A note on the article by F. Luca "On the system of Diophantine equations $a^{2}+b^{2}=\left(m^{2}+1\right)^{r}$ and $a^{x}+b^{y}=\left(m^{2}+1\right)^{z "}$
 (Acta Arith. 153 (2012), 373-392)

by
 Takafumi Miyazaki (Tokyo)

1. Introduction. For positive integers r, m with $r>1$ and m even, we define integers A, B by $A+B \sqrt{-1}=(m+\sqrt{-1})^{r}$. Consider the Diophantine equation

$$
\begin{equation*}
|A|^{x}+|B|^{y}=\left(m^{2}+1\right)^{z} \tag{1.1}
\end{equation*}
$$

in positive integers x, y and z. In 2012, Luca Lu proved that there are only finitely many pairs of (r, m) such that equation (1.1) has a solution $(x, y, z) \neq(2,2, r)$. This result is effective, namely he showed that there exists an effectively computable constant $c_{0}>0$ such that all such solutions satisfy $\max \{r, m, x, y, z\} \leq c_{0}$. The aim of this article is to show an explicit refinement of that result with some simplifications and improvements. Our main result is as follows.

Theorem 1.1. If $r>10^{74}$ or $m>10^{34}$, then equation (1.1) has no solution other than $(x, y, z)=(2,2, r)$.
2. Preliminaries. In this section, we list the estimates for linear forms in logarithms that we will need, in both complex and p-adic cases. Let α_{1}, α_{2} be non-zero algebraic numbers. Write $\mathbb{L}=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$ and denote by D the degree of \mathbb{L} over \mathbb{Q}.

First, we present lower bounds for linear forms in two complex logarithms due to Laurent [La. Consider the linear form

$$
\Lambda=b_{1} \log \alpha_{1}-b_{2} \log \alpha_{2},
$$

[^0]where b_{1}, b_{2} are positive integers, and $\log \alpha_{1}, \log \alpha_{2}$ are any determinations of the logarithms of α_{1}, α_{2} respectively. We assume $\left|\alpha_{1}\right|,\left|\alpha_{2}\right| \geq 1$. Put
$$
D^{\prime}=D /\left[\mathbb{R}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{R}\right]
$$

For any algebraic number α, we define as usual the absolute logarithmic height of α by

$$
\mathrm{h}(\alpha)=\frac{1}{d}\left(\log c_{0}+\sum_{i=1}^{d} \log \max \left\{1,\left|\alpha^{(i)}\right|\right\}\right)
$$

where $c_{0}>0$ is the leading coefficient of the minimal polynomial of α over \mathbb{Z}, and $\alpha^{(1)}, \ldots, \alpha^{(d)}$ are the conjugates of α in the field of complex numbers.

The following is the main result of La].
Proposition 2.1 ([La, Theorem 1]). Let K be an integer ≥ 2, and let $L, R_{1}, R_{2}, S_{1}, S_{2}$ be positive integers. Let ρ and μ be real numbers with $\rho>1$ and $1 / 3 \leq \mu \leq 1$. Put

$$
\begin{aligned}
& R=R_{1}+R_{2}-1, \quad S=S_{1}+S_{2}-1, \quad N=K L, \quad g=\frac{1}{4}-\frac{N}{12 R S} \\
& \sigma=\frac{1+2 \mu-\mu^{2}}{2}, \quad b=\frac{(R-1) b_{2}+(S-1) b_{1}}{2}\left(\prod_{k=1}^{K-1} k!\right)^{-2 /\left(K^{2}-K\right)}
\end{aligned}
$$

Let H_{1}, H_{2} be positive real numbers such that

$$
H_{i} \geq \rho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 D^{\prime} \mathrm{h}\left(\alpha_{i}\right) \quad(i=1,2)
$$

Suppose

$$
\left\{\begin{array}{l}
\operatorname{Card}\left\{\alpha_{1}^{r} \alpha_{2}^{s}: 0 \leq r<R_{1}, 0 \leq s<S_{1}\right\} \geq L \tag{I}\\
\operatorname{Card}\left\{r b_{2}+s b_{1}: 0 \leq r<R_{2}, 0 \leq s<S_{2}\right\}>(K-1) L
\end{array}\right.
$$

and

$$
\begin{align*}
K(\sigma L-1) \log \rho- & \left(D^{\prime}+1\right) \log N \tag{II}\\
& -D^{\prime}(K-1) \log b-g L\left(R H_{1}+S H_{2}\right)>\varepsilon(N)
\end{align*}
$$

where

$$
\varepsilon(N)=\frac{2 \log \left(N!N^{-N+1}\left(e^{N}+(e-1)^{N}\right)\right)}{N}
$$

Then

$$
\left|\Lambda^{\prime}\right| \geq \rho^{-\mu K L} \quad \text { with } \quad \Lambda^{\prime}=\Lambda \max \left\{\frac{L S e^{L S|\Lambda| /\left(2 b_{2}\right)}}{2 b_{2}}, \frac{L R e^{L R|\Lambda| /\left(2 b_{1}\right)}}{2 b_{1}}\right\}
$$

We also rely on the following result of [La].
Proposition 2.2 ([La, Corollary $2, m=10]$). For algebraic numbers α_{1}, α_{2}, suppose that $\alpha_{1}, \alpha_{2}, \log \alpha_{1}, \log \alpha_{2}$ are all real and positive. Assume
further that α_{1}, α_{2} are multiplicatively independent. Let H_{1}, H_{2} be real numbers such that

$$
H_{i} \geq \max \left\{\mathrm{h}\left(\alpha_{i}\right),\left(\log \alpha_{i}\right) / D, 1 / D\right\} \quad(i=1,2)
$$

Put

$$
b^{\prime}=\frac{b_{1}}{D H_{2}}+\frac{b_{2}}{D H_{1}} .
$$

Then

$$
\log |\Lambda| \geq-25.2 D^{4} H_{1} H_{2}\left(\max \left\{\log b^{\prime}+0.38,10 / D, 1\right\}\right)^{2}
$$

Next, we present lower bounds for linear forms in two p-adic logarithms, due to Bugeaud and Laurent $[\mathrm{BL}]$ and Bugeaud $[\mathrm{B}]$. Put

$$
\Gamma=\alpha_{1}^{b_{1}} \alpha_{2}^{b_{2}}-1,
$$

where b_{1}, b_{2} are non-zero rational integers. We assume that α_{1}, α_{2} are multiplicatively independent. Suppose that π is a prime ideal in the ring of integers of \mathbb{L} which does not divide the ideal $\left(\alpha_{1} \alpha_{2}\right)$. Let f_{π} be its inertia index. We denote by g the minimal positive integer such that both $\alpha_{1}^{g}-1$ and $\alpha_{2}^{g}-1$ belong to π.

Let H_{1}, H_{2} be real numbers such that

$$
H_{i} \geq \max \left\{\mathrm{h}\left(\alpha_{i}\right),(\log p) / D_{\pi}\right\} \quad(i=1,2)
$$

where p is the rational prime such that p belongs to π and $D_{\pi}=D / f_{\pi}$. Put

$$
b^{\prime}=\frac{\left|b_{1}\right|}{H_{2}}+\frac{\left|b_{2}\right|}{H_{1}} .
$$

For $\alpha \in \mathbb{L} \backslash\{0\}$, we denote by $\operatorname{ord}_{\pi}(\alpha)$ the exponent of π in the factorization of the fractional ideal generated by α inside \mathbb{L}. The next proposition is proven in BL].

Proposition 2.3 ([|BL, Théorème 3]). Under the above assumptions, $\operatorname{ord}_{\pi}(\Gamma) \leq \frac{24 p g H_{1} H_{2} D_{\pi}^{4}}{(p-1)(\log p)^{4}}\left(\max \left\{\log b^{\prime}+\log \log p+0.4,\left(10 / D_{\pi}\right) \log p, 10\right\}\right)^{2}$.

Under the hypothesis of Proposition 2.3, we further suppose that both $\alpha_{1}=a_{1}$ and $\alpha_{2}=a_{2}$ are rational integers. Then $\pi=p$. Assume that there exists a real number E such that

$$
\frac{1}{p-1}<E \leq \operatorname{ord}_{p}\left(a_{1}^{g}-1\right)
$$

Let H_{1}, H_{2} be real numbers such that

$$
H_{i} \geq \max \left\{\log \left|a_{i}\right|, E \log p\right\} \quad(i=1,2)
$$

We put $b^{\prime}=\left|b_{1}\right| / H_{2}+\left|b_{2}\right| / H_{1}$. The estimate below is obtained in [B].

Proposition 2.4 ([B, Theorem 2]). Under the above assumptions, if either p is odd, or $p=2$ and $\operatorname{ord}_{2}\left(a_{2}-1\right) \geq 2$, then

$$
\operatorname{ord}_{p}(\Gamma) \leq \frac{36.1 g H_{1} H_{2}}{E^{3}(\log p)^{4}}\left(\max \left\{\log b^{\prime}+\log (E \log p)+0.4,6 E \log p, 5\right\}\right)^{2}
$$

and

$$
\operatorname{ord}_{p}(\Gamma) \leq \frac{53.8 g H_{1} H_{2}}{E^{3}(\log p)^{4}}\left(\max \left\{\log b^{\prime}+\log (E \log p)+0.4,4 E \log p, 5\right\}\right)^{2}
$$

If $p=2$ and $\operatorname{ord}_{2}\left(a_{2}-1\right)<2$, then

$$
\operatorname{ord}_{2}(\Gamma) \leq 208 H_{1} H_{2}\left(\max \left\{\log b^{\prime}+0.04,10\right\}\right)^{2} .
$$

3. Proof of Theorem 1.1. Let r, m be positive integers with $r>1$ and m even. Define a, b and c by $a=|A|, b=|B|$ and $c=m^{2}+1$. We see that a, b and c are co-prime integers such that $a^{2}+b^{2}=c^{r}$ with $\min \{a, b, c\}>1$. Both the facts that $\operatorname{gcd}(a, b, c)=1$ and $\min \{a, b, c\}>1$ are easily shown (cf. [Lu, Lemma 5(i) \& (iv)]). Also, A, B satisfy
$A^{2}+B^{2}=(A+B \sqrt{-1})(A-B \sqrt{-1})=(m+\sqrt{-1})^{r}(m-\sqrt{-1})^{r}=\left(m^{2}+1\right)^{r}$.
Our proof is organized in several stages below.

3.1. Elementary estimates for variables

Lemma 3.1. Let (x, y, z) be a solution to (1.1). Put

$$
X:=\max \{x, y\}, \quad \Delta:=r X-2 z .
$$

Then:
(i) $\Delta \geq 0$. Moreover, if $\Delta=0$, then $(x, y, z)=(2,2, r)$.
(ii) If $\Delta>0$, then

$$
\Delta>\frac{\log \min \{a, b\}}{\log c} .
$$

Proof. (i) Since $a, b<c^{r / 2}$ and $c \geq 5$, we have

$$
c^{z}<2 \max \left\{a^{x}, b^{y}\right\} \leq 2 \max \{a, b\}^{X}<2 c^{r X / 2}
$$

and so $c^{2 z}<4 c^{r X}<c^{r X+1}$.
Suppose $\Delta=0$, that is, $z=r X / 2$. Then $X>1$ by [Lu, Lemma $5(\mathrm{v})$]. Since $a^{X}+b^{X} \geq a^{x}+b^{y}=c^{r X / 2}=\left(a^{2}+b^{2}\right)^{X / 2}$, we find $X=2$, and $(x, y, z)=(2,2, r)$.
(ii) Reducing (1.1) modulo a and b, we have $c^{|r y-2 z|} \equiv 1(\bmod a)$ and $c^{|r x-2 z|} \equiv 1(\bmod b)$, respectively. These together give the desired inequality.

3.2. Upper bound for X in terms of r and c

Lemma 3.2. Let (x, y, z) be a solution to (1.1). Then

$$
X<50 r^{2}(\log c)^{2}\left(\log \left(69 r^{2} \log c\right)\right)^{2}
$$

Proof. We only consider the case where r is odd (the case where r is even can be dealt with similarly). By the definition of a and b, we easily observe $a \equiv 0(\bmod m)$ and $b \equiv \pm 1\left(\bmod m^{2}\right)$; in particular, a is even, $a \geq m$ and $b \geq m^{2}-1$. We will consider the cases $a^{x}<b^{y / 2}$ and $a^{x} \geq b^{y / 2}$ separately.

First, we suppose $a^{x}<b^{y / 2}$. Then

$$
x<\frac{\log b}{2 \log a} y<\frac{\log \left(m^{2}+1\right)}{4 \log m} r y<0.6 r y \quad(>y)
$$

Put $\Lambda:=z \log c-y \log b(>0)$. Since $\Lambda<\exp (\Lambda)-1=a^{x} b^{-y}<b^{-y / 2}$, we have

$$
\log \Lambda<-\frac{\log b}{2} y
$$

We apply Proposition 2.2 with $\left(\alpha_{1}, \alpha_{2}\right)=(c, b)$ and $\left(b_{1}, b_{2}\right)=(z, y)$. Then

$$
\log \Lambda \geq-25.2(\log b)(\log c)\left(\max \left\{\log b^{\prime}+0.38,10\right\}\right)^{2}
$$

where $b^{\prime}=y / \log c+z / \log b$. It follows that

$$
\frac{y}{\log c}<50.4\left(\max \left\{\log b^{\prime}+0.38,10\right\}\right)^{2}
$$

This inequality together with $b^{\prime}<2 y / \log c+1$ (since $c^{z}<2 b^{y}$) implies $y / \log c<5040$, and so $X<0.6 r y<3024 r \log c$.

Second, we suppose $a^{x} \geq b^{y / 2}$. Then

$$
y \leq \frac{2 \log a}{\log b} x<\frac{2 \log \left(m^{2}+1\right)^{r / 2}}{\log \left(m^{2}-1\right)} x<1.5 r x
$$

Hence, we may assume $x>1$. Since $c^{z}=a^{x}+b^{y}<2 a^{2 x}<2 c^{r x}<c^{r x+1}$, we find $z \leq r x$. Note that y is even if $b \equiv 3(\bmod 4)$ (which can be seen by reducing (1.1) modulo 4). Put $\Gamma:=c^{z} b^{-y}-1$. We will apply Proposition 2.4 with $\left(\alpha_{1}, \alpha_{2}\right)=\left(c,(-1)^{(b-1) / 2} b\right),\left(b_{1}, b_{2}\right)=(z,-y)$ and $p=2$. Since $g=1$, we may take $E=2$ and $\left(H_{1}, H_{2}\right)=(\log c, \log (b+1))$. It follows from $3 \leq b<c^{r / 2}$ and $\operatorname{ord}_{2}(\Gamma) \geq x$ that

$$
x \leq \frac{36.1 r(\log c)^{2}}{8(\log 2)^{3} \log 3}\left(\max \left\{\log b^{\prime}+\log (2 \log 2)+0.4,12 \log 2\right\}\right)^{2}
$$

where $b^{\prime}=y / \log c+z / \log (b+1)$. Observe that

$$
b^{\prime}<\frac{1.5 r x}{\log c}+\frac{r x}{\log (b+1)}<\frac{2.7 r}{\log c} x
$$

We may assume

$$
x \geq \frac{2^{11}}{2.7(\log 2) \exp (0.4)} \frac{\log c}{r}
$$

Write

$$
s=\frac{5.4(\log 2) \exp (0.4) r}{\log c} x
$$

Then $s /(\log s)^{2}<69 r^{2} \log c(\geq 444)$, from which we have

$$
s<276 r^{2}(\log c)\left(\log \left(69 r^{2} \log c\right)\right)^{2}
$$

Hence, $X<1.5 r x<50 r^{2}(\log c)^{2}\left(\log \left(69 r^{2} \log c\right)\right)^{2}$.

3.3. Lower bounds for X in terms of r and c

Lemma 3.3. Let $(x, y, z) \neq(2,2, r)$ be a solution to (1.1). Then:
(i) $X \geq 2 \sqrt{c-1} / r^{2}$. Moreover, if $\min \{x, y\} \geq 4$, then $X \geq 2(c-1) / r^{2}$.
(ii) If $c>10^{68}$ and $r<c^{1 / 3}$, then $X \geq 2\left(c-r^{3} \sqrt{c-1}-1\right) / r^{2}$.

Proof. Clearly, we may assume $m>2$. The proof proceeds along similar lines to that of [Lu, Lemma 8].

We only consider the case where r is even (the case of r odd can be dealt with similarly). Then

$$
\begin{aligned}
& A=\frac{(m+\sqrt{-1})^{r}+(m-\sqrt{-1})^{r}}{2}=(-1)^{r / 2}\left(1-\binom{r}{2} m^{2}+\cdots\right) \\
& B=\frac{(m+\sqrt{-1})^{r}-(m-\sqrt{-1})^{r}}{2 \sqrt{-1}}=(-1)^{r / 2}\left(r m-\binom{r}{3} m^{3}+\cdots\right)
\end{aligned}
$$

Write $a=\epsilon A$ and $b=\eta B$, where $\epsilon, \eta \in\{1,-1\}$. Then, reducing modulo m^{4}, we find

$$
\begin{aligned}
a^{x} & =\epsilon^{x}(-1)^{r x / 2}\left(1-\binom{r}{2} m^{2}+\cdots\right)^{x} \equiv \epsilon_{1}\left(1-\binom{r}{2} m^{2} x\right)\left(\bmod m^{4}\right) \\
b^{y} & =\eta^{y}(-1)^{r y / 2} m^{y}\left(r-\binom{r}{3} m^{2}+\cdots\right)^{y} \\
& \equiv \eta_{1} r^{y-1} m^{y}\left(r-\binom{r}{3} m^{2} y\right)\left(\bmod m^{4}\right) \\
c^{z} & =\left(m^{2}+1\right)^{z} \equiv m^{2} z+1\left(\bmod m^{4}\right)
\end{aligned}
$$

where $\epsilon_{1}=\epsilon^{x}(-1)^{r x / 2}$ and $\eta_{1}=\eta^{y}(-1)^{r y / 2}$. It follows from (1.1) that

$$
\epsilon_{1}\left(1-\binom{r}{2} m^{2} x\right)+\eta_{1} r^{y-1} m^{y}\left(r-\binom{r}{3} m^{2} y\right) \equiv m^{2} z+1\left(\bmod m^{4}\right)
$$

This implies $\epsilon_{1} \equiv 1(\bmod m)$, and so $\epsilon_{1}=1$, since $m>2$. Hence,

$$
-\binom{r}{2} m^{2} x+\eta_{1} r^{y-1} m^{y}\left(r-\binom{r}{3} m^{2} y\right) \equiv m^{2} z\left(\bmod m^{4}\right)
$$

This congruence yields:

$$
\begin{cases}r \equiv 0(\bmod m) & \text { if } y=1 \tag{3.1}\\ z+\frac{r(r-1)}{2} x-r^{2} \equiv 0\left(\bmod m^{2}\right) & \text { if } y=2 \\ z+\frac{r(r-1)}{2} x-\eta_{1} r^{3} m \equiv 0\left(\bmod m^{2}\right) & \text { if } y=3 \\ z+\frac{r(r-1)}{2} x \equiv 0\left(\bmod m^{2}\right) & \text { if } y \geq 4\end{cases}
$$

(i) As in the proof of $[\mathrm{Lu}$, Lemma 8], we can observe that the left-hand side of the congruence in (3.1) for $y=2$ is non-zero. Hence, congruences (3.1) with Lemma 3.1(i) imply

$$
\frac{r^{2} X}{2} \geq z+\frac{r(r-1)}{2} X \geq m(=\sqrt{c-1})
$$

Also, if $y \neq 3$, then we can replace the rightmost side above by $m^{2}(=c-1)$.
(ii) Assume $c>10^{68}$ and $r<c^{1 / 3}$. It suffices to show that the left-hand side of the congruence in (3.1) for $y=3$ is non-zero. If $z+\frac{r(r-1)}{2} x=r^{3} m$, then the proof of (i) and Lemma 3.2 yield

$$
\begin{aligned}
\sqrt{c-1} \leq \frac{X}{2 r} & <25 r(\log c)^{2}\left(\log \left(69 r^{2} \log c\right)\right)^{2} \\
& <25 c^{1 / 3}(\log c)^{2}\left(\log \left(69 c^{2 / 3} \log c\right)\right)^{2}
\end{aligned}
$$

which contradicts the assumption $c>10^{68}$.

3.4. Lower bounds for r in terms of c

Lemma 3.4. Assume $c>10^{68}$. Let $(x, y, z) \neq(2,2, r)$ be a solution to (1.1). Then $r>c^{1 / 6.01}$. Moreover, if $\min \{x, y\} \geq 4$, then $r>c^{1 / 4.66}$.

Proof. We may assume $r<c^{1 / 3}$. Then Lemmata 3.2 and 3.3 (ii) imply

$$
c-r^{3} \sqrt{c-1}-1<25 r^{4}(\log c)^{2}\left(\log \left(69 r^{2} \log c\right)\right)^{2}
$$

Combining this inequality with the assumption $c>10^{68}$, we have $r>c^{1 / 6.01}$. Similarly, if $\min \{x, y\} \geq 4$, then $c-1<25 r^{4}(\log c)^{2}\left(\log \left(69 r^{2} \log c\right)\right)^{2}$, which implies $r>c^{1 / 4.66}$.

3.5. Prime factors of c

Lemma 3.5. Let $(x, y, z) \neq(2,2, r)$ be a solution to (1.1). Then:
(i) $r<4 \cdot 10^{5} c$. Moreover, if $c>10^{68}$, then $r<5341 c$.
(ii) Assume $c>10^{68}$. Let p be any prime factor of c. If $\min \{x, y\} \geq 4$, then $p>c^{1 / 4.66} / 76000$.

Proof. By Lu, Lemma $5(\mathrm{v})]$, we know $x \neq y$. As in the proof of Lu , Lemma 7(iii)], we see that

$$
\Gamma:=\alpha^{4 r|x-y|} 2^{-4|x-y|}-1 \equiv 0\left(\bmod \beta^{\lceil r / 2\rceil}\right)
$$

where $\alpha=m+\sqrt{-1}$ and $\beta=m-\sqrt{-1}$. Let p be any prime factor of $c=m^{2}+1$. Since $p \equiv 1(\bmod 4)$, we can write $p=\pi \bar{\pi}$ with $\pi \neq \bar{\pi}$, where π is a prime in $\mathbb{Z}[\sqrt{-1}]$, and $\bar{\pi}$ is the complex conjugate of π. We may assume that π divides β. We will apply Proposition 2.3 with $\left(\alpha_{1}, \alpha_{2}\right)=(\alpha, 2)$ and $\left(b_{1}, b_{2}\right)=(4 r|x-y|,-4|x-y|)$. Observe that $D_{\pi}=2$ and g is a divisor of $p-1$. We may take $\left(H_{1}, H_{2}\right)=((\log c) / 2,(\log p) / 2)$. It follows that

$$
r \leq \frac{192 p \log c}{(\log p)^{3}}\left(\max \left\{\log b^{\prime}+\log \log p+0.4,5 \log p\right\}\right)^{2}
$$

where $b^{\prime}=8 r|x-y| / \log p+8|x-y| / \log c$. We may assume $r \geq 5341 c$. Then, from Lemma 3.2, we see that

$$
\begin{aligned}
b^{\prime} \cdot(\log p) \cdot \exp (0.4) & <\frac{8 X(r+1)}{\log p} \cdot(\log p) \cdot \exp (0.4) \\
& <400 \exp (0.4) r^{2}(r+1)(\log c)^{2}\left(\log \left(69 r^{2} \log c\right)\right)^{2}<r^{5}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\frac{r}{(\log r)^{2}} \leq \frac{4800 p \log c}{(\log p)^{3}} \tag{3.2}
\end{equation*}
$$

Since $5 \leq p \leq c$, we have $r /(\log r)^{2}<4800 c /(\log c)^{2}$. Write $r=\mathcal{C} c$. Then $\mathcal{C}<4800(1+(\log \mathcal{C}) / \log c)^{2}$. Since $c \geq 5$, we have $\mathcal{C}<4 \cdot 10^{5}$, which can be replaced by $\mathcal{C}<5341$ if $c>10^{68}$.
(ii) By Lemma 3.4, we may assume $p<r$. With the notation in (i), we see from Lemmata 3.2 and 3.4 that $b^{\prime} \cdot(\log p) \cdot \exp (0.4)<r^{5}$, and so 3.2 holds. Write $c^{1 / 4.66}=\mathcal{C}^{\prime} p$. Then $\mathcal{C}^{\prime}<22368\left(1+\left(\log \mathcal{C}^{\prime}\right) / \log p\right)^{3}$. Since $p \geq 5$, we have $\mathcal{C}^{\prime}<4 \cdot 10^{7}$. Hence, $p>c^{1 / 4.66} /\left(4 \cdot 10^{7}\right)>10^{7}$, and so $\mathcal{C}^{\prime}<1.2 \cdot 10^{5}$. Repeating this process twice, we obtain $\mathcal{C}^{\prime}<76000$.

3.6. Accurate estimates for $\log a$ and $\log b$

Lemma 3.6. Assume $c>10^{68}$. Let $(x, y, z) \neq(2,2, r)$ be a solution to 1.1). Then

$$
\max \left\{\frac{r}{2} \log c-\log a, \frac{r}{2} \log c-\log b\right\}<17.04(\log c)^{3} .
$$

Proof. Write

$$
\log a-(r / 2) \log c=\log |\Gamma|-\log 2(<0)
$$

where $\Gamma=\gamma^{r}+1$ with $\gamma=\frac{m-\sqrt{-1}}{m+\sqrt{-1}}$. We may assume $|\Gamma|<1 / 3$. Then there exists a non-negative integer j with $j \leq r+2$ such that $|\Gamma| \geq|\Lambda| / 2$ with $\Lambda:=r \log \gamma-j \log (-1)$, where the former \log denotes the principal determination of the logarithm, and the latter denotes a determination such that $\log (-1)= \pm \pi \sqrt{-1}$. We define $\theta \in[0, \pi / 2]$ by $\tan \theta=\frac{2 m}{m^{2}+1}$. If $j=0$, then $\log |\Lambda|=\log (r \theta)>-0.4 \log c$, where the last inequality follows from

Lemma 3.4. Hence, we may assume $j>0$. We will apply Proposition 2.1 with $\left(\alpha_{1}, \alpha_{2}\right)=(\gamma,-1)$ and $\left(b_{1}, b_{2}\right)=\left(r / d_{0}, j / d_{0}\right)$, where $d_{0}=\operatorname{gcd}(r, j)$. For this, we choose the parameters as follows:

$$
\begin{aligned}
& L=\log c, \rho=4.07, \mu=0.93, K=\left\lceil L H_{1} H_{2}\right\rceil \\
& R_{1}=\lceil L / 2\rceil, S_{1}=2, R_{2}=\left\lceil L H_{2}\right\rceil, S_{2}=\left\lceil(1+(K-1) L) / R_{2}\right\rceil
\end{aligned}
$$

where we take $\left(H_{1}, H_{2}\right)=(\rho|\log \gamma|+\log c, \rho \pi)$. Let us check both conditions (I) and (II). The first inequality in (I) clearly holds. Also, using $c>10^{68}$ and $r<5341 c$ by Lemma 3.5(i), we can verify (II). It remains to establish the second inequality in (I). For this, we will show $r / d_{0}>R_{2}$. Suppose $r / d_{0} \leq R_{2}=\left\lceil L H_{2}\right\rceil$. Then since $\left(r / d_{0}\right) \theta$ is very small, we see from Lemma 3.4 that

$$
\begin{aligned}
\log |\Lambda| & =\log d_{0}+\log \left|\left(r / d_{0}\right) \log \gamma-\left(j / d_{0}\right) \log (-1)\right| \\
& \geq \log (r /(\rho \pi \log c))+\log \left|\left(r / d_{0}\right) \theta \pm\left(j / d_{0}\right) \pi\right|>18+\log 3
\end{aligned}
$$

which is clearly absurd. Hence, $b_{1}=r / d_{0}>R_{2}$. Now, we suppose that

$$
u b_{2}+v b_{1}=u^{\prime} b_{2}+v^{\prime} b_{1}
$$

for some integers $u, u^{\prime}, v, v^{\prime}$ such that $0 \leq u, u^{\prime}<R_{2}$ and $0 \leq v, v^{\prime}<S_{2}$. This implies $b_{2}\left(u-u^{\prime}\right) \equiv 0\left(\bmod b_{1}\right)$, and so $u-u^{\prime} \equiv 0\left(\bmod b_{1}\right)$, as $\operatorname{gcd}\left(b_{1}, b_{2}\right)=1$. Since $b_{1}>R_{2}$ and $\left|u-u^{\prime}\right|<R_{2}$, we find $u=u^{\prime}$, and $v=v^{\prime}$. This shows that the second inequality in (I) holds.

Then, we have

$$
\begin{aligned}
-\mu(\log \rho) K L & \leq \log \left|\Lambda / d_{0}\right|+\log \max \left\{\frac{L S e^{L S|\Lambda| /(2 j)}}{2 j / d_{0}}, \frac{L R e^{L R|\Lambda| /(2 r)}}{2 r / d_{0}}\right\} \\
& \leq \log |\Lambda|+\log (L T)+\frac{L T|\Lambda|}{2 b_{3} d_{0}}-\log \left(2 b_{3}\right) \\
& <\log |\Lambda|+\log (L T)+\frac{L T}{3}-\log 2
\end{aligned}
$$

where $\left(T, b_{3}\right) \in\left\{\left(R, r / d_{0}\right),\left(S, j / d_{0}\right)\right\}$. Since $L>68 \log 10$, we find

$$
\begin{aligned}
& R=\lceil L / 2\rceil+\left\lceil L H_{2}\right\rceil-1<\left(1 / 2+H_{2}\right) L+1<6.3 L \\
& S=\left\lceil(1+(K-1) L) / R_{2}\right\rceil+1<K L / R_{2}+2<L H_{1}+1 / H_{2}+2<1.01 L^{2}
\end{aligned}
$$

Hence, $\log |\Lambda|$ is greater than

$$
\begin{aligned}
& -\mu(\log \rho) \\
& \qquad \begin{array}{l}
{\left[H_{1} H_{2}\right\rceil L-\log \left(1.01 L^{3}\right)-\frac{1.01 L^{3}}{3}+\log 2} \\
> \\
> \\
\quad>-\left(1.001 \pi \mu \rho \log (\rho)+\frac{\mu(\log \rho)}{L^{2}}+\frac{\log \left(1.01 L^{3}\right)}{L^{3}}+\frac{1.01}{3}-\frac{\log 2}{L^{3}}\right) L^{3}
\end{array} .
\end{aligned}
$$

Similarly, we have the desired estimate for $\log b$.

3.7. Bounding X and Δ

Lemma 3.7. Assume $c>10^{68}$. Let $(x, y, z) \neq(2,2, r)$ be a solution to (1.1). Then:
(i) $X<7 \cdot 10^{9} \log c$. Moreover, if $\min \{x, y\}<4$, then $X<2522 \log c$.
(ii) $\Delta<34.2(\log c)^{2} X$.

Proof. We only consider the case where $a^{x}<b^{y}$ (the remaining case can be dealt with similarly). Since $c^{z}<2 b^{y}$, we see $|z \log c-y \log b|<\log 2$. Therefore, Lemma 3.6 gives

$$
\left|\left(\frac{r y}{2}-z\right) \log c\right|=\left|\left(\frac{r}{2} \log c-\log b\right) y-(z \log c-y \log b)\right|<17.1(\log c)^{3} y
$$

which together with Lemma 3.4 implies

$$
\begin{equation*}
r y<\left(2+10^{-5}\right) z . \tag{3.3}
\end{equation*}
$$

Put $\Lambda:=z \log c-y \log b$. Observe $\Lambda \in(0,1)$. Then, as in the proof of Lemma 3.2, Proposition 2.2 tells us that

$$
|\log \Lambda|<12.6 r(\log c)^{2}\left(\max \left\{\log b^{\prime}+0.38,10\right\}\right)^{2}
$$

where $b^{\prime}=y / \log c+z / \log b(<(2 y+0.02) / \log c)$. On the other hand, we see from Lemma 3.6 that

$$
|\log \Lambda|>y \log b-x \log a=r(\log c)(y-x) / 2+R \quad(>0)
$$

where $|R|<34.1(\log c)^{3} X$. Hence,

$$
\begin{equation*}
|x-y|<25.2(\log c)(\max \{\log s, 10\})^{2}+\frac{68.2(\log c)^{2}}{r} X \tag{3.4}
\end{equation*}
$$

where

$$
s=\frac{2 \exp (0.38)}{\log c}(X+0.01)
$$

(i) First, let us consider the case $\min \{x, y\}<4$. Inequality (3.4) implies

$$
\left(1-\frac{68.2(\log c)^{2}}{r}\right) X<3+25.2(\log c)(\max \{\log s, 10\})^{2} .
$$

Since $r>c^{1 / 6.01}$ by Lemma 3.4, we have $s<73.77(\max \{\log s, 10\})^{2}$. Hence, $s<7377$ and $X<2522 \log c$.

Next, we assume $\min \{x, y\} \geq 4$. Then $r>c^{1 / 4.66}$ by Lemma 3.4. Let p be any prime factor of c. Put $\Gamma:=a^{4 x} b^{-4 y}-1$. We apply Proposition 2.4 with $\left(\alpha_{1}, \alpha_{2}\right)=\left(a^{4}, b^{4}\right)$ and $\left(b_{1}, b_{2}\right)=(x,-y)$. Observe that g is a divisor of $|x-y|(\geq 1)$, and set $E=r_{1}:=\lceil r / 2\rceil$. We may take $H_{1}=H_{2}=2 r \log c$. It follows from $\operatorname{ord}_{p}(\Gamma) \geq z$ that

$$
z \leq \frac{215.2 r^{2}(\log c)^{2} g}{r_{1}^{3}(\log p)^{4}}\left(\max \left\{\log b^{\prime \prime}+\log \left(r_{1} \log p\right)+0.4,4 r_{1} \log p\right\}\right)^{2}
$$

where $b^{\prime \prime}=(x+y) /(2 r \log c)$. From Lemmata 3.2 and 3.4, we see that

$$
\begin{aligned}
b^{\prime \prime} \cdot\left(r_{1} \log p\right) \cdot \exp (0.4) & <\frac{X}{r \log c} \cdot\left(r_{1} \log p\right) \cdot \exp (0.4) \\
& <37.5 r^{2}(\log c)^{2}\left(\log \left(69 r^{2} \log c\right)\right)^{2}<5^{2 r}
\end{aligned}
$$

Hence, Lemma 3.5(ii) yields

$$
\begin{equation*}
z<\frac{6886.4(\log c)^{2}}{\left(\log \left(c^{1 / 4.66} / 76000\right)\right)^{2}} r g<3.4 \cdot 10^{5} r|x-y| \tag{3.5}
\end{equation*}
$$

In view of (3.3)-(3.5), we have

$$
\begin{equation*}
y<1.73 \cdot 10^{7}(\log c)(\max \{\log s, 10\})^{2}+0.46 X \tag{3.6}
\end{equation*}
$$

Since Lemma 3.6 gives

$$
x<\frac{\log b}{\log a} y<\frac{r / 2}{r / 2-17.03(\log c)^{2}} y<\left(1+3 \cdot 10^{-9}\right) y
$$

it follows from (3.6) that $s<3.3 \cdot 10^{7}(\max \{\log s, 10\})^{2}$. Hence, $s<1.9 \cdot 10^{10}$ and $X<7 \cdot 10^{9} \log c$.
(ii) The desired estimate for Δ follows easily from $c^{z}>\min \{a, b\}^{X}$ together with Lemmata 3.1(i) and 3.6 .
3.8. The end of the proof. We assume $r>10^{74}$ or $m>10^{34}$. Suppose that there exists a solution $(x, y, z) \neq(2,2, r)$ to 1.1$)$. By Lemma 3.5(i), we have $c>10^{68}$. We will consider the cases $\min \{x, y\} \geq 4$ and $\min \{x, y\}<4$ separately.

Suppose $\min \{x, y\} \geq 4$. By Lemmata 3.3(i) and 3.7(i), we have

$$
c-1<3.5 \cdot 10^{9} r^{2} \log c
$$

Since $\Delta>0$ by Lemma 3.1(i), we see that Lemmata 3.1(ii), 3.6 and 3.7 yield

$$
\frac{1}{2} \sqrt{\frac{c-1}{3.5 \cdot 10^{9} \log c}}-17.04(\log c)^{2}<\Delta<239.4 \cdot 10^{9}(\log c)^{3}
$$

which gives $c<10^{48}$, a contradiction.
Suppose $\min \{x, y\}<4$. By Lemmata 3.3(i) and 3.7(i), we have

$$
\sqrt{c-1}<1261 r^{2} \log c
$$

As in the preceding case, we find

$$
\frac{1}{2} \sqrt{\frac{\sqrt{c-1}}{1261 \log c}}-17.04(\log c)^{2}<86252.4(\log c)^{3}
$$

which gives $c<10^{57}$, a contradiction. This completes the proof of Theorem 1.1 .

Acknowledgements. The author would like to express his sincere gratitude to Prof. Florian Luca for putting forward this project. He is also grateful to Prof. Noriko Hirata-Kohno for her valuable comments, and to Dr. Tünde Kovács and Mr. Yusuke Washio for discussions. He would like to thank the referee for his/her comments and suggestions. This work was supported by Grant-in-Aid for JSPS Fellows (No. 25484).

References

[B] Y. Bugeaud, Linear forms in p-adic logarithms and the Diophantine equation $\left(x^{n}-1\right) /(x-1)=y^{q}$, Math. Proc. Cambridge Philos. Soc. 127 (1999), 373-381.
[BL] Y. Bugeaud et M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), 311-342.
[La] M. Laurent, Linear forms in two logarithms and interpolation determinants II, Acta Arith. 133 (2008), 325-348.
$[\mathrm{Lu}]$ F. Luca, On the system of Diophantine equations $a^{2}+b^{2}=\left(m^{2}+1\right)^{r}$ and $a^{x}+b^{y}=$ $\left(m^{2}+1\right)^{z}$, Acta Arith. 153 (2012), 373-392.

Takafumi Miyazaki

Department of Mathematics
College of Science and Technology
Mathematics Department and Information Sciences
Nihon University
Suruga-Dai Kanda, Chiyoda
Tokyo 101-8308, Japan
E-mail: miyazaki-takafumi@math.cst.nihon-u.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary 11D61; Secondary 11J86.
 Key words and phrases: exponential Diophantine equation, linear forms in logarithms of algebraic numbers.

