |n| ≤ N.

We quote the following lemma.

Lemma 2.2. Let n ≡ 0 (mod 2) be an integer, and ρ(n) the number of
representations of n in the form (2.13) subject to

(2.14) p1, p2, p5, p6 ∼ U, p3, p4, p7, p8 ∼ V.

Then for all 0 ≤ |n| ≤ N ,

(2.15) ρ(n) ≤ bUV 4L−8,

with b = 268096.

The inequality (2.15) is (2.6) in Ren [26], obtained by sieve methods,
and the value of b is determined in Ren [27].

On the minor arcs, we also need estimates for the measure of the set

(2.16) Eλ = {α ∈ (0, 1] : |G(α)| ≥ λ log2N}.

The following lemma is due to Heath-Brown and Puchta [6].

Lemma 2.3. Let

Gh(α) =
∑

0≤n≤h−1

e(α2n), F (ξ, h) =
1
2h

2h−1∑
r=0

exp
[
ξRe

(
Gh

(
r

2h

))]
.

Then
meas(Eλ) ≤ N−E(λ),

where

E(λ) =
ξλ

log 2
− logF (ξ, h)

h log 2
− ε

log 2

for any h ∈ N, ξ > 0 and ε > 0.

On the minor arcs, the results of Kumchev [10] on exponential sums over
primes will also be applied. The following lemma is Theorem 3 of [10] for
k = 3.
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Lemma 2.4 (Kumchev). Let α = a/q+λ subject to 1 ≤ a ≤ q, (a, q) = 1,
and |λ| ≤ 1/qQ, with Q = U12/7, and let S(α) be defined in (2.5). Then

S(α)� U1−%+ε +
qεULc√

q(1 + |λ|U3)

with % = 1/14.

We deduce Theorem 1.1 from some lemmas in Section 3. In Section 4,
we give the proof of Lemma 2.1. In Sections 5 and 6, we give the value of
C1 and the proofs of three lemmas, respectively.

3. The proof of Theorem 1.1. We need the following five lemmas.

Lemma 3.1. Let

Ξ(N, k) = {(1− δ)N ≤ n ≤ N : n = N − 2ν1 − · · · − 2νk},

with k ≥ 2. Then for N ≡ 0 (mod 2),

(3.1)
∑

n∈Ξ(N,k)
n≡0 (mod 2)

1 ≥ (1− ε)(log2N)k.

Proof. The proof is straightforward, so we omit the details.

Lemma 3.2. For n ≡ 0 (mod 2), we have S(n) > C1 with

(3.2) C1 = 0.00557795824;

while for n 6≡ 0 (mod 2), we have S(n) = 0.

Proof. We will prove this in Section 5.

Lemma 3.3. For (1− δ)N ≤ n ≤ N , we have J(n) > C2UV
4, with

(3.3) C2 = 78.15467793.

Proof. We will determine the value of C2 in Section 4.

Lemma 3.4. Let C(M) be as in (2.3), with P and Q determined by (2.1),
and S(α) be as in (2.5). Then

(3.4) max
α∈C(M)

|S(α)| � N1/3−1/42+ε.

Proof. By Dirichlet’s lemma on rational approximations, each real num-
ber α ∈ C(M) can be written as α = a/q + λ with (a, q) = 1 and

1 ≤ q ≤ Q0 = N4/7, |λ| ≤ 1/qQ0.
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If q ≤ P = N1/9−2ε, since α ∈ C(M), we have |λ| > 1/qQ; otherwise
q > P . In either case,√

q(1 + |λ|U3) > min(P 1/2, (U3/Q)1/2) = N1/18−ε.

By Lemma 2.4, the conclusion follows.

In order to apply Lemma 2.3, we need to find an optimal λ such that
E(λ) > 19/21. Thus we have to compute

F (ξ, h) =
1
2h

2h−1∑
r=0

exp
[
ξRe

(
Gh

(
r

2h

))]
,

and optimize for ξ and h. We can take ξ = 1.59, h = 23 in Lemma 2.3 to
get

Lemma 3.5. Let E(λ) be as in Lemma 2.3. Then

(3.5) E(0.965411) >
19
21

+ 10−10.

Proof of Theorem 1.1. Let N ≡ 0 (mod 2), let Eλ be as in (2.16) andM
as in (2.3), with P and Q determined by (2.1). Then, by (2.8),

rk(N) =
1�

0

S4(α)T 4(α)Gk(α)e(−Nα) dα(3.6)

=
�

M
+

�

C(M)∩Eλ

+
�

C(M)∩C(Eλ)

.

Introducing the notation Ξ(N, k) and then applying Lemma 2.1, we see that
the first integral on the right-hand side of (3.6) is

(3.7)
∑

n∈Ξ(N,k)

�

M
S4(α)T 4(α)e(−nα) dα

=
1
38

∑
n∈Ξ(N,k)

S(n)J(n) +O(UV 4Lk−1)

≥ 1
38
C1C2UV

4
∑

n∈Ξ(N,k)

1 +O(UV 4Lk−1)

≥ 1
38
C1C2(1− ε)UV 4(log2N)k,

where in the last two inequalities we have used Lemmas 3.1–3.3.
With Lemma 3.4, the second integral satisfies

(3.8)
�

C(M)∩Eλ

� N−E(λ)(N1/3−1/42+ε)4V 4(log2N)k � UV 4Lk−1.
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By using the definition of Eλ and Lemma 2.2, the last integral in (3.6)
can be estimated as follows:

�

C(M)∩C(Eλ)

≤ (λ log2N)k
1�

0

|S(α)T (α)|4 dα(3.9)

≤ (λ log2N)k(log(2U))4(log(2V ))4ρ(0)

≤ (λ log2N)k
(

1
3

)4( 5
18

)4

bUV 4,

where in the last inequality we have used Lemma 2.2 and the definition
of ρ(n).

Inserting (3.7)–(3.9) into (3.6), we get

rk(N) ≥
((

1
3

)8

C1C2 −
(

1
3

)4( 5
18

)4

bλk
)

(1− ε)UV 4(log2N)k

+O(UV 4Lk−1).

When k ≥ 358 and ε = 10−10, we obtain

rk(N) > 1.3 · 10−7UV 4(log2N)k.

Recalling the definition of U and V , we conclude that every sufficiently
large even integer N can be expressed in the form (1.4). This completes the
proof of Theorem 1.1.

4. The major arcs: proof of Lemma 2.1. For χ a character modulo q,
define

(4.1) C(χ, a) :=
q∑

h=1

χ̄(h)e
(
ah3

q

)
, C(q, a) := C(χ0, a).

If χ1, . . . , χ8 are characters modulo q, then we write

B(n, q;χ1, . . . , χ8) :=
q∑

a=1
(a,q)=1

e

(
−an
q

)
C(χ1, a) . . . C(χ8, a),(4.2)

B(n, q) := B(n, q;χ0, . . . , χ0).(4.3)

The following lemma is important in proving Lemma 2.1.

Lemma 4.1. Let χi with i = 1, . . . , 8 be primitive characters modulo ri,
r0 = [r1, . . . , r8], and χ0 be the principal character modulo q. Then∑

q≤z, r0|q

1
ϕ8(q)

|B(n, q;χ1χ
0, . . . , χ8χ

0)| � r−3+ε
0 logc z.

Proof. It is similar to that of Lemma 7 in [11], so we omit the details.
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To state other preliminaries, we need to introduce some extra notations.
For i = 1, 2 and W equal to U or V respectively, we define

Vi(λ) :=
∑
m∼W

e(m3λ),(4.4)

Wi(χ, λ) :=
∑
p∼W

(log p)χ(p)e(p3λ)− δχ
∑
m∼W

e(m3λ),(4.5)

where δχ = 1 or 0 according as χ is principal or not. Define

Ji(g) :=
∑
r≤P

[g, r]−3+ε
∑∗

χmod r

max
|λ|≤1/rQ

|Wi(χ, λ)|,(4.6)

K(g) :=
∑
r≤P

[g, r]−3+ε
∑∗

χmod r

( 1/rQ�

−1/rQ

|W1(χ, λ)|2 dλ
)1/2

.(4.7)

Estimates for Ji (i = 1, 2) and K are needed in later arguments. In par-
ticular, the following three lemmas will be important to deal with enlarged
major arcs.

Lemma 4.2. Let U , V be as in (2.4), and let P , Q satisfy (2.1). Then

(4.8) Ji(g)� g−3+εWLc.

Lemma 4.3. Let U , P , Q be as in Lemma 4.2. If g = 1, then (4.8) can
be improved to

(4.9) J1(1)� UL−A,

where A > 0 is arbitrary.

Lemma 4.4. Let U , P , Q be as in Lemma 4.2. Then

(4.10) K(g)� g−3+εU−1/2Lc.

We will prove Lemmas 4.2–4.4 in Section 6.

Proof of Lemma 2.1. Introducing Dirichlet characters, we can rewrite
the exponential sums S(α) and T (α) as

S

(
a

q
+ λ

)
=
C(q, a)
ϕ(q)

V1(λ) +
1

ϕ(q)

∑
χmod q

C(χ, a)W1(χ, λ),(4.11)

T

(
a

q
+ λ

)
=
C(q, a)
ϕ(q)

V2(λ) +
1

ϕ(q)

∑
χmod q

C(χ, a)W2(χ, λ).(4.12)

Thus

(4.13)
�

M
S4(α)T 4(α)e(−nα) dα =

∑
0≤i≤4

∑
0≤j≤4

Ci4C
j
4Iij ,
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where

Iij =
∑
q≤P

1
ϕ8(q)

q∑
a=1

(a,q)=1

C8−i−j(q, a)e
(
−an
q

) 1/qQ�

−1/qQ

V 4−i
1 (λ)V 4−j

2 (λ)

×
{ ∑
χmod q

C(χ, a)W1(χ, λ)
}i{ ∑

χmod q

C(χ, a)W2(χ, λ)
}j
e(−nλ) dλ.

We will prove that I00 gives the main term, and the others the error
term.

We begin with I00, which we expect to be the main term:

I00 =
∑
q≤P

1
ϕ8(q)

q∑
a=1

(a,q)=1

C8(q, a)e
(
−an
q

)
(4.14)

×
1/qQ�

−1/qQ

V 4
1 (λ)V 4

2 (λ)e(−nλ) dλ.

By Lemma 7.11 of [8],

(4.15) Vi(λ) =
2W�

W

e(λu3) du+O(1) =
1
3

∑
W 3<m≤8W 3

m−2/3e(mλ) +O(1).

Using this and the elementary estimate

(4.16)
∑

W 3<m≤8W 3

m−2/3e(mλ)� min(W,W−2|λ|−1),

we have

(4.17) I00 =
1
38

∑
q≤P

B(n, q)
ϕ8(q)

1/qQ�

−1/qQ

( ∑
U3<m≤8U3

m−2/3e(mλ)
)4

×
( ∑
V 3<m≤8V 3

m−2/3e(mλ)
)4
e(−nλ) dλ

+O

(∑
q≤P

|B(n, q)|
ϕ8(q)

1/qQ�

−1/qQ

∣∣∣ ∑
U3<m≤8U3

m−2/3e(mλ)
∣∣∣4

×
∣∣∣ ∑
V 3<m≤8V 3

m−2/3e(mλ)
∣∣∣3 dλ).

By (4.16) and Lemma 4.1 with r0 = 1, the O-term in (4.17) can be estima-
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ted as

�
∑
q≤P

|B(n, q)|
ϕ8(q)

( U−3�

0

U4V 3 dλ+
V −3�

U−3

U−8λ−4V 3 dλ

+
∞�

V −3

U−8λ−4V −6λ−3 dλ
)

� Lc(UV 3 + UV 3 + U−8V 12)� UV 3Lc � UV 4L−1.

Now we extend the integral in the main term of (4.17) to [−1/2, 1/2]; by
a similar argument we see that the resulting error can be estimated as

� Lc
1/2�

1/PQ

(U−2λ−1)4V 4 dλ� LcU−8V 4(PQ)3 � UV 4L−1,

which is acceptable by the choice of P and Q. Thus the main term of (4.17)
becomes

(4.18)
1
38

∑
q≤P

B(n, q)
ϕ8(q)

∑
m1+···+m8=n

U3<m1,...,m4≤8U3, V 3<m5,...,m8≤8V 3

(m1 . . .m8)−2/3+O(UV 4L−1)

=
1
38

∑
q≤P

B(n, q)
ϕ8(q)

J(n) +O(UV 4L−1),

where J(n) is defined by (2.11).
The first sum above is S(n) + O(L−1). The domain of the second sum,

J(n), can be written as

D = {(m1, . . . ,m8) : U3 < m1, . . . ,m4 ≤ 8U3, V 3 < m5, . . . ,m8 ≤ 8V 3},
with m1 = n−m2 − · · · −m8.

To bound this sum from below, if we define

D∗=
{

(m2, . . . ,m8) :
8
3
U3 < m2, . . . ,m4 ≤ 5U3, V 3 < m5, . . . ,m8≤ 8V 3

}
,

we can deduce from (1− δ)N < n ≤ N and (2.4) that

U3 < m1 = n−m2 − · · · −m8 ≤ 8U3.

Thus D∗ is a subset of D, and consequently

J(n) ≥
∑

U3<m1≤8U3, 8
3
U3<m2,m3≤5U3

V 3<m5,...,m8≤8V 3

(m1 . . .m8)−2/3

≥ (5U3)−2/3

{
51/3 −

(
8
3

)1/3}2

37U3V 4 ≥ 78.15467793UV 4.

So, we get C2 = 78.15467793.
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It remains to estimate Iij (0 ≤ i, j ≤ 4, not both zero). We shall first
treat I44, the most complicated one, and the others are similar:

I44 =
∑
q≤P

1
ϕ8(q)

q∑
a=1

(a,q)=1

e

(
−an
q

) 1/qQ�

−1/qQ

{ ∑
χmod q

C(χ, a)W1(χ, λ)
}4

×
{ ∑
χmod q

C(χ, a)W2(χ, λ)
}4
e(−nλ) dλ

=
∑
q≤P

1
ϕ8(q)

∑
χ1 mod q

. . .
∑

χ8 mod q

q∑
a=1

(a,q)=1

C(χ1, a) . . . C(χ8, a)e
(
−an
q

)

×
1/qQ�

−1/qQ

W1(χ1, λ) . . .W1(χ4, λ)W2(χ5, λ) . . .W2(χ8, λ)e(−nλ) dλ

=
∑
r1≤P

. . .
∑
r8≤P

∑∗

χ1 mod r1

. . .
∑∗

χ8 mod r8

∑
q≤P
r0|q

B(n, q;χ1χ
0, . . . , χ8χ

0)
ϕ8(q)

×
1/qQ�

−1/qQ

W1(χ1, λ) . . .W1(χ4, λ)W2(χ5, λ) . . .W2(χ8, λ)e(−nλ) dλ,

where χ0 is the principal character modulo q, r0 = [r1, . . . , r8], and the sum∑∗ is taken over all primitive characters. Suppose that χ∗k is the primitive
character modulo rk with rk | q, inducing χk. Thus we may write χk = χ∗kχ

0.
It is easy to see that W (χk, λ) = W (χ∗k, λ). By Lemma 4.1 and Cauchy’s
inequality, we have

|I44|�Lc
∑
r1≤P

∑∗

χ1 mod r1

max
|λ|≤1/r1Q

|W1(χ1, λ)|
∑
r2≤P

∑∗

χ2 mod r2

max
|λ|≤1/r2Q

|W1(χ2, λ)|

×
∑
r3≤P

∑∗

χ3 mod r3

( 1/r3Q�

−1/r3Q

|W1(χ3, λ)|2 dλ
)1/2

×
∑
r4≤P

∑∗

χ4 mod r4

( 1/r4Q�

−1/r4Q

|W1(χ4, λ)|2 dλ
)1/2

×
∑
r5≤P

∑∗

χ5 mod r5

max
|λ|≤1/r5Q

|W2(χ5, λ)|
∑
r6≤P

∑∗

χ6 mod r6

max
|λ|≤1/r6Q

|W2(χ6, λ)|

×
∑
r7≤P

∑∗

χ7 mod r7

max
|λ|≤1/r7Q

|W2(χ7, λ)|
∑
r8≤P

r−3+ε
0

∑∗

χ8 mod r8

max
|λ|≤1/r8Q

|W2(χ8, λ)|.
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Now we introduce an iterative procedure to bound the above sums over
r8, . . . , r1 consecutively. Since r0 = [r1, . . . , r8] = [[r1, . . . , r7], r8], we use
Lemma 4.2 four times, Lemma 4.4 twice, Lemma 4.2 once, and Lemma 4.3
once to get

(4.19)

|I44| � Lc
∑
r1≤P

∑∗

χ1 mod r1

max
|λ|≤1/r1Q

|W1(χ1, λ)|
∑
r2≤P

∑∗

χ2 mod r2

max
|λ|≤1/r2Q

|W1(χ2, λ)|

×
∑
r3≤P

∑∗

χ3 mod r3

( 1/r3Q�

−1/r3Q

|W1(χ3, λ)|2 dλ
)1/2

×
∑
r4≤P

∑∗

χ4 mod r4

( 1/r4Q�

−1/r4Q

|W1(χ4, λ)|2 dλ
)1/2

× [r1, r2, r3, r4]−3+εV 4L4c

� Lc
∑
r1≤P

∑∗

χ1 mod r1

max
|λ|≤1/r1Q

|W1(χ1, λ)|
∑
r2≤P

∑∗

χ2 mod r2

max
|λ|≤1/r2Q

|W2(χ2, λ)|

× [r1, r2]−3+εU−1V 4L6c

� Lc
∑
r1≤P

∑∗

χ1 mod r1

max
|λ|≤1/r1Q

|W1(χ1, λ)|r−3+ε
1 V 4L7c

� UV 4L−A+8c � UV 4L−1

for large A > 0.
To get upper bounds for other terms, we need to estimate V1(λ) and V2(λ).
One easily gets

(4.20) max
|λ|≤1/Q

|Vi(λ)| �W.

By (4.15) and (4.16),

(4.21)
1/Q�

−1/Q

|Vi(λ)|2 dλ�
1/Q�

−1/Q

((min(W−1,W−2|λ|−1))2 +O(1)) dλ

�
W−3�

0

W 2 dλ+
∞�

W−3

(W−2|λ|−1)2 dλ+
1/Q�

−1/Q

dλ�W−1,

by the choices of P and Q in (2.1), and W = U or V as i = 1, 2.
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For all Iij , 0 ≤ i, j ≤ 4, except I00 and I44,

I4j =
∑
q≤P

1
ϕ8(q)

q∑
a=1

(a,q)=1

C4−j(q, a)e
(
−an
q

) 1/qQ�

−1/qQ

V 4−j
2 (λ)

×
{ ∑
χmod q

C(χ, a)W1(χ, λ)
}4{ ∑

χmod q

C(χ, a)W2(χ, λ)
}j
e(−nλ) dλ,

and

(4.22)

|I4j | � Lc
∑
r1≤P

∑∗

χ1 mod r1

max
|λ|≤1/r1Q

|W1(χ1, λ)|
∑
r2≤P

∑∗

χ2 mod r2

max
|λ|≤1/r2Q

|W1(χ2, λ)|

×
∑
r3≤P

∑∗

χ3 mod r3

( 1/r3Q�

−1/r3Q

|W1(χ3, λ)|2 dλ
)1/2

×
∑
r4≤P

∑∗

χ4 mod r4

( 1/r4Q�

−1/r4Q

|W1(χ4, λ)|2 dλ
)1/2

×
∑
r5≤P

∑∗

χ5 mod r5

max
|λ|≤1/r5Q

|W2(χ5, λ)| . . .

. . .
∑

r4+j≤P

∑∗

χ4+j mod r4+j

max
|λ|≤1/r4+jQ

r−3+ε
0 |W2(χ4+j , λ)|( max

|λ|≤1/Q
|V2(λ)|)4−j.

Now we use (4.21) 4 − j times, Lemma 4.2 j times, Lemma 4.4 twice,
Lemma 4.2 once again, and Lemma 4.3 once to get

|I4j | � UV 4L−A+(4+j)c � UV 4L−1(4.23)

for large A > 0. We treat |I3j |, |I2j |, |I1j | and |I0j | by similar arguments:

(4.24)

|I3j | � Lc
∑
r1≤P

∑∗

χ1 mod r1

max
|λ|≤1/r1Q

|W1(χ1, λ)|
∑
r2≤P

∑∗

χ2 mod r2

max
|λ|≤1/r2Q

|W1(χ2, λ)|

×
∑
r3≤P

∑∗

χ3 mod r3

( 1/r3Q�

−1/r3Q

|W1(χ3, λ)|2 dλ
)1/2( 1/Q�

−1/Q

|V1(λ)|2 dλ
)1/2

×
∑
r5≤P

∑∗

χ5 mod r5

max
|λ|≤1/r5Q

|W2(χ5, λ)| . . .

. . .
∑

r4+j≤P

∑∗

χ4+j mod r4+j

max
|λ|≤1/r4+jQ

r−3+ε
0 |W2(χ4+j , λ)|( max

|λ|≤1/Q
|V2(λ)|)4−j

� UV 4L−1,
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(4.25) |I2j | � Lc
∑
r1≤P

∑∗

χ1 mod r1

max
|λ|≤1/r1Q

|W1(χ1, λ)|

×
∑
r2≤P

∑∗

χ2 mod r2

max
|λ|≤1/r2Q

|W1(χ2, λ)|
( 1/Q�

−1/Q

|V1(λ)|2 dλ
)

×
∑
r5≤P

∑∗

χ5 mod r5

max
|λ|≤1/r5Q

|W2(χ5, λ)| . . .

. . .
∑

r4+j≤P

∑∗

χ4+j mod r4+j

max
|λ|≤1/r4+jQ

r−3+ε
0 |W2(χ4+j , λ)|( max

|λ|≤1/Q
|V2(λ)|)4−j

� UV 4L−1,

(4.26) |I1j | � Lc
∑
r1≤P

∑∗

χ1 mod r1

max
|λ|≤1/Q

|W1(χ1, λ)|( max
|λ|≤1/rQ

|V1(λ)|)

×
( 1/Q�

−1/Q

|V1(λ)|2 dλ
) ∑
r5≤P

∑∗

χ5 mod r5

max
|λ|≤1/r5Q

|W2(χ5, λ)| . . .

. . .
∑

r4+j≤P

∑∗

χ4+j mod r4+j

max
|λ|≤1/r4+jQ

r−3+ε
0 |W2(χ4+j , λ)|

× ( max
|λ|≤1/Q

|V2(λ)|)4−j � UV 4L−1,

(4.27) |I0j | � Lc( max
|λ|≤1/Q

|V1(λ)|)2
( 1/Q�

−1/Q

|V1(λ)|2 dλ
)

×
∑
r5≤P

∑∗

χ5 mod r5

max
|λ|≤1/r5Q

|W2(χ5, λ)| . . .

. . .
∑

r4+j≤P

∑∗

χ4+j mod r4+j

max
|λ|≤1/r4+jQ

r−3+ε
0 |W2(χ4+j , λ)|( max

|λ|≤1/Q
|V2(λ)|)4−j

� UV 4L−1

for large A > 0.
Lemma 2.1 now follows from (4.13), (4.18), (4.19) and (4.23)–(4.27).

5. Estimates related to the singular series: the value of C1.
We need some more notation. Let C(χ, a), C(q, a), B(n, q;χ1, . . . , χ8) and
B(n, q) be defined as in (4.1)–(4.3). If χ1, . . . , χ8 are characters modulo q,
then we write

(5.1) A(n, q) :=
B(n, q)
ϕ4(q)

, S(n) :=
∞∑
q=1

A(n, q),
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so,

S(n) :=
∞∑
q=1

1
ϕ8(q)

q∑
a=1

(a,q)=1

( q∑
h=1

(h,q)=1

e

(
ah3

q

))8

e

(
−an
q

)
.

Proof of Lemma 3.2. It has been shown in [7] that

S(n) =
∏
p

(
1 +

γ∑
j=1

A(n, pj)
)
,

where

pθ ‖ k, γ =
{
θ + 2 if p = 2, 2 | k,
θ + 1 otherwise.

When k = 3, we have

(5.2) S(n) = {1 +A(n, 2)}{1 +A(n, 3) +A(n, 9)}
∏
p≥5

{1 +A(n, p)}.

Let A(n, q) be defined as in (5.1). We will compute A(n, q) for different q.
For p = 2, one has

1 +A(n, 2) =
{

2, n ≡ 0 (mod 2),
0, n 6≡ 0 (mod 2),

(5.3)

by direct calculation.
For p = 3,

C(3, a) =
2∑

h=1

e

(
ah3

3

)
= e

(
a

3

)
+ e

(
−a

3

)
= 2 cos

2πa
3
,

so,

A(n, 3) =
1

ϕ8(3)

2∑
a=1

(
2 cos

2πa
3

)8

e

(
−an

3

)
=

1
28

(
e

(
−n

3

)
+ e

(
−2n

3

))
=

1
27

cos
2πn

3
.

Thus,

(5.4) A(n, 3) =
{

1/27, n ≡ 0 (mod 3),
−1/28, n 6≡ 0 (mod 3).

C(9, a) =
9∑

h=1
(h,3)=1

e

(
ah3

9

)
= 3
(
e

(
a

9

)
+ e

(
−a

9

))
= 6 cos

2πa
9
,
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so,

A(n, 9) =
1

ϕ8(9)

9∑
a=1

(a,3)=1

(
6 cos

2πa
9

)8

e

(
−an

9

)

=
9∑

a=1
(a,3)=1

(
cos

2πa
9

)8

cos
2πan

9
.

For different n, A(n, 9) will take five different values, and they satisfy

(5.5) A(n, 9) > −0.9609375.

From (5.4) and (5.5) we get

(5.6) 1 +A(n, 3) +A(n, 9) > 1− 1/28 − 0.9609375 = 0.03515625.

For p ≥ 5, if p ≡ 2 (mod 3) and (p, a) = 1, we have C(p, a) = −1, by
Lemma 4.3 in Vaughan [29]. So,

B(n, p) =
p−1∑
a=1

C8(p, a)e
(
−an
p

)
=

p−1∑
a=1

e

(
−an
p

)
=
{
p− 1, p | n,
−1, p - n.

Thus,

1 +A(n, p) = 1 +
B(n, p)
ϕ8(p)

=


1 +

1
(p− 1)7

, p |n,

1− 1
(p− 1)8

, p -n.
(5.7)

Let p ≡ 1 (mod 3) with p ≥ 5. First, when p = 7,

C(7, a) =
6∑

h=1

e

(
ah3

7

)
= 3
(
e

(
a

7

)
+ e

(
−a

7

))
= 6 cos

2πa
7
,

so,

A(n, 7) =
1

ϕ8(7)

6∑
a=1

(
6 cos

2πa
7

)8

e

(
−an

7

)

=
6∑

a=1

(
cos

2πa
7

)8

cos
2πan

7
.

For different n, A(n, 7) will take four different values, and they satisfy

A(n, 7) > −0.75390625.
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Thus

(5.8) 1 +A(n, 7) > 1− 0.75390625 = 0.24609375.

For p ≥ 13 and p ≡ 1 (mod 3), noting the elementary estimate (by Lem-
ma 4.3 of [29])

|C(p, a)| ≤ 2
√
p+ 1,

we get

|B(n, p)| =
∣∣∣∣ p−1∑
a=1

C8(p, a)e
(
−an
p

)∣∣∣∣ ≤ (2
√
p+ 1)8(p− 1).

Thus

(5.9) 1 +A(n, p) > 1−
(2
√
p+ 1)8

(p− 1)7
.

Hence

(5.10)
∏
p≥5

{1+A(n, p)} ≥ {1+A(n, 7)}
∏
p≥13

p≡1 (mod 3)

(
1−

(2
√
p+1)8

(p− 1)7

)

×
∏

p≥5, p≡2 (mod 3)
p|n

(
1+

1
(p−1)7

) ∏
p≥5, p≡2 (mod 3)

p-n

(
1− 1

(p−1)8

)

≥ {1 +A(n, 7)}
∏
p≥13

p≡1 (mod 3)

(
1−

(2
√
p+ 1)8

(p− 1)7

)

×
∏

p≥5, p≡2 (mod 3)

(
1− 1

(p− 1)2

)
.

To estimate the products above, we apply the elementary inequality

(5.11)
(2
√
p+ 1)8

(p− 1)7
<

1
(p− 1)2

for p ≥ 324.

Thus we have

(5.12)
∏
p≥5

{1+A(n, p)} ≥ {1+A(n, 7)}
∏

13≤p≤323
p≡1 (mod 3)

(
1−

(2
√
p+ 1)8

(p− 1)7

)

×
∏
p≥324

p≡1 (mod 3)

(
1− 1

(p− 1)2

) ∏
p≥5

p≡2 (mod 3)

(
1− 1

(p− 1)2

)
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= {1 +A(n, 7)}
∏

13≤p≤323
p≡1 (mod 3)

(
1−

(2
√
p+ 1)8

(p− 1)7

)

×
∏
p=3,7

(
1− 1

(p− 1)2

)−1 ∏
13≤p≤323
p≡1 (mod 3)

(
1− 1

(p− 1)2

)−1

×
∏
p≥3

(
1− 1

(p− 1)2

)

≥ 0.24609375 · 4
3
· 36

35
· 0.35608989538 · 0.6601

≥ 0.079331042229,

where we have used
∏
p≥3(1− (p− 1)−2) = 0.6601 . . . (see [5]).

This in combination with (5.2), (5.3), (5.6), (5.12) ensures that

(5.13) S(n) > 0.00557795824,

when n ≡ 0 (mod 2). The proof is complete.

6. Upper bounds of Ji(g) and K(g): proof of Lemmas 4.2–4.4.
Lemmas 4.2 and 4.3 are similar to those in Section 5 in Liu and Liu [19],
and the choices of P , Q defined in (2.1) are acceptable in these lemmas.
A similar proof can also be found in [24], so we omit the details. Here we
only give the proof of Lemma 4.4.

In the proof, we need a mean value theorem of Choi and Kumchev [2]:

Lemma 6.1. Let l be a positive integer, R, T,X ≥ 1 and κ = 1/logX.
Then there is an absolute positive constant c such that

∑
r∼R
l|r

∑∗

χmod r

T�

−T

∣∣∣∣ ∑
X<n≤2X

Λ(n)χ(n)
nκ+iτ

∣∣∣∣ dτ � (l−1R2TX11/20 +X)(logRTX)c,

where the implied constant is absolute.

In order to use Lemma 6.1 effectively, we need a lemma of [15]:

Lemma 6.2. Let χ be a Dirichlet character modulo r. Let 2 ≤ X < Y
≤ 2X, T0 = (log(Y/X))−1, T = X4 and κ = 1/logX. Define

F (s, χ) =
∑

X≤n≤2X

Λ(n)χ(n)n−s.
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Then ∑
X≤n≤2X

Λ(n)χ(n)� log(Y/X)
�

|τ |≤T0

|F (κ+ iτ, χ)| dτ(6.1)

+
�

T0<|τ |≤T

|F (κ+ iτ, χ)|
|τ |

dτ + 1.

The implied constants are absolute.

Proof of Lemma 4.4. Introduce

Ŵ1(χ, λ) :=
∑
m∼U

Λ(m)χ(m)e(λm3)− δχ
∑
m∼U

e(λm3).

When we replace W1(χ, λ) by Ŵ1(χ, λ), the error is

Ŵ1(χ, λ)−W1(χ, λ)� U1/2.

Thus the resulting error of K(g) is

� [g, r]−3+ε r
1/2U1/2

Q1/2
� g−3+εU

1/2

Q1/2

∑
l≤P
l|g

l3−ε
∑
r≤P
l|r

r−5/2+ε(6.2)

� g−3+εU−1/2Lc.

Here, in the last step, we need the definition of P and Q in (2.1).
Thus to establish Lemma 4.4, it suffices to show that

(6.3)
∑
r∼R

[g, r]−3+ε
∑∗

χmod r

( 1/rQ�

−1/rQ

|Ŵ1(χ, λ)|2 dλ
)1/2

� g−3+εU−1/2Lc

for any R ≤ P and some c > 0.
By Gallagher’s lemma ([4, Lemma 1]), we have

(6.4)
1/rQ�

−1/rQ

|Ŵ1(χ, λ)|2 dλ

�
(

1
RQ

)2 ∞�

−∞

∣∣∣ ∑
v≤m3≤v+rQ

m∼U

(Λ(m)χ(m)− δχ)
∣∣∣2 dv

�
(

1
RQ

)2 (2U)3�

U3−rQ

∣∣∣ ∑
X<m≤Y

(Λ(m)χ(m)− δχ)
∣∣∣2 dv,

where
X := max{v1/3, U}, Y := min{(v + rQ)1/3, 2U}.
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If R = 1, we have∑
X<n≤Y

(Λ(m)χ(m)− δχ) =
∑

X<m≤Y
(Λ(m)− 1)(6.5)

� (Y −X)L� U−2QL.
This contributes to (6.3) the quantity

(6.6) g−3+ε

(
1
Q2
· U3 · U−4Q2

)1/2

L� g−3+εU−1/2L,

which is acceptable.
For R ≥ 2 and r ∼ R, we have δχ = 0. Thus, we can apply (6.1) to

obtain

(6.7)
1/rQ�

−1/rQ

|Ŵ1(χ, λ)|2 dλ� 1
U3

( �

|τ |≤T0

|F (κ+ iτ, χ)| dτ
)2

+
U3

(RQ)2

( �

T0<|τ |≤T

|F (κ+ iτ, χ)|
|τ |

dτ

)2

+
U3

(RQ)2
,

since T−1
0 = log(Y/X) � RQ/U3.

Therefore, the contribution of the first term of (6.7) to the left-hand side
of (6.3) is

� g−3+εU−3/2
∑
l≤2R
l|g

(
R

l

)−3+ε

(l−1R2T0U
11/20 + U)Lc(6.8)

� g−3+εU−3/2
(
R−1+ε

∑
l≤2R
l|g

l2−εT0U
11/20 + U

)
Lc

� g−3+εU−1/2Lc,

which is acceptable by the definition of Q.
Set

M(l, R, T ′, U) :=
∑
r∼R
l|r

∑∗

χmod r

2T ′�

T ′

|F (κ+ iτ, χ)| dτ.

The contribution of the second term of (6.7) to the left-hand side of (6.3) is

� g−3+εU3/2(RQ)−1
∑
l≤2R
l|g

(
R

l

)−3+ε

max
T0≤T ′≤T

T ′−1M(l, R, T ′, U)(6.9)

� g−3+εU3/2(RQ)−1
∑
l≤2R
l|g

(
R

l

)−3+ε

(l−1R2U11/20 + T−1
0 U)Lc

� g−3+εU−1/2Lc,

which is acceptable by the definition of Q.
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Finally, the contribution of the last term of (6.7) to the left-hand side of
(6.3) is

� g−3+εU3/2(RQ)−1
∑
l≤2R
l|g

(
R

l

)−3+ε

� g−3+εU−1/2Lc.

Now Lemma 4.4 follows from (6.2), (6.3), (6.6) and (6.8)–(6.10).
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