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1. Introduction

1.1. Motivation and goals. Given an irrational number r and a ra-
tional number, written as the unique quotient p/q of the relatively prime
integers p and q > 0, our fundamental object of interest from diophan-
tine approximation is the approximation coefficient θ(r, p/q) := q2|r − p/q|.
Since adding an integer to a fraction does not change its denominator, we
have θ(r, p/q) = θ(r − brc, p/q − brc), where brc is the integer part of r, al-
lowing us to restrict our attention to the unit interval. We expand the initial
seed x0 ∈ (0, 1) − Q as a regular continued fraction and obtain the infinite
sequence {bn}∞n=1 of partial quotients or 0-digits uniquely determined by x0.
The sequence of rational numbers

p0
q0

:=
0

1
,

pn
qn

:= [b1, . . . , bn]0 =
1

b1 +
1

b2 + · · ·+ 1

bn

, n ≥ 1,

called the convergents of x0 are also uniquely determined (the reason for the
subscript [·]0 will become clear later).

Define the approximation coefficient associated with each convergent
of x0 by

θn(x0) = θn := θ

(
x0,

pn
qn

)
= q2n

∣∣∣∣r − pn
qn

∣∣∣∣
and refer to {θn}∞n=0 as the sequence of approximation coefficients. Much
work has been done with this sequence, from its inception in the classical
era, until the more recent excursions [4, 2, 9, 15, 20]. These reveal elegant
internal structure as well as simple connections with the sequence of 0-digits.
The introduction section of [4] provides a survey of these results, whereas
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a more thorough treatment can be found in [9]. Furthermore, the essential
lower bounds for this sequence determine how well can irrational numbers
be approximated using rational numbers and lead to the construction of the
Lagrange spectrum [8].

Our goal is to improve the results of Jager and Kraaikamp [14] as well as
to extend them to the rather large classes of continued fraction-like expan-
sions, first introduced by Haas and Molnar [12, 13]. While emulating Jager
and Kraaikamp’s approach, we will diverge from their methods in several key
choices regarding the treatment of the dynamical systems at hand. Most no-
tably, we will adopt Nakada’s realization for the natural extension map [16],
which was used in the proof of the Doeblin–Lenstra conjecture [3].

1.2. The dynamics for regular and backwards continued frac-
tions. From a dynamic point of view, the regular continued fraction expan-
sion, or 0-expansion, is a concrete realization of the symbolic representation
of irrational numbers in the unit interval under the iterations of the Gauss
map

T0 : [0, 1)→ [0, 1), T0(x) :=
1

x
−
⌊

1

x

⌋
, T0(0) := 0.

This map is the fractional part of the homeomorphism A0 : (0, 1)→ (0,∞),
x 7→ (1− x)/x, which in turn extends to the Möbius transformation Â0 :

Ĉ→ Ĉ, z 7→ (1− z)/z, mapping [0, 1] bijectively to [0,∞] in an orientation
reversing manner (since Â0(0) = ∞ yet T0(0) = 0, we comply with the
conventional wisdom that the fractional part of ∞ is 0). The Gauss map is
both invariant and ergodic with respect to the probability Gauss measure
µ0(E) := (ln 2)−1

	
E(1− x)−1 dx on the interval.

Another well known continued fraction theory is the backwards contin-
ued fraction expansion, or 1-expansion, stemming from the Rényi map

T1 : [0, 1)→ [0, 1), T1(x) :=
1

1− x
−
⌊

1

1− x

⌋
.

This map is the fractional part of the homeomorphism A1 : (0, 1)→ (0,∞),

x 7→ x/(1− x), which extends to the Möbius transformation Â1 : Ĉ → Ĉ,
z 7→ z/(1− z), mapping [0, 1] bijectively onto [0,∞] in an orientation pre-
serving manner. The Rényi map is invariant and ergodic with respect to the
infinite measure µ1(E) :=

	
E x
−1 dx on the interval.

Letting m ∈ {0, 1}, we extract the sequence of digits for the m-expansion
of a real number x0 ∈ (0, 1) using the following iteration process:

(1) Set n := 1.
(2) If xn−1 = 0, write x0 = 0 if n = 1 or x0 = [b1, . . . , bn−1]m if n > 1

and exit.
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(3) Let bn := bAm(xn−1)c+ 1 ∈ N and xn := Tm(xn−1) ∈ [0, 1). Increase
n by 1 and go to step (2).

For instance,

[1, 1, 2]0 =
1

1 + 1
1+ 1

2

=
1

1 + 2
3

=
3

5
= 1− 2

5
= 1− 1

2 + 1− 1
2

= [2, 2]1.

Remark 1.1. The fact that T1 has an indifferent fixed point at the origin
forces any absolutely continuous invariant measure to be infinite [19]. This
deficiency helps explain why the 1-expansion did not gain nearly as much at-
tention as its 0-expansion cousin, even though it sometimes leads to quicker
expansions, as seen in the example above. Refer to [10] for details comparing
the speed of approximation between the 0- and 1-expansions. The metrical
theory for the backwards continued fraction expansion can be found in [11].

2. Preliminaries. This section is a paraphrased summary of previous
work due to Haas and Molnar [12, 13], given for the sake of completeness.

2.1. Gauss-like and Rényi-like continued fractions. In general,
the fractional part of Möbius transformations which map [0, 1] onto [0,∞]
leads to expansion of real numbers as continued fractions. To characterize all
these transformations, we recall that Möbius transformations are uniquely
determined by their value on three distinct points. Thus, we will need to
introduce a parameter for the image of an additional point besides 0 and 1,
which we will naturally take to be ∞. Since our maps fix the real line, the
image of∞, denoted by −k, can take any value within the set of all negative
real numbers. After letting m ∈ {0, 1} equal zero or one for orientation
reversing and preserving transformations respectively, we conclude that all
such transformations are derived as extensions of the homeomorphisms

A(m,k) : (0, 1)→ (0,∞), x 7→ k(1−m− x)

x−m
, k > 0,

from the open unit interval to its closure. The maps T(m,k) : [0, 1) → [0, 1)
such that 0 7→ 0 and

T(m,k)x = A(m,k)(x)− bA(m,k)(x)c(2.1)

=
k(1−m− x)

x−m
−
⌊
k(1−m− x)

x−m

⌋
, x > 0,

are called Gauss-like and Rényi-like for m = 0 and m = 1 respectively.
We expand the initial seed x0 ∈ (0, 1) as an (m, k)-continued fraction

using the following iteration process:

(1) Set n := 1.
(2) If xn−1 = 0, write x0 = [a1, . . . , an−1](m,k) and exit.
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(3) Set the remainder of x0 at time n to be rn := A(m,k)(xn−1) ∈ (0,∞)
and the (m, k)-expansion for x0 at time n to be x0 = [r1](m,k) if
n = 1 or x0 = [a1, . . . , an−1, rn](m,k) if n > 1. Also, set the digit and
future of x0 at time n to be

(2.2) an := brnc = bA(m,k)(xn−1)c =

⌊
k(1−m− xn−1)

xn−1 −m

⌋
∈ Z≥0

and xn := [rn+1](m,k) = rn − an ∈ [0, 1). Increase n by 1 and go to
step (2).

For all n ≥ 0, we thus have

xn+1 = T(m,k)(xn) =
k(1−m− xn)

xn −m
− an

so that

xn = [an+1, rn+2](m,k) = m+
k(1− 2m)

an+1 + k + [rn+2](m,k)
(2.3)

= m+
k(1− 2m)

an+1 + k + xn+1
.

Therefore, this iteration scheme leads to the expansion of the initial seed x0
as

x0 = m+
k(1− 2m)

a1 + k + x1
= m+

k(1− 2m)

a1 + k +m+
k(1− 2m)

a2 + k + x2

= · · · .

Remark 2.1. The m = 0, 2 ≤ k ∈ N cases have been studied in [1],
where they were called best expansions. The special case k = 1 corresponds
with the classical Gauss and Rényi maps for m = 0 and m = 1 respectively,
but with digits that are 1 smaller than their classical representation. For
instance,

[0, 1, 2](0,k) =
k

0 + k +
k

1 + k +
k

2 + k

=
k2 + 4k + 2

k2 + 5k + 4

and

[0, 1, 2](1,k) = 1− k

0 + k + 1− k

1 + k + 1− k

2 + k

=
k + 4

k3 + 3k2 + 5k + 4

will yield, after plugging k = 1, the fractions [1, 2, 3]0 = 7
10 and [1, 2, 3]1

= 5
13 . We label the digits of the m-expansion bn and the (m, k)-expansion

an = bn − 1 to help avoid this confusion.



Arithmetic diophantine approximation 5

We denote by Q(N)
(m,k) the set of real numbers in the interval for which

this process terminates by the Nth iteration, that is,

Q(N)
(m,k) := {x ∈ [0, 1) : Tn

(m,k)(x) = 0 for some n ≤ N}.

Then x0 ∈ Q(m,k) if and only if x0 = 0 or x0 has a finite (m, k)-expansion,

that is, there exists a unique finite sequence of digits {an}Nn=1 such that x0 =

[a1, . . . , aN ](m,k). Accordingly, we define the set Q(m,k) := limN→∞Q(N)
(m,k)

and the set of (m, k)-irrationals to be its complement in the interval. We
also define the interval of monotonicity (or cylinder set) of rank N ≥ 0
associated with the finite sequence {a1, . . . , aN} of N non-negative integers

to be ∆(0) := (0, 1) and ∆
(N)
a1,...,aN := {x0 ∈ (0, 1) : an(x0) = an for all 1 ≤

n ≤ N}. Then the restriction of TN
(m,k) to the interior of any interval of

monotonicity of rank N is a homeomorphism onto (0, 1) and for all N ≥ 0
we have

(0, 1) =
⋃

a1,...,aN∈Z≥0

∆(N)
a1,...,aN

,

where this union is disjoint in pairs.

2.2. Approximation coefficients for Gauss-like and Rényi-like
maps. Fix m ∈ {0, 1} and k ∈ [1,∞). The (m, k)-sequence of approxima-
tion coefficients {θn(x0)}∞n=0 for the (m, k)-expansion is defined just like the
classical object:

(2.4) θn(x0) := q2n

∣∣∣∣x0 − pn
qn

∣∣∣∣, n ≥ 1,

where the (m, k)-rational numbers p0/q0 = 0/1 and pn/qn = [a1, . . . , an](m,k)

are the corresponding convergents for x0. We further define the past of x0
at time n ≥ 0 to be Y0 := m− k, Y1 := m− k − a1 ∈ (−∞,m− k] and

(2.5) Yn := m− k − aN − [aN−1, . . . , a1](m,k) ∈ (−∞,m− k), n ≥ 2.

The sequence of approximation coefficients relates to the future and past
sequences of x0 using the identity

(2.6) θn−1(x0) =
1

xn − Yn
, n ≥ 1,

which was first proved for the classical Gauss case m = 0, k = 1 in 1921 by
Perron [17].

When k > 1 and n > 0, the Jager pair (θn−1(x0), θn(x0)) lies within the
quadrangle in the Cartesian plane with vertices (0, 0), (1/k, 0), (0, 1/k) and
(1/(k+1−2m), 1/(k+1−2m)). Note that for the classical Gauss case m = 0,
k = 1, this quadrangle degenerates to the triangle with vertices (0, 0), (1, 0)
and (1, 0), in accordance with the findings of Jager and Kraaikamp [14].
For the classical Rényi case m = k = 1, this quadrangle expands to the
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infinite region in the first quadrant of the uv-plane bounded between the
lines u− v = 1 and v−u = 1 (for more details and illustrations refer to [5]).
We conclude that for x0 ∈ (0, 1)−Q(m,k), k ≥ 1 and n > 0, we have

kθn−1(x0) + (1− 2m)θn(x0) ≤ 1,(2.7)

θn−1(x0) + (1− 2m)kθn(x0) ≤ 1.(2.8)

2.3. The natural extension. For fixed m ∈ {0, 1} and k ∈ [1,∞), the
maps T(m,k) are both invariant and ergodic with respect to the measures
whose densities on the interval are

µ(m,k)(x) :=

(
ln

(
k + 1−m
k −m

)
(x+ k − 1)

)−1
.

The induced dynamical systems

{(0, 1),L, µ, T}(m,k) := {(0, 1)−Q(m,k),L, µ(m,k), T(m,k)},
where L is the Lebesgue σ-algebra, are not invertible since the maps T(m,k)

are not bijections. However, there is a canonical way to extend non-invertible
dynamical systems to invertible ones [18]. Our realization of the natural
extension maps begins by defining the region Ω′(m,k) := [0, 1)× (−∞,m−k],

the set

Q′(m,k) :=
{
m− k − b− q : b ∈ Z≥0 and q ∈ Q(m,k)

}
⊂ (−∞,m− k]

and the space of dynamic pairs

(2.9) Ω(m,k) := Ω′(m,k) − ([0, 1)×Q′(m,k)) ∪ (Q(m,k) × (−∞,m− k]).

The natural extension map T(m,k) : Ω(m,k) → Ω(m,k) is defined as

T(m,k)(x, y) = (A(m,k)(x)− bA(m,k)(x)c, A(m,k)(y)− bA(m,k)(x)c)
= (T(m,k)(x), A(m,k)(y)− bA(m,k)(x)c).

After using the definition (2.1) of T(m,k), this map is written explicitly as

(2.10) T(m,k)(x, y)

=

(
k(1−m− x)

x−m
−
⌊
k(1−m− x)

x−m

⌋
,
k(1−m− y)

y −m
−
⌊
k(1−m− x)

x−m

⌋)
.

The maps T(m,k) are both invariant and ergodic with respect to the proba-

bility measures ρ(m,k)(D) := ln((k + 1−m)/(k −m))−1
		

D (x− y)−2 dx dy

when k > m and the infinite measure ρ(1,1)(D) :=
		

D (x− y)−2 dx dy for
the classical Rényi case m = k = 1 (since there is no finite invariant measure
for T1, there is also no finite invariant measure for T(1,1); see Remark 1.1).
Furthermore, the dynamical system {(0, 1),L, µ, T}(m,k) is realized as a left

factor to the invertible dynamical system {Ω(m,k),L2, ρ(m,k),T(m,k)}. From
now on, we will require the parameter k to be grater than or equal to one.
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This choice is not arbitrary, for the 0 < k < 1 cases are known to have
certain pathologies [6].

For the given parameters m ∈ {0, 1} and k ≥ 1, and an initial seed
(x0, y0) ∈ Ω(m,k), we let {an}∞n=1 be the unique sequence of non-negative
integers and {rn}∞n=1 be the unique sequence of remainders such that

x0 = [r1](m,k) = [a1, r2](m,k) = [a1, a2, r3](m,k) = · · · .
Since y0 < m − k, there exists a unique non-negative integer a0 such that
m−k−a0−y0 ∈ (0, 1). Also, from the definition (2.9) of Ω, we see that this
number is an (m, k)-irrational, hence we take {an}−∞n=−1 to be the unique

sequence of non-negative integers and {sn}−∞n=0 to be the unique sequence of
remainders such that

m− k − a0 − y0 = [s0](m,k) = [a−1, s−1](m,k)(2.11)

= [a−1, a−2, s−2](m,k) = · · · .
Using (2.2) and the definition (2.10) of T , we see that for all n ∈ Z we have

(xn+1, yn+1) = T(m,k)(xn, yn)(2.12)

=

(
k(1−m− xn)

xn −m
− an+1,

k(1−m− yn)

yn −m
− an+1

)
.

We now apply (2.3) to write an explicit formula for the inverse map T −1 as

(xn, yn) = T −1(m,k)(xn+1, yn+1)(2.13)

:=

(
m+

(1− 2m)k

k + an+1 + xn+1
,m+

(1− 2m)k

k + an+1 + yn+1

)
.

Since the quantity xn is no other than the future of x0 at time n when n ≥ 1,
we naturally call xn and yn the future and past of (x0, y0) at time n ∈ Z. The
pair (xn, yn) := T n

(m,k)(x0, y0) is called the dynamic pair of (x0, y0) at time

n ∈ Z, and the bi-sequence {an}∞−n=∞ is called the (m, k)-digit bi-sequence
for (x0, y0).

From a heuristic point of view, the map T(m,k) can be thought of as an
invertible left shift operator on the infinite (m, k)-digit bi-sequence

[[. . . ,−an−1,−an | an+1, an+2, . . . ]](m,k)

T7→ [[. . . ,−an, an+1 | an+2, an+3, . . . ]](m,k).

The vertical line in this symbolic digit representation stands for the present
time and T acts as one tick of a clock, pushing the present one step forward
into the future.

3. Dynamic pairs and approximation pairs. Starting with an initial
seed pair (x0, y0) ∈ Ω(m,k), we take the hint from formula (2.6) and define
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the approximation coefficient for the initial seed at time n− 1 ∈ Z to be

(3.1) θn−1(x0, y0) :=
1

xn − yn
,

and refer to {θn(x0, y0)}∞n=−∞ as the bi-sequence of approximation coeffi-
cients. Define the continuous map

(3.2) Ψ(m,k) : Ω(m,k) → R2, (x, y) 7→
(

1

x− y
,

(m− x)(m− y)

(2m− 1)k(x− y)

)
,

and use formulas (2.12) and (3.1) to obtain

(3.3) Ψ(m,k)(xn, yn) = (θn−1(x0, y0), θn(x0, y0)), n ∈ Z.

We denote the image Ψ(m,k)(Ω(m,k)) by Γ(m,k) and, in order to ease the
notation, suppress the subscripts (m, k) from now on.

Proposition 3.1. For all (u, v) ∈ Γ , we have

ku+ (1− 2m)v ≤ 1,(3.4)

(1− 2m)u+ kv ≤ 1.(3.5)

Proof. We first assume that k − m > 0. Let (x0, y0) ∈ Ω(m,k) be any
point in the preimage of (u, v) under Ψ and let {an}∞n=−∞ be the digit
bi-sequence for its (m, k)-expansion. Letting Yn and yn be the past of x0
and (x0, y0) at time n ≥ 1 as in definitions (2.5) and (2.11), we see that for
all n ≥ 2, both m+ k+ an − yn and m+ k+ an − Yn belong to the interval
of monotonicity ∆

an−1,an−2,...,a1
(m,k) . Since the length (or Lebesgue measure) of

intervals of monotonicity tends to zero as their depth tends to infinity, we
have yn − Yn → 0 as n → ∞. Since xn > 0 and yn < m − k, we see that
the sequence {xn− yn}∞n=0 is uniformly bounded from below by the positive
number k −m. Thus, we have

|θn+1(x0)− θn+1(x0, y0)| =
∣∣∣∣ 1

xn − Yn
− 1

xn − yn

∣∣∣∣→ 0 as n→∞.

The fact that Ψ(m,k) is continuous allows us to conclude that the Jager pairs
for (x0, y0) have the same uniform bounds as those of x0, as expressed in
the inequalities (2.7) and (2.8), which is precisely the result.

When m = k = 1, the continuity of Ψ implies

Γ(1,1) = Ψ(1,1)(Ω(1,1)) = lim
k→1+

Ψ(1,k)(Ω(1,k)) = lim
k→1+

Γ(1,k).

Since the result holds for all k > 1, it remains true for the classical Rényi
case as well.

Define for all u, v ≥ 0 the quantity

(3.6) D(u, v) = D(m,k)(u, v) :=
√

1 + 4(2m− 1)kuv.
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The following lemma was first proved for the classical Gauss case m = 0,
k = 1 by Jager and Kraaikamp [14].

Lemma 3.2. The map Ψ : Ω → Γ is a homeomorphism with inverse

(3.7) Ψ−1(u, v) :=

(
m+

1−D(u, v)

2u
,m− 1 +D(u, v)

2u

)
.

Proof. First, we will show that Ψ is a bijection. Since Ψ is surjective
onto its image Γ , we need only show injectivity. Let (x1, y1), (x2, y2) be two
points in Ω such that Ψ(x1, y1) = Ψ(x2, y2), that is,(

1

x1 − y1
,

(m− x1)(m− y1)
(2m− 1)k(x1 − y1)

)
=

(
1

x2 − y2
,

(m− x2)(m− y2)
(2m− 1)k(x2 − y2)

)
.

Equate the first terms to obtain

(3.8) x1 − y1 = x2 − y2,

and then equate the second terms to obtain

(m− x1)(m− y1) = (m− x2)(m− y2).

The basic algebraic equality (α+ β)2 − (α− β)2 = 4αβ, using α = m− x1,
β = m− y1, will now yield

(2m− (x1 + y1))
2 − (x1 − y1)2 = 4(m− x1)(m− y1) = 4(m− x2)(m− y2)

= (2m− (x2 + y2))
2 − (x2 − y2)2.

Another application of (3.8) reduces the last equation to

(2m− (x1 + y1))
2 = (2m− (x2 + y2))

2.

We use the definition (2.9) of Ω′ and observe that x + y ≤ 2m for all
(x, y) ∈ Ω ⊂ Ω′, so that we may infer the equality x1 + y1 = x2 + y2.
Further applications of (3.8) will first prove that

x1 = 1
2((x1 + y1) + (x1 − y1)) = 1

2((x2 + y2) + (x2 − y2)) = x2,

and then that y1 = y2 as well. Therefore, Ψ is an injection.

It is left to prove that Ψ−1 is well defined and continuous on Γ and that
it is the inverse from the left for Ψ on Γ . Given (u, v) ∈ Γ , set

(x, y) := Ψ−1(u, v) =

(
m+

1−D(u, v)

2u
,m− 1 +D(u, v)

2u

)
.

For the Gauss-like m = 0 case, we see from inequality (3.4) that Γ lies
on or underneath the line ku + v = 1 in the uv plane. The only point of
intersection for this line and the hyperbola 4kuv = 1 is (u, v) =

(
1
2k ,

1
2

)
,

hence Γ must lie on or underneath this hyperbola as well. We conclude that
4kuv ≤ 1 for all (u, v) ∈ Γ , hence D(u, v) and then x and y are real. We use
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the inequality ku+ v ≤ 1 again to obtain

D(u, v)2 = 1− 4kuv ≥ 4u2k2 − 4ku+ 1 = (2ku− 1)2,

and conclude that 1 + D(u, v) ≥ 2ku and y = −(1 +D(u, v))/(2u) ≤ −k.
Next, we observe that D(u, v) =

√
1− 4kuv < 1, so that 1 − D(u, v) > 0,

which proves x = (1−D(u, v))/(2u) > 0. If we further assume by contra-
diction that x = (1−D(u, v))/(2u) ≥ 1 then

(1−D(u, v))(1 +D(u, v)) ≥ 2u(1 +D(u, v))

so that

4kuv = 1−D(u, v)2 = (1−D(u, v))(1 +D(u, v)) ≥ 2u(1 +D(u, v)).

This implies 2kv − 1 > D(u, v) ≥ 0 so that (2kv − 1)2 ≥ D(u, v)2, hence
4k2v2 − 4kv + 1 ≥ 1− 4kv and u+ kv ≥ 1, in contradiction to (3.5).

For the Rényi-like m = 1 case, we have D(u, v) =
√

1 + 4kuv > 1 so that
x = 1 + (1−D(u, v))/2u < 1. The inequality (3.5) yields

D(u, v)2 = 1 + 4ukv < 1 + 4u(1 + u) = (2u+ 1)2,

so that D(u, v) < 2u + 1. Then (1 − D(u, v))/(2u) > −1 and x = 1 +
(1 − D(u, v))/(2u) > 0. Also 1 + 4kuv > 4u2k2 − 4ku + 1, which implies√

1 + 4kuv > 2ku − 1, so that (1 +
√

1 + 4kuv)/(2u) = 1 − y > k. Then
y = 1− (1 +D(u, v))/(2u) < 1− k. We conclude that (x, y) ∈ Ω, hence Ψ−1

is well defined. Also, Ψ−1 is clearly continuous on Γ .

We complete the proof by showing that Ψ−1 is injective, i.e., Ψ−1Ψ(x, y)
= (x, y) for all (x, y) ∈ Ω. We use our definitions (3.2) for Ψ , (3.7) for Ψ−1,
and the fact that (2m− 1)2 = 1 whenever m ∈ {0, 1} to obtain

Ψ−1Ψ(x, y) = Ψ−1
(

1

x− y
,

(m− x)(m− y)

(2m− 1)k(x− y)

)
=

(
m+

x− y
2

(
1−

√
1 +

4(m− x)(m− y)

(x− y)2

)
,

m− x− y
2

(
1 +

√
1 +

4(m− x)(m− y)

(x− y)2

))

=

(
m+

x− y
2

(
1−

√(
2m− x− y
x− y

)2)
,

m− x− y
2

(
1 +

√(
2m− x− y
x− y

)2))
.

But since 2m−x−y ≥ x−y > 0 for all (x, y) ∈ Ω, this allows us to conclude
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that the last expression simplifies to(
m+

x− y
2

2(x−m)

x− y
,m− x− y

2

2(m− y)

x− y

)
= (x, y),

as desired.

4. Symmetries in the bi-sequence of approximation coefficients.
In this section, we reveal an elegant symmetrical structure in the bi-sequence
of approximation coefficients, allowing us to recover it entirely from a pair
of consecutive terms. First, we see that the digit an+1 can be determined
from both the pairs of approximation coefficients at times n and n + 1 in
precisely the same fashion. We define

(4.1) D(m,k,n) = Dn := D(θn−1, θn) =
√

1 + 4(2m− 1)kθn−1θn,

as in (3.6).

Proposition 4.1. Let an+1 be the (m, k)-digit at time n+1 and (θn−1, θn)
be the (m, k)-pair of approximation coefficients at time n for the initial seed
pair (x0, y0) ∈ Ω. Then

(4.2) an+1 =

⌊
Dn + 1

2θn
− k
⌋

=

⌊
Dn+1 + 1

2θn
− k
⌋
.

Proof. Using (3.3), the fact that Ψ is a bijection and the definition (3.7)
of Ψ−1, we have

(4.3) (xn, yn) = Ψ−1(θn−1, θn) =

(
m+

1−Dn

2θn−1
,m− 1 +Dn

2θn−1

)
.

Using (2.3), the first components in the exterior terms of (4.3) equate to

an+1 + k + [rn+2] =
(1− 2m)k

xn −m
=

(1− 2m)2kθn−1
1−Dn

.

But since [rn+2] < 1, we obtain

an+1 = ban+1 + [rn+2]c

=

⌊
(1− 2m)2kθn−1

1−Dn
− k
⌋

=

⌊
(1− 2m)2kθn−1(Dn + 1)

1−D2
n

− k
⌋
.

After applying the definition (4.1) of Dn, this expression will simplify to the
first equality in (4.2). Using (2.11), the second components in the exterior
terms of (4.3) equate to

k + an + [sn] = m− yn =
Dn + 1

2θn−1
.

But since [sn] < 1, we have

an = ban + [sn]c =

⌊
Dn + 1

2θn−1
− k
⌋
.
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Adding 1 to all indices will establish the equality of the exterior terms in
(4.2), completing the proof.

Next, we will derive a formula to extend the bi-sequence of approximation
coefficients from a pair of consecutive terms, which applies to either the
future or the past tail. Define the function g(m,k,a) = ga : Γ → R,

(4.4) ga(u, v) = u+
D(u, v)

(1− 2m)k
(m+ k + a) +

v

(2m− 1)k
(m+ k + a)2.

Theorem 4.2. Given the initial seed pair (x0, y0) ∈ Ω, let an+1 be the
(m, k)-digit at time n+1 and let (θn−1, θn, θn+1) be the (m, k)-approximation
coefficients at time n− 1, n and n+ 1. Then

θn±1 = gan+1(θn∓1, θn).

Combining this result with Theorem 4.1 and the definition (4.1) of Dn

allows us to explicitly write θn±1 in terms of (θn∓1, θn) as

θn±1 = θn∓1 +

√
1 + (2m− 1)4kθn∓1θn

(1− 2m)k

×
(
m+ k +

⌊
1 +

√
1 + (2m− 1)4kθn∓1θn

2θn
− k
⌋)

+
θn

(2m− 1)k

(
m+ k +

⌊
1 +

√
1 + (2m− 1)4kθn∓1θn

2θn
− k
⌋)2

.

In order to establish this identity, we will first prove that:

Lemma 4.3. Let (u, v) ∈ Γ and let a := b(D(u, v) + 1)/(2v)− kc. Then

ΨT Ψ−1(u, v) = (v, ga(u, v)
)

and u = ga(ga(u, v), v).

Proof. Given (u, v) ∈ Γ , use the definition (3.7) of Ψ−1 and define

(4.5) (x0, y0) := Ψ−1(u, v) =

(
m+

1−D(u, v)

2u
,m− 1 +D(u, v)

2u

)
∈ Ω.

After applying the definition (3.2) of Ψ , we have

(4.6) (u, v) = Ψ(x0, y0) =

(
1

x0 − y0
,

(m− x0)(m− y0)
(2m− 1)k(x0 − y0)

)
.

We also define (x1, y1) to be the image of (x0, y0) under T , which after using
its definition (2.10) is written as

(x1, y1) =

(
k(1−m− x0)

x0 −m
− a1,

k(1−m− y0)
y0 −m

− a1
)
,

where a1 := b(k(1−m− x0))/(x0 −m)c; hence

(4.7) x1 − y1 =
k(1−m− x0)

x0 −m
− k(1−m− y0)

y0 −m
=

(2m− 1)k(x0 − y0)
(x0 −m)(y0 −m)

.
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Applying (4.5) and the definition (3.6) of D(u, v) allows us to rewrite this
pair as

(x1, y1) =

(
2(1− 2m)ku

1−D(u, v)
− k − a1,

2(2m− 1)ku

1 +D(u, v)
− k − a1

)
(4.8)

=

(
D(u, v) + 1

2v
− k − a1,

D(u, v)− 1

2v
− k − a1

)
where

(4.9) a1 = a =

⌊
D(u, v) + 1

2v
− k
⌋

is as in the hypothesis. Next, use the definition (3.2) of Ψ and set

(v′, w) := Ψ(x1, y1) =

(
1

x1 − y1
,

(m− x1)(m− y1)
(2m− 1)k(x1 − y1)

)
.

Together with (4.6) and (4.7), this implies that v = v′ = (x1 − y1)−1. Using
this identity with (4.8) and the definition (3.6) of D, we find that the second
component of Ψ(x1, y1) is

w =
(m− x1)(m− y1)

(2m− 1)k(x1 − y1)
=

v

(2m− 1)k
(m− x1)(m− y1)

=
v

(2m− 1)k

(
(m+ k + a)− D(u, v) + 1

2v

)(
(m+ k + a)− D(u, v)− 1

2v

)
=

v

(2m− 1)k

(
(m+ k + a)2 − D(u, v)

v
(m+ k + a) +

(2m− 1)ku

v

)
.

We conclude that

(4.10) w = u+
D(u, v)

(1− 2m)k
(m+ k+ a) +

v

(2m− 1)k
(m+ k+ a)2 = ga(u, v),

and since

(v, w) = (v′, w) = Ψ(x1, y1) = ΨT (x0, y0) = ΨT Ψ−1(u, v)

this gives the validity of the first equation in the assertion.

To prove the second part, we use the definition (2.13) of T −1 and write

(x0, y0) = T −1(x1, y1) =

(
m+

(1− 2m)k

k + a+ x1
,m+

(1− 2m)k

k + a+ y1

)
where a is as in (4.9). We again use (3.7) to write

(x1, y1) = Ψ−1(v, w) =

(
m+

1−D(v, w)

2v
,m− 1 +D(v, w)

2v

)
.
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Combining these observations, we obtain

(4.11) (x0, y0) =

(
m+

2(1− 2m)kv

2(m+ k + a)v + (1−D(v, w))
,

m+
2(1− 2m)kv

2(m+ k + a)v − (1 +D(v, w))

)
.

Using (3.2), we rewrite (u, v) = Ψ(x0, y0) as

(u, v) =

(
1

x0 − y0
,
(2m− 1)(m− x0)(m− y0)

k(x0 − y0)

)
=

(
(2m− 1)kv

(m− x0)(m− y0)
, v

)
.

Together with (4.11) and the definition (3.6) of D, we obtain

u = (2m− 1)kv

(
2(2m− 1)kv

2(m+ k + a)v + (1−D(v, w))

)−1
×
(

2(2m− 1)kv

2(m+ k + a)v − (1 +D(v, w))

)−1
=

2m− 1

4kv

(
4(m+ k + a)2v2 − 4(m+ k + a)vD(v, w)− (1−D(v, w)2)

)
= w +

D(v, w)

(1− 2m)k
(m+ k + a) +

(2m− 1)v

k
(m+ k + a)2

= ga(w, v).

But from (4.10) we have w = ga(u, v), so that this last observation shows
the second equation in the assertion, completing the proof.

Proof of Theorem 4.2. We have

(θn, θn+1) = Ψ(xn+1, yn+1) = ΨT (xn, yn) = ΨT Ψ−1(θn−1, θn),

(θn−1, θn) = Ψ(xn, yn) = ΨT −1(xn+1, yn+1) = ΨT −1Ψ−1(θn, θn+1)

= (ΨT Ψ−1)−1(θn, θn+1).

After setting (u, v) := (θn±1, θn), the result is obtained at once from Lem-
ma 4.3 and Proposition 4.1.

Corollary 4.4. Under the assumptions of the previous theorem, we
have

(4.12) m+ k + an+1 =
Dn +Dn+1

2(1− 2m)θn
.

Proof. Using the definition (4.4) of ga and the result of the theorem, we
write
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θn−1 = gan+1(θn+1, θn)

= θn+1 +
Dn+1

k
(m+ k + an+1) +

(2m− 1)θn
k

(m+ k + an+1)
2

= gan+1(θn−1, θn) +
Dn+1

k
(m+ k + an+1)

+
(2m− 1)θn

k
(m+ k + an+1)

2

= θn−1 +
Dn +Dn+1

k
(m+ k + an+1) +

2(2m− 1)θn
k

(m+ k + an+1)
2,

which yields the desired result after the appropriate cancellations and rear-
rangements.

5. The constant bi-sequence of approximation coefficients. For
all m ∈ {0, 1}, k ∈ [1,∞) and a ∈ Z+, define the constants

ξ(m,k,a) = ξa := [a](m,k) = [a, a, . . . ](m,k)

and

(5.1) C(m,k,a) = Ca :=
1√

(m+ k + a)2 + 4(1− 2m)k
,

where we take C(1,1,0) to be ∞. Given two non-negative integers a and b, it
is clear that

(5.2) a ≤ b if and only if Cb ≤ Ca

and that this inequality remains true if we allow a or b to equal ∞.

Theorem 5.1. Let (x0, y0) ∈ Ω(m,k) and write an := an(x0, y0) and
θn := θn(x0, y0) for all n ∈ Z. Let a be a non-negative integer. Then the
following are equivalent:

(i) an = a for all n ∈ Z.
(ii) (x0, y0) = (ξa,m− a− k − ξa).
(iii) θ−1 = θ0 = C(m,k,a).
(iv) θn = C(m,k,a) for all n ∈ Z.

Proof. (i)⇒(ii) follows directly from (2.3), (2.11) and the definition of ξa.

(ii)⇒(iii). When x = ξa = [a], we have a1(x, y) = a1(x) = a. Further-
more, T acts as a left shift operator on the digits of expansion, and hence
it fixes ξa. From the definition (2.1) of T , we have

ξa = [a] = T ([a]) = T (ξa) =
k(1−m− ξa)

ξa −m
− a,

so that

(5.3) ξ2a − (m− k − a)ξa + (mk − k −ma) = 0.
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Using the quadratic formula, we obtain the roots

1
2

(
m− k − a±

√
(a+ k −m)2 − 4(mk − k −ma)

)
= 1

2

(
m− k − a±

√
(m+ k + a)2 + 4k(1− 2m)

)
.

Since the smaller root is clearly negative, we have

ξa = 1
2

(√
(m+ k + a)2 + 4(1− 2m)k + (m− k − a)

)
.

In tandem with formula (5.1), this provides the relationship

(5.4) Ca =
1

2ξa − (m− k − a)
.

The starting assumption and the definition (3.2) of Ψ will now yield

Ψ(x0, y0) = Ψ(ξa,m− k − a− ξa)

=

(
1

2ξa − (m− k − a)
,
(2m− 1)(m− ξa)(a+ k + ξa)

k(2ξa − (m− k − a))

)
=

(
Ca,

2m− 1

k
Ca(ma+mk + (m− k − a)ξa − ξ2a)

)
= (Ca, Ca),

where the last equality is obtained from (5.3). Combining this last observa-
tion with (3.3) yields

(5.5) (θ−1, θ0) = Ψ(x0, y0) = (Ca, Ca),

which is the desired result.

(iii)⇒(iv). From the definition (5.1) of Ca, we have

1 + 4(2m− 1)kC2
a = 1− 4(1− 2m)k

(m+ k + a)2 + 4(1− 2m)k
= (m+ k + a)2Ca

2.

We use this observation and the definition (4.4) of ga to conclude that

(5.6) ga(Ca, Ca)

= Ca +
m+ k + a

(1− 2m)k

√
1 + 4(2m− 1)kC2

a +
(2m− 1)Ca

k
(m+ k + a)2 = Ca.

If θ−1 = θ0 = Ca then, since Ψ is a bijection, formula (5.5) implies that
(x0, y0) = (ξa,−a − k − ξa) and an(x0, y0) = a for all n ∈ Z. Theorem 4.2
and (5.6) now prove the equalities

θ1 = ga1(θ−1, θ0) = ga(Ca, Ca) = Ca,

θ−2 = ga1(θ0, θ−1) = ga(Ca, Ca) = Ca.

The proof that {θn}∞n=−∞ = {Ca} is the indefinite extension of this argument
to all n ∈ Z.
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(iv)⇒(i). If θn = Ca for all n ∈ Z, then Dn =
√

1 + 4(2m− 1)kCa
2 for

all n ∈ Z. Corollary 4.4 now yields

(m+k+an+1)
2 =

(Dn+Dn+1)
2

4θ2n
=

4(1 + 4(2m−1)kCa
2)

4C2
a

=
1

C2
a

+4(2m−1)k.

But from (5.1), we know that (m+ k + an+1)
2 = 1/C2

an+1
+ 4(2m− 1)k, so

that we must have an+1 = a for all n ∈ Z.

Corollary 5.2. Let (x0, y0) ∈ Ω and write an := an(x0, y0) and θn :=
θn(x0, y0) for all n ∈ Z. Then {an}∞n=−∞ is constant if and only if {θn}∞n=−∞
is constant.

Proof. Necessity follows immediately from the previous theorem. Sup-
pose {θn} = {θ} is constant and write D :=

√
1 + 4(2m− 1)kθ2, so that

D = D0 = D1 is as in (4.1). Then Corollary 4.4 yields

(m+ k + a1)
2 =

(
D0 +D1

2θ0

)2

=
D2

θ2
=

1

θ2
+ 4(2m− 1)k.

But from (5.1), we know that (m+ k+ a1)
2 = C−2a1 + 4(2m− 1)k, and since

θn > 0, we conclude that θ = Ca1 . The previous theorem now shows that
an(x0, y0) = a1 for all n ∈ Z.

6. Essential bounds. Thus far, our treatment of the Gauss-like and
Rényi-like cases ran along the same lines. However, these bi-sequences can
be no further apart when it comes to their essential bounds.

6.1. The Gauss-like case. In this subsection, we focus on the Gauss-
like case m = 0. We fix k ∈ [1,∞) and omit the subscript (0, k) throughout.

Theorem 6.1. Suppose that (x0, y0) ∈ Ω. For all n ∈ Z write an+1 :=
an+1(x0, y0) and θn := θn(x0, y0). Then the inequalities

min{θn−1, θn, θn+1} ≤ Can+1 and max{θn−1, θn, θn+1} ≥ Can+1

are sharp, with equality occurring precisely when θn−1 = θn = θn+1 = Can+1.

Proof. Assume, for contradiction, that min{θn−1, θn, θn+1} > Can+1 .
Then, using the definition (5.1) of Ca, we obtain

min{θn−1θn, θnθn+1} > C2
an+1

=
1

(an+1 + k)2 + 4k
,

hence

DnDn+1 ≤ max{D2
n, D

2
n+1} = max{1− 4kθn−1θn, 1− 4kθnθn+1}

< 1− 4k

(an+1 + k)2 + 4k
.
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We conclude

max{DnDn+1, D
2
n, D

2
n+1} < 1− 4k

(an+1 + k)2 + 4k
(6.1)

=
(an+1 + k)2

(an+1 + k)2 + 4k
.

Also, since we are assuming θn > Can+1 , we have

1

4θ2n
<

1

4C2
an+1

=
(an+1 + k)2 + 4k

4
.

Using this last observation together with Corollary 4.4 and (6.1), we obtain
the contradiction

(an+1 + k)2 =
1

4θ2n
(D2

n +D2
n+1 + 2DnDn+1)

<
(an+1 + k)2 + 4k

4

4(an+1 + k)2

(an+1 + k)2 + 4k
= (an+1 + k)2,

which proves the first inequality in the theorem. The proof of the second
is the same mutatis mutandis. Finally, if (x, y) = (ξa,−(a + k + ξa)) ∈ Ω,
then we conclude from Theorem 5.1 that an+1 = a and θn = Ca for all
n ∈ Z. Thus these inequalities are sharp and equality is realized precisely
when {θn}∞n=−∞ = {Ca}.

From (5.2), we have Ca ≤ C0 for all a ≥ 0 and, as a direct result, we
conclude:

Corollary 6.2. Under the assumptions of the previous theorem, the
inequality

lim inf θn(x0, y0) ≤ C0 =
1√

k2 + 4k
≤ 1√

5

is sharp.

A classical theorem due to Legendre states that if p/q is a rational num-
ber with θ(x0, p/q) < .5, then p/q is an RCF convergent for x0 [7, Theo-
rem 5.12]. Since k ∈ Q implies that every (0, k)-convergent is also in Q and
since Can+1 ≤ 5−.5 < .5, the following result follows at once from Legendre’s
theorem and the previous corollary.

Corollary 6.3. When k ∈ [1,∞)∩Q, at least one in every three consec-
utive members of the (0, k)-convergents for x0 is, in fact, a classical regular
continued fraction convergent!

6.2. The Rényi-like case. In this subsection, we focus on the Rényi-
like case m = 1. We fix k ∈ [1,∞) and omit the subscript (1, k) throughout.
The main result for this section is:
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Theorem 6.4. Suppose (x0, y0)∈Ω. For all n ∈ Z write an := an(x0, y0)
and θn := θn(x0, y0). Let 0 ≤ l ≤ L ≤ ∞ be such that

l = lim inf
n∈Z

{an} ≤ lim sup
n∈Z

{an} = L.

Then the inequalities

CL ≤ lim inf
n∈Z

{θn} ≤ lim sup
n∈Z

{θn} ≤ Cl

are sharp.

In order to prove this theorem, we first prove:

Lemma 6.5. Suppose (x0, y0) ∈ Ω. For all n ∈ Z write an := an(x0, y0)
and θn := θn(x0, y0). If θn = max{θn−1, θn, θn+1} then θn ≤ Can+1 with
equality precisely when {θn}∞n=−∞ is constant. Similarly, if θn = min{θn−1,
θn, θn+1} then θn ≥ Can+1 with equality precisely when {θn}∞n=−∞ is con-
stant.

Proof. We will only prove the first claim; the proof for the second one is
the same mutatis mutandis. If θn = max{θn−1, θn, θn+1} then

Dn =
√

1 + 4kθn−1θn ≤
√

1 + 4kθ2n

with equality precisely when θn−1 = θn, and

Dn+1 =
√

1 + 4kθnθn+1 ≤
√

1 + 4kθ2n

with equality precisely when θn+1 = θn. We conclude that the weak inequal-
ity

1

4θ2n
(D2

n +D2
n+1 + 2DnDn+1) ≤

1

4θ2n
4(1 + 4kθ2n)

must hold and that equality is obtained if and only if θn−1 = θn = θn+1.
In this case, we deduce from Theorem 5.1 that {θn}∞n=−∞ is constant. Oth-
erwise, we may replace the weak inequality with a strict one. If we further
assume that θn ≥ Can+1 then Corollary 4.4 and the definition (5.1) of Ca

with a = an+1, yield the contradiction

(an+1 + k + 1)2 =
1

4θ2n
(D2

n−1 +D2
n + 2Dn−1Dn) <

1

4θ2n
4(1 + 4kθ2n)

=
1

θ2n
+ 4k ≤ 1

C2
an+1

+ 4k = (an+1 + k + 1)2.

We conclude that θn must be strictly smaller than Can+1 , as desired.

Proof of Theorem 6.4. From our assumption, there exists N0 ≥ 1 such
that l ≤ an+1(x0, y0) ≤ L for all n ≥ N0 and for all n ≤ 1−N0. After using
the inequality (5.2), we conclude that

(6.2) CL ≤ Can+1 ≤ Cl for all n ≥ N0 and for all n ≤ 1−N0.
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We will first prove the theorem when at least one of the sequences {θn}∞n=N0

and {θn}−∞n=1−N0
is eventually monotone. Then we will show that this in-

equality holds in general, after proving its validity when neither sequence is
eventually monotone. Finally, we will prove that the constants Cl and CL

are the best possible by giving specific examples for which they are obtained.

First, suppose {θn}∞n=N0
is eventually monotone in the broader sense.

Then there exists N1 ≥ N0 for which {θn}∞n=N1
is monotone. By Proposi-

tion 3.1, this sequence is bounded in [0, C0], so it must converge to some
real number C ∈ [0, C0]. Thus

lim
n→∞

Dn := lim
n→∞

√
1 + 4kθn−1θn =

√
1 + 4kC2.

Using (5.1) and Corollary 4.4, we obtain

1

C2
an+1

+ 4k = (an+1 + k + 1)2 =
1

4θ2n
(D2

n +D2
n+1 + 2DnDn+1),

so that

lim
n→∞

1

C2
an+1

+ 4k =
1

C2
(1 + 4kC2) =

1

C2
+ 4k

and limn→∞Can+1 = C. When k = 1 is the classical Rényi case, both C
and limn→∞Dn might equal infinity, implying that 1/C2 + 4k = 0. Since
{Can}n∈Z is a discrete set, there must exist a non-negative integer a and a
positive integer N2 ≥ N1 such that θn = Can+1 = Ca = C for all n ≥ N2.
But this implies from Theorem 5.1 that θn = Ca for all n ∈ Z. Since N2 ≥
N1 ≥ N0, we use the inequality (6.2) to conclude that CL ≤ θn = Ca ≤ Cl

for all n ∈ Z, which gives the validity of the assertion for this scenario.
Proving that the case when {θn}−∞n=1−N0

is eventually monotone reduces to
the constant case is the same mutatis mutandis.

Now suppose that neither {θn}∞n=N0
nor {θn}−∞n=1−N0

is eventually mono-
tone, in the broader sense. In particular, {θn}∞n=−∞ is not constant, so that
an application of Theorem 5.1 yields θn−1 6= θn for all n ∈ Z. Let N1 ≥ N0

be the first time the sequence {θn}∞n=N0
changes direction, that is, we have

either θN1 = min{θN1−1, θN1 , θN1+1}, or θN1 = max{θN1−1, θN1 , θN1+1}. We
now show that CL < θn < Cl for all n ≥ N1.

Fixing N ≥ N1, take N ′, N ′′ such that θN ′ and θN ′′ are the closest local
extrema to θN in the sequence {θn}∞n=N1

from the left and right. That is,
N1 ≤ N ′ < N < N ′′ and we have either

θN ′ < θN ′+1 < · · · < θN < θN+1 < · · · < θN ′′

and θN ′ < θN ′−1, θN ′′ > θN ′′+1, or

θN ′ > θN ′+1 > · · · > θN > θN+1 > · · · > θN ′′

and θN ′ > θN ′−1, θN ′′ < θN ′′+1. In the first case, applying the previ-
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ous lemma to θN ′ = min{θN ′−1, θN ′ , θN ′+1} implies θN ′ > CaN′+1
, and

applying the previous lemma to θN ′′ = max{θN ′′−1, θN ′′ , θN ′′+1} implies
θN ′′ < CaN′′+1

. In the second case, applying the previous lemma to θN ′ =
max{θN ′−1, θN ′ , θN ′+1} implies θN ′ < CaN′+1

, and applying the previous
lemma to θN ′′ = min{θN ′′−1, θN ′′ , θN ′′+1} implies θN ′′ > CaN′′+1

. But N ′′ >
N ′ ≥ N1 ≥ N0, so that l ≤ aN ′+1, aN ′′+1 ≤ L. We conclude that

CL ≤ CaN′+1
< θN ′ < θN < θN ′′ < CaN′′+1

≤ Cl

in the first case, and

CL ≤ CaN′′+1
< θN ′′ < θN < θN ′ < CaN′+1

≤ Cl

in the second. In either case CL < θN < Cl, as desired. Similarly, we let
N2 ≥ N0 be the first time the sequence {θn}−∞n=1−N0

changes direction. The
proof that CL < θn < Cl for all n ≤ 1 −N2 is the same mutatis mutandis.
After setting N3 := max{N1, N2}, we conclude that CL < θn < Cl for all
|n| > N3, which shows the validity of the assertion for this scenario as well.

Finally, we prove that CL and Cl are the best possible bounds. Clearly,
CL = 0 is the best bound when L = ∞, and similarly Cl = 0 is the best
bound when l = L =∞. To prove that Cl is the best possible upper bound
when l <∞, fix l ≤ L <∞, define x0 = [a1, a2, . . . ](1,k) by

an :=

{
L if log2 n is a positive integer,

l otherwise,

and let y0 be its reflection, that is, yn := 1− k − a1 − [a2, a3, . . . ](1,k). Then
l ≤ an(x0, y0) ≤ L for all n ∈ Z and both digits appear infinitely often. If
N ≥ 1 is such that aN (x0, y0) = L then

x(N+log2 N+1) = [

log2 N times︷ ︸︸ ︷
l, l, l, l, l, . . . , l, r(log2 N+1)],

y(N+log2 N+1) = 1− k − l − [

log2 N − 1 times︷ ︸︸ ︷
l, l, l, l, l, . . . , l, s(log2 N−1)].

Since this occurs for infinitely many N , there is a subsequence {nj} ⊂ Z
such that (xnj , ynj )→ (ξl, 1−k−l−ξl). Then Theorem 3.1 and formula (5.4)
prove θ(nj+1)(x0, y0) = (xnj − ynj )

−1 → (2ξl + k + l − 1)−1 = Cl as j →∞.
Therefore, Cl cannot be replaced with a smaller constant. The proof that CL

cannot be replaced with a larger constant is the same mutatis mutandis.

7. Back to one-sided sequences. We finish by quoting those results
which apply to the one-sided sequence of approximation coefficients as well.
Fix m ∈ {0, 1}, k ≥ 1 and an initial seed x0 ∈ (0, 1) − Q(m,k). Write an :=

an(x0) and θn = θn(x0) = (xn − Yn)−1 for all n ≥ 1, where xn and Yn are
the future and past of x0 at time n as in (2.3) and (2.5), and θn(x0) is as
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in (2.4). Using (2.10) and (2.13), we see that the maps T and T −1 are well
defined on (xn, Yn), and that for all n ≥ 1, we have (xn, Yn) = T n(x0, Y0).
Using Haas’ result (2.6) and the definition (3.2) of the map Ψ , we also see
that Ψ(xn, Yn) = (θn−1, θn). Thus, the proofs of Proposition 4.1 as well as
Theorems 4.2, 6.1 and 6.4 remain true, after we restrict n ≥ 1 and replace
yn with Yn. Consequently, these results apply to the one-sided sequences
{an}∞n=1 and {θn}∞n=1 for all parameters k ≥ 1 in both the Gauss-like and
Rényi-like cases.

The proof of Proposition 4.1 for the classical one-sided Gauss case m = 0,
k = 1 was recently published by the author [4]. The first part of the classical
Gauss map, one-sided version of Theorem 6.1 was first proved by Bagemihl
and McLaughlin [2], as an improvement on a previous result due to Borel
[9, Theorem 5.1.5], where the symmetric second part is due to Tong [20]. As
expected, the constant C(0,1,0) is no other than the Hurwitz constant 5−.5.
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