A note on the article by F. Luca "On the system of Diophantine equations $a^2 + b^2 = (m^2 + 1)^r$ and $a^x + b^y = (m^2 + 1)^z$ "

(Acta Arith. 153 (2012), 373-392)

by

TAKAFUMI MIYAZAKI (Tokyo)

1. Introduction. For positive integers r, m with r > 1 and m even, we define integers A, B by $A+B\sqrt{-1} = (m+\sqrt{-1})^r$. Consider the Diophantine equation

(1.1) $|A|^{x} + |B|^{y} = (m^{2} + 1)^{z}$

in positive integers x, y and z. In 2012, Luca [Lu] proved that there are only finitely many pairs of (r, m) such that equation (1.1) has a solution $(x, y, z) \neq (2, 2, r)$. This result is effective, namely he showed that there exists an effectively computable constant $c_0 > 0$ such that all such solutions satisfy $\max\{r, m, x, y, z\} \leq c_0$. The aim of this article is to show an explicit refinement of that result with some simplifications and improvements. Our main result is as follows.

THEOREM 1.1. If $r > 10^{74}$ or $m > 10^{34}$, then equation (1.1) has no solution other than (x, y, z) = (2, 2, r).

2. Preliminaries. In this section, we list the estimates for linear forms in logarithms that we will need, in both complex and *p*-adic cases. Let α_1, α_2 be non-zero algebraic numbers. Write $\mathbb{L} = \mathbb{Q}(\alpha_1, \alpha_2)$ and denote by *D* the degree of \mathbb{L} over \mathbb{Q} .

First, we present lower bounds for linear forms in two complex logarithms due to Laurent [La]. Consider the linear form

$$\Lambda = b_1 \log \alpha_1 - b_2 \log \alpha_2,$$

²⁰¹⁰ Mathematics Subject Classification: Primary 11D61; Secondary 11J86.

 $Key\ words\ and\ phrases:$ exponential Diophantine equation, linear forms in logarithms of algebraic numbers.

T. Miyazaki

where b_1, b_2 are positive integers, and $\log \alpha_1, \log \alpha_2$ are any determinations of the logarithms of α_1, α_2 respectively. We assume $|\alpha_1|, |\alpha_2| \ge 1$. Put

$$D' = D/[\mathbb{R}(\alpha_1, \alpha_2) : \mathbb{R}].$$

For any algebraic number α , we define as usual the absolute logarithmic height of α by

$$h(\alpha) = \frac{1}{d} \Big(\log c_0 + \sum_{i=1}^d \log \max\{1, |\alpha^{(i)}|\} \Big),$$

where $c_0 > 0$ is the leading coefficient of the minimal polynomial of α over \mathbb{Z} , and $\alpha^{(1)}, \ldots, \alpha^{(d)}$ are the conjugates of α in the field of complex numbers.

The following is the main result of [La].

PROPOSITION 2.1 ([La, Theorem 1]). Let K be an integer ≥ 2 , and let L, R_1, R_2, S_1, S_2 be positive integers. Let ρ and μ be real numbers with $\rho > 1$ and $1/3 \leq \mu \leq 1$. Put

$$R = R_1 + R_2 - 1, \quad S = S_1 + S_2 - 1, \quad N = KL, \quad g = \frac{1}{4} - \frac{N}{12RS},$$

$$\sigma = \frac{1 + 2\mu - \mu^2}{2}, \quad b = \frac{(R - 1)b_2 + (S - 1)b_1}{2} \Big(\prod_{k=1}^{K-1} k!\Big)^{-2/(K^2 - K)}.$$

Let H_1, H_2 be positive real numbers such that

$$H_i \ge \rho |\log \alpha_i| - \log |\alpha_i| + 2D' h(\alpha_i) \quad (i = 1, 2).$$

Suppose

(I)
$$\begin{cases} \operatorname{Card}\{\alpha_1^r \alpha_2^s : 0 \le r < R_1, \ 0 \le s < S_1\} \ge L, \\ \operatorname{Card}\{rb_2 + sb_1 : 0 \le r < R_2, \ 0 \le s < S_2\} > (K-1)L \end{cases}$$

and

(II)
$$K(\sigma L - 1) \log \rho - (D' + 1) \log N$$

 $- D'(K - 1) \log b - gL(RH_1 + SH_2) > \varepsilon(N),$

where

$$\varepsilon(N) = \frac{2\log(N!N^{-N+1}(e^N + (e-1)^N))}{N}$$

Then

$$|\Lambda'| \ge \rho^{-\mu KL} \quad with \quad \Lambda' = \Lambda \max\left\{\frac{LSe^{LS|\Lambda|/(2b_2)}}{2b_2}, \frac{LRe^{LR|\Lambda|/(2b_1)}}{2b_1}\right\}.$$

We also rely on the following result of [La].

PROPOSITION 2.2 ([La, Corollary 2, m = 10]). For algebraic numbers α_1, α_2 , suppose that $\alpha_1, \alpha_2, \log \alpha_1, \log \alpha_2$ are all real and positive. Assume

further that α_1, α_2 are multiplicatively independent. Let H_1, H_2 be real numbers such that

$$H_i \ge \max\{\mathbf{h}(\alpha_i), (\log \alpha_i)/D, 1/D\} \quad (i = 1, 2).$$

Put

$$b' = \frac{b_1}{DH_2} + \frac{b_2}{DH_1}$$

Then

$$\log |\Lambda| \ge -25.2 D^4 H_1 H_2 \left(\max\{ \log b' + 0.38, 10/D, 1\} \right)^2$$

Next, we present lower bounds for linear forms in two p-adic logarithms, due to Bugeaud and Laurent [BL] and Bugeaud [B]. Put

$$\Gamma = \alpha_1^{b_1} \alpha_2^{b_2} - 1,$$

where b_1, b_2 are non-zero rational integers. We assume that α_1, α_2 are multiplicatively independent. Suppose that π is a prime ideal in the ring of integers of \mathbb{L} which does not divide the ideal $(\alpha_1\alpha_2)$. Let f_{π} be its inertia index. We denote by g the minimal positive integer such that both $\alpha_1^g - 1$ and $\alpha_2^g - 1$ belong to π .

Let H_1, H_2 be real numbers such that

 $H_i \ge \max\{h(\alpha_i), (\log p)/D_{\pi}\} \quad (i = 1, 2),$

where p is the rational prime such that p belongs to π and $D_{\pi} = D/f_{\pi}$. Put

$$b' = \frac{|b_1|}{H_2} + \frac{|b_2|}{H_1}.$$

For $\alpha \in \mathbb{L} \setminus \{0\}$, we denote by $\operatorname{ord}_{\pi}(\alpha)$ the exponent of π in the factorization of the fractional ideal generated by α inside \mathbb{L} . The next proposition is proven in [BL].

PROPOSITION 2.3 ([BL, Théorème 3]). Under the above assumptions,

$$\operatorname{ord}_{\pi}(\Gamma) \leq \frac{24pgH_1H_2D_{\pi}^4}{(p-1)(\log p)^4} \left(\max\{\log b' + \log\log p + 0.4, (10/D_{\pi})\log p, 10\}\right)^2.$$

Under the hypothesis of Proposition 2.3, we further suppose that both $\alpha_1 = a_1$ and $\alpha_2 = a_2$ are rational integers. Then $\pi = p$. Assume that there exists a real number E such that

$$\frac{1}{p-1} < E \le \operatorname{ord}_p(a_1^g - 1).$$

Let H_1, H_2 be real numbers such that

 $H_i \geq \max\{\log |a_i|, E \log p\} \quad (i = 1, 2).$

We put $b' = |b_1|/H_2 + |b_2|/H_1$. The estimate below is obtained in [B].

T. Miyazaki

PROPOSITION 2.4 ([B, Theorem 2]). Under the above assumptions, if either p is odd, or p = 2 and $\operatorname{ord}_2(a_2 - 1) \ge 2$, then

$$\operatorname{ord}_{p}(\Gamma) \leq \frac{36.1gH_{1}H_{2}}{E^{3} (\log p)^{4}} \left(\max\{\log b' + \log(E\log p) + 0.4, \, 6E\log p, \, 5\} \right)^{2}$$

and

$$\operatorname{ord}_{p}(\Gamma) \leq \frac{53.8gH_{1}H_{2}}{E^{3}(\log p)^{4}} \left(\max\{\log b' + \log(E\log p) + 0.4, 4E\log p, 5\}\right)^{2}$$

If p = 2 and $\operatorname{ord}_2(a_2 - 1) < 2$, then

$$\operatorname{ord}_2(\Gamma) \le 208 H_1 H_2(\max\{\log b' + 0.04, 10\})^2$$

3. Proof of Theorem 1.1. Let r, m be positive integers with r > 1 and m even. Define a, b and c by a = |A|, b = |B| and $c = m^2 + 1$. We see that a, b and c are co-prime integers such that $a^2 + b^2 = c^r$ with min $\{a, b, c\} > 1$. Both the facts that gcd(a, b, c) = 1 and min $\{a, b, c\} > 1$ are easily shown (cf. [Lu, Lemma 5(i) & (iv)]). Also, A, B satisfy

$$A^{2} + B^{2} = (A + B\sqrt{-1})(A - B\sqrt{-1}) = (m + \sqrt{-1})^{r}(m - \sqrt{-1})^{r} = (m^{2} + 1)^{r}.$$

Our proof is organized in several stages below.

3.1. Elementary estimates for variables

LEMMA 3.1. Let (x, y, z) be a solution to (1.1). Put

$$X := \max\{x, y\}, \quad \Delta := rX - 2z.$$

Then:

(i) $\Delta \ge 0$. Moreover, if $\Delta = 0$, then (x, y, z) = (2, 2, r).

(ii) If $\Delta > 0$, then

$$\Delta > \frac{\log \min\{a, b\}}{\log c}$$

Proof. (i) Since $a, b < c^{r/2}$ and $c \ge 5$, we have

$$c^{z} < 2\max\{a^{x}, b^{y}\} \le 2\max\{a, b\}^{X} < 2c^{rX/2},$$

and so $c^{2z} < 4c^{rX} < c^{rX+1}$.

Suppose $\Delta = 0$, that is, z = rX/2. Then X > 1 by [Lu, Lemma 5(v)]. Since $a^X + b^X \ge a^x + b^y = c^{rX/2} = (a^2 + b^2)^{X/2}$, we find X = 2, and (x, y, z) = (2, 2, r).

(ii) Reducing (1.1) modulo a and b, we have $c^{|ry-2z|} \equiv 1 \pmod{a}$ and $c^{|rx-2z|} \equiv 1 \pmod{b}$, respectively. These together give the desired inequality.

3.2. Upper bound for X in terms of r and c

LEMMA 3.2. Let
$$(x, y, z)$$
 be a solution to (1.1). Then
 $X < 50 r^2 (\log c)^2 (\log (69 r^2 \log c))^2.$

Proof. We only consider the case where r is odd (the case where r is even can be dealt with similarly). By the definition of a and b, we easily observe $a \equiv 0 \pmod{m}$ and $b \equiv \pm 1 \pmod{m^2}$; in particular, a is even, $a \ge m$ and $b \ge m^2 - 1$. We will consider the cases $a^x < b^{y/2}$ and $a^x \ge b^{y/2}$ separately.

First, we suppose $a^x < b^{y/2}$. Then

$$x < \frac{\log b}{2\log a} \, y < \frac{\log(m^2 + 1)}{4\log m} \, ry < 0.6 \, ry \quad (>y).$$

Put $\Lambda := z \log c - y \log b$ (> 0). Since $\Lambda < \exp(\Lambda) - 1 = a^x b^{-y} < b^{-y/2}$, we have

$$\log \Lambda < -\frac{\log b}{2} y$$

We apply Proposition 2.2 with $(\alpha_1, \alpha_2) = (c, b)$ and $(b_1, b_2) = (z, y)$. Then

$$\log \Lambda \ge -25.2(\log b)(\log c)(\max\{\log b' + 0.38, 10\})^2,$$

where $b' = y/\log c + z/\log b$. It follows that

$$\frac{y}{\log c} < 50.4 (\max\{\log b' + 0.38, 10\})^2.$$

This inequality together with $b' < 2y/\log c + 1$ (since $c^z < 2b^y$) implies $y/\log c < 5040$, and so $X < 0.6 ry < 3024 r \log c$.

Second, we suppose $a^x \ge b^{y/2}$. Then

$$y \le \frac{2\log a}{\log b}x < \frac{2\log(m^2 + 1)^{r/2}}{\log(m^2 - 1)}x < 1.5\,rx.$$

Hence, we may assume x > 1. Since $c^z = a^x + b^y < 2a^{2x} < 2c^{rx} < c^{rx+1}$, we find $z \leq rx$. Note that y is even if $b \equiv 3 \pmod{4}$ (which can be seen by reducing (1.1) modulo 4). Put $\Gamma := c^z b^{-y} - 1$. We will apply Proposition 2.4 with $(\alpha_1, \alpha_2) = (c, (-1)^{(b-1)/2}b)$, $(b_1, b_2) = (z, -y)$ and p = 2. Since g = 1, we may take E = 2 and $(H_1, H_2) = (\log c, \log(b+1))$. It follows from $3 \leq b < c^{r/2}$ and $\operatorname{ord}_2(\Gamma) \geq x$ that

$$x \le \frac{36.1 \, r (\log c)^2}{8 (\log 2)^3 \log 3} \left(\max\{ \log b' + \log(2 \log 2) + 0.4, \, 12 \log 2 \} \right)^2,$$

where $b' = y/\log c + z/\log(b+1)$. Observe that

$$b' < \frac{1.5\,rx}{\log c} + \frac{rx}{\log(b+1)} < \frac{2.7\,r}{\log c}\,x.$$

We may assume

$$x \ge \frac{2^{11}}{2.7(\log 2)\exp(0.4)} \frac{\log c}{r}$$

Write

$$s = \frac{5.4(\log 2)\exp(0.4)\,r}{\log c}\,x.$$

Then $s/(\log s)^2 < 69 r^2 \log c$ (≥ 444), from which we have

$$s < 276 r^2 (\log c) (\log(69 r^2 \log c))^2.$$

Hence, $X < 1.5 \, rx < 50 \, r^2 (\log c)^2 (\log (69 \, r^2 \log c))^2.$ \blacksquare

3.3. Lower bounds for X in terms of r and c

LEMMA 3.3. Let $(x, y, z) \neq (2, 2, r)$ be a solution to (1.1). Then:

(i)
$$X \ge 2\sqrt{c-1}/r^2$$
. Moreover, if $\min\{x, y\} \ge 4$, then $X \ge 2(c-1)/r^2$.
(ii) If $c > 10^{68}$ and $r < c^{1/3}$, then $X \ge 2(c-r^3\sqrt{c-1}-1)/r^2$.

Proof. Clearly, we may assume m > 2. The proof proceeds along similar lines to that of [Lu, Lemma 8].

We only consider the case where r is even (the case of r odd can be dealt with similarly). Then

$$A = \frac{(m+\sqrt{-1})^r + (m-\sqrt{-1})^r}{2} = (-1)^{r/2} \left(1 - \binom{r}{2} m^2 + \cdots \right),$$

$$B = \frac{(m+\sqrt{-1})^r - (m-\sqrt{-1})^r}{2\sqrt{-1}} = (-1)^{r/2} \left(rm - \binom{r}{3} m^3 + \cdots \right).$$

Write $a = \epsilon A$ and $b = \eta B$, where $\epsilon, \eta \in \{1, -1\}$. Then, reducing modulo m^4 , we find

$$\begin{aligned} a^{x} &= \epsilon^{x} (-1)^{rx/2} \left(1 - \binom{r}{2} m^{2} + \cdots \right)^{x} \equiv \epsilon_{1} \left(1 - \binom{r}{2} m^{2} x \right) \pmod{m^{4}}, \\ b^{y} &= \eta^{y} (-1)^{ry/2} m^{y} \left(r - \binom{r}{3} m^{2} + \cdots \right)^{y} \\ &\equiv \eta_{1} r^{y-1} m^{y} \left(r - \binom{r}{3} m^{2} y \right) \pmod{m^{4}}, \\ c^{z} &= (m^{2} + 1)^{z} \equiv m^{2} z + 1 \pmod{m^{4}}, \end{aligned}$$

where $\epsilon_1 = \epsilon^x (-1)^{rx/2}$ and $\eta_1 = \eta^y (-1)^{ry/2}$. It follows from (1.1) that

$$\epsilon_1 \left(1 - \binom{r}{2} m^2 x \right) + \eta_1 r^{y-1} m^y \left(r - \binom{r}{3} m^2 y \right) \equiv m^2 z + 1 \pmod{m^4}.$$

This implies $\epsilon_1 \equiv 1 \pmod{m}$, and so $\epsilon_1 = 1$, since m > 2. Hence,

$$-\binom{r}{2}m^{2}x + \eta_{1}r^{y-1}m^{y}\left(r - \binom{r}{3}m^{2}y\right) \equiv m^{2}z \pmod{m^{4}}.$$

This congruence yields:

36

(3.1)
$$\begin{cases} r \equiv 0 \pmod{m} & \text{if } y = 1, \\ z + \frac{r(r-1)}{2}x - r^2 \equiv 0 \pmod{m^2} & \text{if } y = 2, \\ z + \frac{r(r-1)}{2}x - \eta_1 r^3 m \equiv 0 \pmod{m^2} & \text{if } y = 3, \\ z + \frac{r(r-1)}{2}x \equiv 0 \pmod{m^2} & \text{if } y \ge 4. \end{cases}$$

(i) As in the proof of [Lu, Lemma 8], we can observe that the left-hand side of the congruence in (3.1) for y = 2 is non-zero. Hence, congruences (3.1) with Lemma 3.1(i) imply

$$\frac{r^2 X}{2} \ge z + \frac{r(r-1)}{2} X \ge m \ (= \sqrt{c-1}).$$

Also, if $y \neq 3$, then we can replace the rightmost side above by m^2 (= c-1).

(ii) Assume $c > 10^{68}$ and $r < c^{1/3}$. It suffices to show that the left-hand side of the congruence in (3.1) for y = 3 is non-zero. If $z + \frac{r(r-1)}{2}x = r^3m$, then the proof of (i) and Lemma 3.2 yield

$$\begin{split} \sqrt{c-1} &\leq \frac{X}{2r} < 25 \, r (\log c)^2 (\log (69 \, r^2 \log c))^2 \\ &< 25 \, c^{1/3} (\log c)^2 (\log (69 \, c^{2/3} \log c))^2, \end{split}$$

which contradicts the assumption $c > 10^{68}$.

3.4. Lower bounds for r in terms of c

LEMMA 3.4. Assume $c > 10^{68}$. Let $(x, y, z) \neq (2, 2, r)$ be a solution to (1.1). Then $r > c^{1/6.01}$. Moreover, if $\min\{x, y\} \ge 4$, then $r > c^{1/4.66}$.

Proof. We may assume $r < c^{1/3}$. Then Lemmata 3.2 and 3.3(ii) imply $c - r^3 \sqrt{c-1} - 1 < 25 r^4 (\log c)^2 (\log(69 r^2 \log c))^2$.

Combining this inequality with the assumption $c > 10^{68}$, we have $r > c^{1/6.01}$. Similarly, if $\min\{x, y\} \ge 4$, then $c-1 < 25 r^4 (\log c)^2 (\log(69 r^2 \log c))^2$, which implies $r > c^{1/4.66}$.

3.5. Prime factors of c

LEMMA 3.5. Let $(x, y, z) \neq (2, 2, r)$ be a solution to (1.1). Then:

- (i) $r < 4 \cdot 10^5 c$. Moreover, if $c > 10^{68}$, then r < 5341 c.
- (ii) Assume $c > 10^{68}$. Let *p* be any prime factor of *c*. If $\min\{x, y\} \ge 4$, then $p > c^{1/4.66}/76000$.

Proof. By [Lu, Lemma 5(v)], we know $x \neq y$. As in the proof of [Lu, Lemma 7(iii)], we see that

$$\Gamma := \alpha^{4r|x-y|} \ 2^{-4|x-y|} - 1 \equiv 0 \pmod{\beta^{\lceil r/2 \rceil}},$$

where $\alpha = m + \sqrt{-1}$ and $\beta = m - \sqrt{-1}$. Let p be any prime factor of $c = m^2 + 1$. Since $p \equiv 1 \pmod{4}$, we can write $p = \pi \overline{\pi}$ with $\pi \neq \overline{\pi}$, where π is a prime in $\mathbb{Z}[\sqrt{-1}]$, and $\overline{\pi}$ is the complex conjugate of π . We may assume that π divides β . We will apply Proposition 2.3 with $(\alpha_1, \alpha_2) = (\alpha, 2)$ and $(b_1, b_2) = (4r|x - y|, -4|x - y|)$. Observe that $D_{\pi} = 2$ and g is a divisor of p - 1. We may take $(H_1, H_2) = ((\log c)/2, (\log p)/2)$. It follows that

$$r \le \frac{192 \, p \log c}{(\log p)^3} \left(\max\{\log b' + \log \log p + 0.4, \, 5 \log p\} \right)^2,$$

where $b' = 8r|x-y|/\log p + 8|x-y|/\log c$. We may assume $r \ge 5341 c$. Then, from Lemma 3.2, we see that

$$b' \cdot (\log p) \cdot \exp(0.4) < \frac{8X(r+1)}{\log p} \cdot (\log p) \cdot \exp(0.4) < 400 \exp(0.4) r^2(r+1) (\log c)^2 (\log(69 r^2 \log c))^2 < r^5.$$

Hence,

(3.2)
$$\frac{r}{(\log r)^2} \le \frac{4800 \, p \log c}{(\log p)^3}.$$

Since $5 \le p \le c$, we have $r/(\log r)^2 < 4800 c/(\log c)^2$. Write r = Cc. Then $C < 4800(1 + (\log C)/\log c)^2$. Since $c \ge 5$, we have $C < 4 \cdot 10^5$, which can be replaced by C < 5341 if $c > 10^{68}$.

(ii) By Lemma 3.4, we may assume p < r. With the notation in (i), we see from Lemmata 3.2 and 3.4 that $b' \cdot (\log p) \cdot \exp(0.4) < r^5$, and so (3.2) holds. Write $c^{1/4.66} = \mathcal{C}'p$. Then $\mathcal{C}' < 22368(1 + (\log \mathcal{C}')/\log p)^3$. Since $p \ge 5$, we have $\mathcal{C}' < 4 \cdot 10^7$. Hence, $p > c^{1/4.66}/(4 \cdot 10^7) > 10^7$, and so $\mathcal{C}' < 1.2 \cdot 10^5$. Repeating this process twice, we obtain $\mathcal{C}' < 76000$.

3.6. Accurate estimates for $\log a$ and $\log b$

LEMMA 3.6. Assume $c > 10^{68}$. Let $(x, y, z) \neq (2, 2, r)$ be a solution to (1.1). Then

$$\max\left\{\frac{r}{2}\log c - \log a, \ \frac{r}{2}\log c - \log b\right\} < 17.04(\log c)^3.$$

Proof. Write

$$\log a - (r/2) \log c = \log |\Gamma| - \log 2 \ (<0),$$

where $\Gamma = \gamma^r + 1$ with $\gamma = \frac{m-\sqrt{-1}}{m+\sqrt{-1}}$. We may assume $|\Gamma| < 1/3$. Then there exists a non-negative integer j with $j \leq r+2$ such that $|\Gamma| \geq |\Lambda|/2$ with $\Lambda := r \log \gamma - j \log(-1)$, where the former log denotes the principal determination of the logarithm, and the latter denotes a determination such that $\log(-1) = \pm \pi \sqrt{-1}$. We define $\theta \in [0, \pi/2]$ by $\tan \theta = \frac{2m}{m^2+1}$. If j = 0, then $\log |\Lambda| = \log(r\theta) > -0.4 \log c$, where the last inequality follows from Lemma 3.4. Hence, we may assume j > 0. We will apply Proposition 2.1 with $(\alpha_1, \alpha_2) = (\gamma, -1)$ and $(b_1, b_2) = (r/d_0, j/d_0)$, where $d_0 = \gcd(r, j)$. For this, we choose the parameters as follows:

$$L = \log c, \ \rho = 4.07, \ \mu = 0.93, \ K = \lceil LH_1H_2 \rceil,$$

$$R_1 = \lceil L/2 \rceil, \ S_1 = 2, \ R_2 = \lceil LH_2 \rceil, \ S_2 = \lceil (1 + (K-1)L)/R_2 \rceil,$$

where we take $(H_1, H_2) = (\rho | \log \gamma | + \log c, \rho \pi)$. Let us check both conditions (I) and (II). The first inequality in (I) clearly holds. Also, using $c > 10^{68}$ and r < 5341 c by Lemma 3.5(i), we can verify (II). It remains to establish the second inequality in (I). For this, we will show $r/d_0 > R_2$. Suppose $r/d_0 \leq R_2 = \lceil LH_2 \rceil$. Then since $(r/d_0)\theta$ is very small, we see from Lemma 3.4 that

$$\begin{split} \log |\Lambda| &= \log d_0 + \log |(r/d_0) \log \gamma - (j/d_0) \log(-1)| \\ &\geq \log(r/(\rho \pi \log c)) + \log |(r/d_0)\theta \pm (j/d_0)\pi| > 18 + \log 3, \end{split}$$

which is clearly absurd. Hence, $b_1 = r/d_0 > R_2$. Now, we suppose that

$$ub_2 + vb_1 = u'b_2 + v'b_1$$

for some integers u, u', v, v' such that $0 \le u, u' < R_2$ and $0 \le v, v' < S_2$. This implies $b_2(u - u') \equiv 0 \pmod{b_1}$, and so $u - u' \equiv 0 \pmod{b_1}$, as $gcd(b_1, b_2) = 1$. Since $b_1 > R_2$ and $|u - u'| < R_2$, we find u = u', and v = v'. This shows that the second inequality in (I) holds.

Then, we have

$$\begin{split} -\mu(\log \rho)KL &\leq \log |\Lambda/d_0| + \log \max \bigg\{ \frac{LSe^{LS|\Lambda|/(2j)}}{2j/d_0}, \, \frac{LRe^{LR|\Lambda|/(2r)}}{2r/d_0} \bigg\} \\ &\leq \log |\Lambda| + \log(LT) + \frac{LT|\Lambda|}{2b_3d_0} - \log(2b_3) \\ &< \log |\Lambda| + \log(LT) + \frac{LT}{3} - \log 2, \end{split}$$

where $(T, b_3) \in \{(R, r/d_0), (S, j/d_0)\}$. Since $L > 68 \log 10$, we find $R = \lceil L/2 \rceil + \lceil LH_2 \rceil - 1 < (1/2 + H_2)L + 1 < 6.3L,$ $S = \lceil (1 + (K - 1)L)/R_2 \rceil + 1 < KL/R_2 + 2 < LH_1 + 1/H_2 + 2 < 1.01 L^2.$ Hence, $\log |\Lambda|$ is greater than

$$-\mu(\log \rho) \lceil LH_1H_2 \rceil L - \log(1.01 L^3) - \frac{1.01 L^3}{3} + \log 2$$

> $-\left(1.001 \pi \mu \rho \log(\rho) + \frac{\mu(\log \rho)}{L^2} + \frac{\log(1.01 L^3)}{L^3} + \frac{1.01}{3} - \frac{\log 2}{L^3}\right) L^3$
> $-17.03 L^3.$

Similarly, we have the desired estimate for $\log b$.

3.7. Bounding X and Δ

LEMMA 3.7. Assume $c > 10^{68}$. Let $(x, y, z) \neq (2, 2, r)$ be a solution to (1.1). Then:

(i) $X < 7 \cdot 10^9 \log c$. Moreover, if $\min\{x, y\} < 4$, then $X < 2522 \log c$.

(ii) $\Delta < 34.2(\log c)^2 X$.

Proof. We only consider the case where $a^x < b^y$ (the remaining case can be dealt with similarly). Since $c^z < 2b^y$, we see $|z \log c - y \log b| < \log 2$. Therefore, Lemma 3.6 gives

$$\left| \left(\frac{ry}{2} - z \right) \log c \right| = \left| \left(\frac{r}{2} \log c - \log b \right) y - (z \log c - y \log b) \right| < 17.1 (\log c)^3 y,$$

which together with Lemma 3.4 implies

$$(3.3) ry < (2+10^{-5})z.$$

Put $\Lambda := z \log c - y \log b$. Observe $\Lambda \in (0, 1)$. Then, as in the proof of Lemma 3.2, Proposition 2.2 tells us that

 $|\log \Lambda| < 12.6 r (\log c)^2 (\max\{\log b' + 0.38, 10\})^2,$

where $b' = y/\log c + z/\log b$ (< $(2y + 0.02)/\log c$). On the other hand, we see from Lemma 3.6 that

$$|\log A| > y \log b - x \log a = r(\log c)(y - x)/2 + R \quad (> 0),$$

where $|R| < 34.1 (\log c)^3 X$. Hence,

a .

(3.4)
$$|x - y| < 25.2(\log c)(\max\{\log s, 10\})^2 + \frac{68.2(\log c)^2}{r}X,$$

where

$$s = \frac{2\exp(0.38)}{\log c}(X + 0.01).$$

(i) First, let us consider the case $\min\{x, y\} < 4$. Inequality (3.4) implies

$$\left(1 - \frac{68.2(\log c)^2}{r}\right)X < 3 + 25.2(\log c)(\max\{\log s, 10\})^2.$$

Since $r>c^{1/6.01}$ by Lemma 3.4, we have $s<73.77(\max\{\log s,10\})^2.$ Hence, s<7377 and $X<2522\log c.$

Next, we assume $\min\{x, y\} \ge 4$. Then $r > c^{1/4.66}$ by Lemma 3.4. Let p be any prime factor of c. Put $\Gamma := a^{4x}b^{-4y} - 1$. We apply Proposition 2.4 with $(\alpha_1, \alpha_2) = (a^4, b^4)$ and $(b_1, b_2) = (x, -y)$. Observe that g is a divisor of $|x - y| (\ge 1)$, and set $E = r_1 := \lceil r/2 \rceil$. We may take $H_1 = H_2 = 2r \log c$. It follows from $\operatorname{ord}_p(\Gamma) \ge z$ that

$$z \le \frac{215.2 r^2 (\log c)^2 g}{r_1^3 (\log p)^4} \left(\max\{\log b'' + \log(r_1 \log p) + 0.4, 4r_1 \log p\} \right)^2,$$

where $b'' = (x + y)/(2r \log c)$. From Lemmata 3.2 and 3.4, we see that

$$b'' \cdot (r_1 \log p) \cdot \exp(0.4) < \frac{X}{r \log c} \cdot (r_1 \log p) \cdot \exp(0.4)$$

< 37.5 r²(log c)²(log(69 r² log c))² < 5^{2r}

Hence, Lemma 3.5(ii) yields

(3.5)
$$z < \frac{6886.4(\log c)^2}{(\log(c^{1/4.66}/76000))^2} rg < 3.4 \cdot 10^5 r|x-y|.$$

In view of (3.3)–(3.5), we have

(3.6)
$$y < 1.73 \cdot 10^7 (\log c) (\max\{\log s, 10\})^2 + 0.46 X.$$

Since Lemma 3.6 gives

$$x < \frac{\log b}{\log a} \, y < \frac{r/2}{r/2 - 17.03 (\log c)^2} \, \, y < (1 + 3 \cdot 10^{-9}) \, y,$$

it follows from (3.6) that $s < 3.3 \cdot 10^7 (\max\{\log s, 10\})^2$. Hence, $s < 1.9 \cdot 10^{10}$ and $X < 7 \cdot 10^9 \log c$.

(ii) The desired estimate for Δ follows easily from $c^z > \min\{a, b\}^X$ together with Lemmata 3.1(i) and 3.6.

3.8. The end of the proof. We assume $r > 10^{74}$ or $m > 10^{34}$. Suppose that there exists a solution $(x, y, z) \neq (2, 2, r)$ to (1.1). By Lemma 3.5(i), we have $c > 10^{68}$. We will consider the cases $\min\{x, y\} \ge 4$ and $\min\{x, y\} < 4$ separately.

Suppose $\min\{x, y\} \ge 4$. By Lemmata 3.3(i) and 3.7(i), we have

$$c - 1 < 3.5 \cdot 10^9 r^2 \log c.$$

Since $\Delta > 0$ by Lemma 3.1(i), we see that Lemmata 3.1(ii), 3.6 and 3.7 yield

$$\frac{1}{2}\sqrt{\frac{c-1}{3.5\cdot 10^9\log c}} - 17.04(\log c)^2 < \Delta < 239.4\cdot 10^9(\log c)^3,$$

which gives $c < 10^{48}$, a contradiction.

Suppose $\min\{x, y\} < 4$. By Lemmata 3.3(i) and 3.7(i), we have

$$\sqrt{c-1} < 1261 \, r^2 \log c.$$

As in the preceding case, we find

$$\frac{1}{2}\sqrt{\frac{\sqrt{c-1}}{1261\log c}} - 17.04(\log c)^2 < 86252.4(\log c)^3,$$

which gives $c < 10^{57}$, a contradiction. This completes the proof of Theorem 1.1.

T. Miyazaki

Acknowledgements. The author would like to express his sincere gratitude to Prof. Florian Luca for putting forward this project. He is also grateful to Prof. Noriko Hirata-Kohno for her valuable comments, and to Dr. Tünde Kovács and Mr. Yusuke Washio for discussions. He would like to thank the referee for his/her comments and suggestions. This work was supported by Grant-in-Aid for JSPS Fellows (No. 25484).

References

- [B] Y. Bugeaud, Linear forms in p-adic logarithms and the Diophantine equation $(x^n 1)/(x 1) = y^q$, Math. Proc. Cambridge Philos. Soc. 127 (1999), 373–381.
- [BL] Y. Bugeaud et M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), 311–342.
- [La] M. Laurent, Linear forms in two logarithms and interpolation determinants II, Acta Arith. 133 (2008), 325–348.
- [Lu] F. Luca, On the system of Diophantine equations $a^2 + b^2 = (m^2 + 1)^r$ and $a^x + b^y = (m^2 + 1)^z$, Acta Arith. 153 (2012), 373–392.

Takafumi Miyazaki

Department of Mathematics College of Science and Technology Mathematics Department and Information Sciences Nihon University Suruga-Dai Kanda, Chiyoda Tokyo 101-8308, Japan E-mail: miyazaki-takafumi@math.cst.nihon-u.ac.jp

> Received on 9.8.2013 and in revised form on 20.12.2013 (7550)

42