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Polynomial relations amongst algebraic units of low measure

by

John Garza (Des Moines, IA)

1. Introduction. Amongst the absolute values in a place v of an al-
gebraic number field K, two play a role in this article. If v is archimedean,
let ‖ · ‖v denote the unique absolute value in v that restricts to the usual
archimedean absolute value on Q. If v is non-archimedean and v | p, let ‖ · ‖v
denote the unique absolute value in v that restricts to the usual p-adic abso-
lute value on Q. For each place v of K, let Kv and Qv be the completions of
K and Q with respect to v and define the local degree of v as dv = [Kv : Qv].

For all places v let | · |v = ‖ · ‖dv/dv .

The absolute values | · |v satisfy the product rule: if α ∈ K×, then∏
v |α|v = 1. The absolute (logarithmic) Weil height of α is defined as

h(α) =
∑

v log+ |α|v where the sum is over all places v of K. Because of
the way in which the absolute values | · |v are normalized, h(α) does not
depend on the field K in which α is contained.

By Kronecker’s theorem h(α) = 0 if and only if α = 0 or α ∈ Tor(Q×).
In 1933, Lehmer [L] asked wether or not there exists a constant % > 1 such
that

(1.1) deg(α)h(α) ≥ log %

in all other cases. Lehmer’s question remains unresolved to this day. For
algebraic numbers α the Mahler measure M(α) of α is defined by logM(α) =

deg(α)h(α). If mα,Z = a0
∏d
i=1(x − αi) ∈ Z[x] is the minimal polynomial

of α in Z[x], it is known that

(1.2) M(α) = |a0|
d∏
i=1

max{1, |αi|}.

The smallest non-zero Mahler measure known is that of the roots of
x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1, and it is thought by many that
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if the answer to Lehmer’s question is yes then the minimum possible % is
the log of the Mahler measure of this polynomial.

If α ∈ Q× is not an algebraic integer, then the |a0| of equation (1.2) is
at least 2. It follows that M(α) ≥ 2 so that Lehmer’s question restricts to
algebraic integers. For an algebraic number field K, we let OK be the set of

algebraic integers in K. Also, if α ∈ Q× is an algebraic integer that is not a
unit then

(1.3) NormQ(α)/Q(α) ≥ 2.

It follows from (1.2) that (1.3) implies M(α) ≥ 2 and that Lehmer’s prob-
lem restricts to consideration of algebraic units. We will let O×K denote the
multiplicative group of algebraic units in K.

It was shown in [G2] that, within a fixed algebraic number field, a large
set of units of low measure must satisfy a multiplicative relation with small
exponents. This article obtains the results of [G2] as a special case of poly-
nomial relations that must exist amongst a set of algebraic units of low
measure. Related results include those obtained by Beukers and Zagier [BZ],
Cohen and Zannier [CZ], Garza, Ishak and Pinner [GIP], Samuels [Sa], and
Schinzel [Sch].

In order to review the result of [G2], we restate the key definitions

presented there. A set {α1, . . . , αr} ⊆ Q× is said to be multiplicatively
independent if the only solution to the equation αm1

1 · · ·αmr
r = 1 with

m1, . . . ,mr ∈ Z is m1 = · · · = mr = 0. It follows that if {α1, . . . , αr}
is multiplicatively independent then {α1, . . . , αr} ∩ Tor(Q×) = ∅. We will

say that {α1, . . . , αr} ⊂ Q× is multiplicatively independent up to exponent

n if the inclusion αm1
1 · · ·αmr

r ∈ Tor(Q×) for 0 ≤ |mi| ≤ n implies that
m1 = · · · = mn = 0. The paper [G1] established that for algebraic units
α1, . . . , αr, d = [Q(α1, . . . , αr) : Q], s ∈ N minimal such that s > 2d/r, and
α1, . . . , αr multiplicatively independent up to exponent s− 1,

(1.4)
r∑
i=1

h(αi) ≥
log 2

2(s− 1)
.

This article will recapture the above inequality as the limiting case of a more
general concept.

2. Main result. For f ∈ Q[x1, . . . , xr] we define the length L(f) of f
as the sum of the absolute values of the coefficients of f . For a monomial
g = xβ11 · · ·x

βr
r ∈ Q[x1, . . . , xr] we define the degree of g as max{β1, . . . , βr}.

For f ∈ Q[x1, . . . , xr] we define the degree ∂(f) of f as the maximum of the
degrees of the monomials of f . For

A = {(α1, . . . , αr)} ⊂ (OK)r
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we define

I(A) = {f ∈ Q[x1, . . . , xr] | f(α1, . . . , αr) = 0}.

That is, I(A) is the ideal of polynomials in Q[x1, . . . , xr] that vanish at the
point (α1, . . . , αr). For r, s,m ∈ Z+ we define

P(r,m, s) = {f ∈ Z[x1, . . . , xr] |L(f) ≤ m and ∂(f) ≤ s}.

The set {α1, . . . , αr} is polynomially independent over Z[x1, . . . , xr] of length
m and exponent s if

P(r,m, s) ∩ I(A) = {0}.

We now state the main result of this article.

Theorem 2.1. Let K be an algebraic number field of degree d over Q and
let α1, . . . , αr ∈ OK be polynomially independent of exponent s and length
2m. If

(2.1) mr log(s+ 1)− log(m!) > d log(4m)

then

s
r∑
i=1

h(αi) > log 2.

3. Preliminary lemmas. In this section we present three lemmas that
will be used in the proof of Theorem 2.1. Lemmas 1 and 2 were proven in
[G1] and their proofs are not included here.

Lemma 1. Let K/Q be a finite Galois extension and let p ∈ N be a prime
with ramification index e in K. Let Ap = {v1, . . . , vt} be the set of places of K
extending the p-adic place of Q. For vi ∈ Ap let Mvi = {α ∈ K | |α|vi < 1}.
Let s ∈ N, s ≤ t and let β ∈ K×. If β ∈Ma1

v1 · · ·M
as
vs for a1, . . . , as ∈ N∪{0},

then ∑
Ap

log |β|vi ≤ (− log p)
1

et

s∑
j=1

aj .

Lemma 2. Let α1, . . . , αn ∈ Q×, let K be the Galois closure of the field
Q(α1, . . . , αn) and let d = [K : Q]. For 1 ≤ j ≤ n and 1 ≤ k ≤ m let
bj,k ∈ N ∪ {0} be such that

∑
bj,k ≥ 1 and let ck ∈ Z− {0}. Define

δ =
m∑
k=1

ck

n∏
j=1

α
bj,k
j , Mj = max{bj,k | 1 ≤ k ≤ m},

L =
∑
k

|ck|, w =
∏
s -∞

|δ|v.



28 J. Garza

For each place v |∞, let av ∈ R+ be defined via

‖δ‖v = av

n∏
j=1

max{1, ‖αMj

j ‖v}

and let

A =
∏
v|∞

(av)
dv/d.

If δ 6= 0, then

wA ≤ 1, A ≤ L and
n∑
j=1

Mjh(αj) ≥ log(1/wA).

Lemma 3. Let K be an algebraic number field of degree d over Q and
let OK be the ring of integers of K. For m ∈ Z+,

|OK : mOK| = md.

Proof. For m = 1 there is nothing to prove. Suppose m ≥ 2. We know
that (OK,+) is a free abelian group of rank d. Let ω1, . . . , ωd ∈ OK be
such that (OK,+) = 〈ω1, . . . , ωd〉. We have mOK / OK. Let Ψ : OK →
OK/mOK be the natural projection homomorphism. Then OK/mOK =
〈Ψ(ω1), . . . , Ψ(ωd)〉. We must show that there exists no non-trivial linear
relation among Ψ(ω1), . . . , Ψ(ωd) with coefficients 0 ≤ ci ≤ m − 1. To this
end, assume there exist {c1, . . . , cd} ∈ {0, . . . ,m− 1} not all zero such that∑d

i=1 ciΨ(ωi) = 0. Then
∑d

i=1 ciωi ∈ kerΨ , so

d∑
i=1

ciωi = mβ, β ∈ OK.

Since not all ci are 0, we see that β 6= 0. Let b1, . . . , bd ∈ Z be such that∑d
i=1 biωi = β. Since β 6= 0, there exists bj 6= 0. Now,

0 = mβ −mβ =

d∑
i=1

ciωi −m
( d∑
i=1

biωi

)
=

d∑
i=1

ciωi −
d∑
i=1

(mbi)ωi

=

d∑
i=1

(ci −mbi)ωi.

The last equation implies that ci −mbi = 0 for i = 1, . . . , d. In particular,
cj = mbj . Since bj 6= 0, this contradicts the assumption that 0 ≤ cj ≤ m−1.
We have thus shown that there is no non-trivial linear relation amongst
Ψ(ω1), . . . , Ψ(ωd) with coefficients 0 ≤ ci ≤ m− 1.

4. Proof of the main result. Given m ∈ Z+ it follows from Lemma 3
that |OK : 4mOK| = (4m)d. Let Λ be the set of monic monomials in
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Z[x1, . . . , xr] of degree less than or equal to s. By the Counting Principle,
|Λ| = (s+1)r. An application of the formula for counting combinations with
replacement shows that

|P(r,m, s)| ≥
m∑
j=0

(
|Λ|+ j − 1

j

)
.

We now recall the following identity from Pascal’s triangle:
m∑
j=0

(
|Λ|+ j − 1

j

)
=

(
|Λ|+m

m

)
,

and recognize the lower bound(
|Λ|+m

m

)
≥ |Λ|

m

m!
.

The inequality (2.1) implies

|P(r,m, s)| > |OK : 4mOK|.
Let Ψ : OK → OK/4mOK be the natural homomorphism. The last inequality
implies the existence of distinct f and g in P(r,m, s) such that

Ψ(f(α1, . . . , αr)) = Ψ(g(α1, . . . , αr)).

It follows that (f − g)(α1, . . . , αr) ∈ 4mOK. Since f − g ∈ P(r, 2m, s) \ {0}
and

I(A) ∩ P(r, 2m, s) = {0},
we have (f − g)(α1, . . . , αr) 6= 0. An application of Lemmas 1 and 2 with
δ = (f − g)(α1, . . . , αr) 6= 0 results in w ≤ 1/4m and A ≤ 2m. Therefore

s
r∑
i=1

h(αi) ≥ log 2.

5. Application of the Gröbner basis of I(A). Fix the lexicographic
monomial ordering x1 < · · · < xr on the polynomial ring Q[x1, . . . , xr]. The
symbol GA = {g1, . . . , gn} ⊂ Q[x1, . . . , xr] will denote the unique reduced
Gröbner basis for I(A). For gi ∈ GA the leading term of gi will be denoted
LT(gi) and the monomial ideal generated by the leading terms will be de-
noted LT(I(A)). We recall that LT(gi) is a monic monomial and as a result
LT(gi) ∈ Z[x1, . . . , xr]. Furthermore, M will denote the set of monic mono-
mials in Z[x1, . . . , xr]. Define Λ =M−M∩LT(I(A)). Thus Λ is the set of
monic monomials in Z[x1, . . . , xr] that are not divisible by the leading term
of any element of GA. Finally, 〈Λ〉 ⊂ Z[x1, . . . , xr] will denote the additive
abelian group generated by Λ. It follows from the definitions provided that
〈Λ〉 ∩ I(A) = {0}. Applying the formula for counting combinations with
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replacement we have

|{f ∈ 〈Λ〉 | L(f) < k}| ≥
(
|Λ|+ k

k

)
.

Let m = min{∂(LT(gi)) | 1 ≤ i ≤ r} − 1. It follows that xβ11 · · ·x
βr
r ∈ Λ

for 0 ≤ βi ≤ m, so |Λ| ≥ mr. This implies that

|{f ∈ 〈Λ〉 | L(f) < k}| ≥
(
mr + k

k

)
.

If there exists k ∈ Z+ such that
(
mr+k
k

)
> (4k)d then an application of the

proof of Theorem 2.1 gives
∑r

i=1 h(αi) ≥ (log 2)/m.

6. Conclusion. If I(A) excludes polynomials of bounded length and
bounded degree, then this article has shown that either [Q(α1, . . . , αr) : Q]
or h(α1) + · · ·+ h(αr) must be large.
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