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Kloosterman sums in residue rings

by

J. Bourgain (Princeton, NJ) and M. Z. Garaev (Morelia)

1. Introduction. In what follows, Zm denotes the ring of residue classes
modulo a large positive integer m which frequently will be associated with
the set {0, 1, . . . ,m − 1}. Given an integer x coprime to m (or an invert-
ible element of Zm) we use x∗ or x−1 to denote its multiplicative inverse
modulo m.

Let I be an interval in Zm. In the present paper we establish some
additive properties of the reciprocal-set

I−1 = {x−1 : x ∈ I}.
We apply our results to estimate some double Kloosterman sums, to the
Brun–Titchmarsh theorem, and, making use of multilinear exponential sum
bounds for general moduli, we estimate short Kloosterman sums, hence
generalizing our earlier work [3] to the setting of general moduli.

Throughout the paper we use the abbreviation em(z) := e2πiz/m.

2. Statement of our results. We start with the additive properties
of the reciprocal-set.

Theorem 1. Let I = [1, N ]. Then the number J2k of solutions of the
congruence

x∗1 + · · ·+ x∗k ≡ x∗k+1 + · · ·+ x∗2k (mod m), x1, . . . , x2k ∈ I,
satisfies

J2k < (2k)90k
3
(logN)4k

2

(
N2k−1

m
+ 1

)
Nk.

The following statement is a version of Theorem 1, where the variables
xj are restricted to prime numbers. By P we denote the set of primes.
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Theorem 2. Let I = [1, N ]. Then the number J2k of solutions of the
congruence

x∗1 + · · ·+ x∗k ≡ x∗k+1 + · · ·+ x∗2k (mod m), x1, . . . , x2k ∈ I ∩ P,
satisfies

J2k < (2k)k
(
N2k−1

m
+ 1

)
Nk.

We recall that an incomplete Kloosterman sum is a sum of the form
M+N∑
x=M+1

em(ax∗ + bx),

where a and b are integers with gcd(a,m) = 1. Here the summation over x
is restricted to gcd(x,m) = 1 (if the range of summation is empty, then we
consider this sum to be equal to zero). As a consequence of the Weil bounds
it is known that ∣∣∣ m∑

x=1

em(ax∗ + bx)
∣∣∣ ≤ τ(m)m1/2

(see for example [7, Corollary 11.12]). This implies that for N < m one has∣∣∣ M+N∑
x=M+1

em(ax∗ + bx)
∣∣∣ < m1/2+o(1).

For M = 0 and N very small (that is, N = mo(1)) these sums have been
estimated by Korolev [11].

The incomplete bilinear Kloosterman sum

S =

M1+N1∑
x1=M1+1

M2+N2∑
x2=M2+1

α1(x1)α2(x2)em(ax∗1x
∗
2),

where αi(xi) ∈ C, |αi(xi)| ≤ 1, is also well known in the literature. When
M1 = M2 = 0 the sum S (in a more general form in fact) has been estimated
by Karatsuba [9, 10] for very short ranges of N1 and N2.

Theorem 1 leads to the following improvement of the range of applica-
bility of Karatsuba’s estimate [9].

Theorem 3. Let I1 = [1, N1] and I2 = [1, N2]. Then uniformly over all
positive integers k1, k2 and gcd(a,m) = 1 we have∣∣∣ ∑
x1∈I1

∑
x2∈I2

α1(x1)α2(x2)em(ax∗1x
∗
2)
∣∣∣

< (2k1)
45k21/k2(2k2)

45k22/k1(logm)2(k1/k2+k2/k1)

×
(
Nk1−1

1

m1/2
+
m1/2

Nk1
1

)1/(2k1k2)(Nk2−1
2

m1/2
+
m1/2

Nk2
2

)1/(2k1k2)

N1N2.
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Given N1, N2 we choose k1, k2 such that

N
2(k1−1)
1 < m ≤ N2k1

1 , N
2(k2−1)
2 < m ≤ N2k2

2

and the bound will be nontrivial unless each of N1 and N2 is within mε-ratio
of an element of {m1/(2l) : l ∈ Z+}. Thus, we have the following

Corollary 1. Let I1 = [1, N1] and I2 = [1, N2], where for i = 1 or
i = 2,

Ni 6∈
⋃
j≥1

[m1/(2j)−ε, m1/(2j)+ε].

Then

max
(a,m)=1

∣∣∣ N1∑
x1=1

N2∑
x2=1

α1(x1)α2(x2)em(ax∗1x
∗
2)
∣∣∣ < m−δN1N2

for some δ = δ(ε) > 0.

We shall then apply our bilinear Kloosterman sum bound to the Brun–
Titchmarsh theorem and improve the result of Friedlander–Iwaniec [5] on
π(x; q, a) as follows:

Theorem 4. Let xθ ≤ q ≤ 2xθ, where θ < 1 is close to 1. Then

π(x; q, a) <
cx

φ(q) log (x/q)

with c = 2−c1(1−θ)2, for some absolute constant c1 > 0 and all x sufficiently
large in terms of θ.

Recall that for (a, q) = 1, π(x; q, a) denotes the number of primes p ≤ x
with p ≡ a (mod q). The constants implied in Theorem 4 are effective and
can be made explicit. We mention that for primes q, Theorem 4 is contained
in our work [3].

Finally, we shall apply multilinear exponential sum bounds from [2] (see
Lemma 1 below) to establish the following estimate of a short linear Kloost-
erman sum.

Theorem 5. Let N > mc, where c is a small fixed positive constant.
Then

max
(a,m)=1

∣∣∣∑
n≤N

em(an∗)
∣∣∣ < (log logm)O(1)

(logm)1/2
N,

where the implied constant may depend only on c.

This improves some results of Korolev [11]. We also refer the reader
to [12] for some variants of the problem. We remark that a stronger bound
is claimed in [8], but the proof there is in doubt.
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Since
m∑
n=1

em(an∗) = µ(m),

in Theorem 5 one can assume that N < m. We also note that the aforemen-
tioned consequence of the Weil bounds gives a stronger estimate in the case
N > m1/2+c0 for any arbitrarily small fixed positive constant c0.

3. Lemmas. The following result, which we state as a lemma, has been
proved by Bourgain [2]. It is based on results from additive combinatorics,
in particular sum-product estimates. This lemma will be used in the proof
of our results on short Kloosterman sums.

Lemma 1. For all γ > 0 there exist ε = ε(γ) > 0, τ = τ(γ) > 0
and k = k(γ) ∈ Z+ such that the following holds. Let A1, . . . , Ak ⊂ Zq, q
arbitrary, and assume |Ai| > qγ (1 ≤ i ≤ k) and also

max
ξ∈Zq1

|Ai ∩ π−1q1 (ξ)| < q−γ1 |Ai| for all q1 | q, q1 > qε.

Then

max
ξ∈Z∗q

∣∣∣ ∑
x1∈A1

. . .
∑
xk∈Ak

eq(ξx1 . . . xk)
∣∣∣ < Cq−τ |A1| . . . |Ak|.

Here, |A ∩ π−1q1 (ξ)| can be viewed as the number of solutions of the con-
gruence x ≡ ξ (mod q1), x ∈ A.

Clearly, the conclusion of Lemma 1 can be stated in basically equivalent
form

max
ξ∈Z∗q

∑
x1∈A1

. . .
∑

xk−1∈Ak−1

∣∣∣ ∑
xk∈Ak

eq(ξx1 . . . xk−1xk)
∣∣∣ < Cq−τ |A1| . . . |Ak|.

Indeed, applying the Cauchy–Schwarz inequality, it follows that( ∑
x1∈A1

. . .
∑

xk−1∈Ak−1

∣∣∣ ∑
xk∈Ak

eq(ξx1 . . . xk−1xk)
∣∣∣)2

≤ |A1| . . . |Ak−1|
∑
x′k∈Ak

∣∣∣ ∑
x1∈A1

. . .
∑
xk∈Ak

eq(ξx1 . . . xk−1(xk − x′k)
∣∣∣.

We fix x′k ∈ Ak such that( ∑
x1∈A1

. . .
∑

xk−1∈Ak−1

∣∣∣ ∑
xk∈Ak

eq(ξx1 . . . xk−1xk)
∣∣∣)2

≤ |A1| . . . |Ak−1| |Ak|
∣∣∣ ∑
x1∈A1

. . .
∑

xk−1∈Ak−1

∑
xk∈A′k

eq(ξx1 . . . xk−1xk

∣∣∣,
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where A′k = Ak − {x′k}. Then we observe that the set A′k also satisfies the
condition of Lemma 1.

We need some facts from the geometry of numbers. Recall that a lattice
in Rn is an additive subgroup of Rn generated by n linearly independent
vectors. Take an arbitrary convex compact body D ⊂ Rn, symmetric with
respect to 0. Recall that, for a lattice Γ ⊂ Rn and i = 1, . . . , n, the ith
successive minimum λi(D,Γ ) of the set D with respect to the lattice Γ
is defined as the minimal number λ such that the set λD contains i lin-
early independent vectors of the lattice Γ . Obviously, λ1(D,Γ ) ≤ · · · ≤
λn(D,Γ ). We need the following result given in [1, Proposition 2.1] (see
also [13, Exercise 3.5.6] for a simplified form that is still enough for our
purposes).

Lemma 2. We have

|D ∩ Γ | ≤
n∏
i=1

(
2i

λi(D,Γ )
+ 1

)
.

Denoting, as usual, by (2n+1)!! the product of all odd positive numbers
up to 2n+ 1, we get the following

Corollary 2. We have
n∏
i=1

min{λi(D,Γ ), 1} ≤ (2n+ 1)!!

|D ∩ Γ |
.

We also need the following lemma due to Karatsuba [9].

Lemma 3. The following bound holds:∣∣∣∣{(x1, . . . , x2k) ∈ [1, N ]2k :
1

x1
+ · · ·+ 1

xk
=

1

xk+1
+ · · ·+ 1

x2k

}∣∣∣∣
< (2k)80k

3
(logN)4k

2
Nk.

4. Proofs of Theorems 1–3

Proof of Theorem 1. It suffices to consider the case kNk < m as other-
wise the statement is trivial. For λ = 0, 1, . . . ,m− 1 denote

J(λ) = {(x1, . . . , xk) ∈ Ik : x∗1 + · · ·+ x∗k ≡ λ (mod m)}.

Let

Ω = {λ ∈ [1,m− 1] : |J(λ)| ≥ 1}.

Since J(0) = 0, we have

J2k =
∑
λ∈Ω
|J(λ)|2.
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Consider the lattice

Γλ = {(u, v) ∈ Z2 : λu ≡ v (mod m)}

and the body

D = {(u, v) ∈ R2 : |u| ≤ Nk, |v| ≤ kNk−1}.

If we denote by µ1, µ2 the successive minima of the body D with respect to
the lattice Γλ, Corollary 2 yields

2∏
i=1

min{µi, 1} ≤
15

|Γλ ∩D|
.

Observe that for (x1, . . . , xk) ∈ J(λ) one has

λx1 . . . xk ≡ x2 . . . xk + · · ·+ x1 . . . xk−1 (mod m),

implying

(x1 . . . xk, x2 . . . xk + · · ·+ x1 . . . xk−1) ∈ Γλ ∩D.

Thus, for λ ∈ Ω we have µ1 ≤ 1. We split the set Ω into two subsets:

Ω′ = {λ ∈ Ω : µ2 ≤ 1}, Ω′′ = {λ ∈ Ω : µ2 > 1}.

We have

J2k =
∑
λ∈Ω′

|J(λ)|2 +
∑
λ∈Ω′′

|J(λ)|2.(1)

Case 1: λ ∈ Ω′, that is, µ2 ≤ 1. Let (ui, vi) ∈ µiD ∩ Γλ, i = 1, 2, be
linearly independent. Then

0 6= u1v2 − v1u2 ≡ u1λu2 − u2λu1 ≡ 0 (mod m),

whence

|u1v2 − v1u2| ≥ m.

Also

|u1v2 − v1u2| ≤ 2kµ1µ2N
2k−1 ≤ 30kN2k−1

|Γλ ∩D|
.

Thus, for λ ∈ Ω′, the number |Γλ ∩D| of solutions of the congruence

λu ≡ v (mod m)

in integers u, v with |u| ≤ Nk, |v| ≤ kNk−1 is bounded by

(2) |Γλ ∩D| ≤
30kN2k−1

m
.

Note that for λ ∈ Ω′ the sets

Wλ := {(u, v) : (u, v) ∈ Γλ ∩D, gcd(u,m) = 1}
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are pairwise disjoint. Therefore, if we denote by S(u, v) the set of k-tuples
(x1, . . . , xk) of positive integers x1, . . . , xk ≤ N coprime to m with

x1 . . . xk = u, x2 . . . xk + · · ·+ x1 . . . xk−1 = v,

we get ∑
λ∈Ω′

|J(λ)|2 =
∑
λ∈Ω′

( ∑
(u,v)∈Γλ∩D
gcd(u,m)=1

∑
(x1,...,xk)∈S(u,v)

1
)2
.

Applying the Cauchy–Schwarz inequality and taking into account (2), we
get

(3)
∑
λ∈Ω′

|J(λ)|2 ≤ 30kN2k−1

m

∑
λ∈Ω′

∑
(u,v)∈Γλ∩D
gcd(u,m)=1

( ∑
(x1,...,xk)∈S(u,v)

1
)2
.

From the disjointness of the sets Wλ it follows that the sum on the right is
bounded by the number of solutions of the system{

x1 . . . xk = y1 . . . yk,

x1 . . . xk−1 + · · ·+ x2 . . . xk = y2 . . . yk + · · ·+ y1 . . . yk−1,

in positive integers xi, yj ≤ N coprime to m. Hence, by Lemma 3,

(4)
∑
λ∈Ω′

|J(λ)|2 < 30k(2k)80k
3
(logN)4k

2N3k−1

m
.

Case 2: λ ∈ Ω′′, that is, µ2 > 1. Then the vectors from Γλ ∩ D are
linearly dependent and in particular there is some λ̂ ∈ Q such that

λ̂x1 . . . xk = x2 . . . xk + · · ·+ x1 . . . xk−1 for (x1, . . . , xk) ∈ J(λ).

Thus,∑
λ∈Ω′′

|J(λ)|2 ≤
∑
λ̂∈Q

∣∣∣∣{(x1, . . . , xk) ∈ Ik :
1

x1
+ · · ·+ 1

xk
= λ̂

∣∣∣∣2
=

∣∣∣∣{(x1, . . . , x2k) ∈ [1, N ]2k :
1

x1
+ · · ·+ 1

xk
=

1

xk+1
+ · · ·+ 1

x2k

}∣∣∣∣
< (2k)80k

3
(logN)4k

2
Nk.

Inserting this and (4) into (1), we obtain

J2k < (2k)90k
3
(logN)4k

2

(
N2k−1

m
+ 1

)
Nk,

which concludes the proof of Theorem 1.
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Proof of Theorem 2. This proof follows the same lines, with the only
difference that instead of Lemma 3 one should apply the bound∣∣∣∣{(x1, . . . , x2k) ∈ ([1, N ] ∩ P)2k :

1

x1
+ · · ·+ 1

xk
=

1

xk+1
+ · · ·+ 1

x2k

}∣∣∣∣
< (2k)k

(
N

logN

)k
.

Proof of Theorem 3. Let

S =
∑
x1∈I1

∑
x2∈I2

α1(x1)α2(x2)em(ax∗1x
∗
2).

Then by Hölder’s inequality,

|S|k2 ≤ Nk2−1
1

∑
x1∈I1

∣∣∣ ∑
x2∈I2

α2(x2)em(ax∗1x
∗
2)
∣∣∣k2 .

Thus, for some σ(x1) ∈ C with |σ(x1)| = 1,

|S|k2 ≤ Nk2−1
1

∑
y1,...,yk2∈I2

∣∣∣ ∑
x1∈I1

σ(x1)em(ax∗1(y
∗
1 + · · ·+ y∗k2)

∣∣∣.
Again by Hölder’s inequality,

|S|k1k2 ≤ Nk1k2−k1
1 Nk1k2−k2

2

p−1∑
λ=0

Jk2(λ;N2)
∣∣∣ ∑
x1∈I1

σ(x1)em(ax∗1λ
∣∣∣k1 ,

where Jk(λ;N) is the number of solutions of the congruence

x∗1 + · · ·+ x∗k ≡ λ (mod m), xi ∈ [1, N ].

Then applying the Cauchy–Schwarz inequality and using

p−1∑
λ=0

Jk2(λ;N2)
2 = J2k2(N2),

p−1∑
λ=0

∣∣∣ ∑
x1∈I1

σ(x1)em(ax∗1λ
∣∣∣2k1 ≤ mJ2k1(N1),

we get

(5) |S|2k1k2 ≤ mN2k1k2−2k1
1 N2k1k2−2k2

2 J2k1(N1)J2k2(N2).

Applying Theorem 1, we obtain

|S|2k1k2 ≤ (2k1)
90k31(2k2)

90k32(logN1)
4k21(logN2)

4k22

×N2k1k2
1 N2k1k2

2

(
Nk1−1

1

m1/2
+
m1/2

Nk1
1

)(
Nk2−1

2

m1/2
+
m1/2

Nk2
2

)
.
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Thus,

|S| < (2k1)
45k21/k2(2k2)

45k22/k1(logm)2(k1/k2+k2/k1)

×
(
Nk1−1

1

m1/2
+
m1/2

Nk1
1

)1/(2k1k2)(Nk2−1
2

m1/2
+
m1/2

Nk2
2

)1/(2k1k2)

N1N2,

which finishes the proof of Theorem 3.

5. Proof of Theorem 4. Let ε be a positive constant very small in
terms of δ = 1− θ (say, ε = δ4). Denote

A = {n ≤ x : n ≡ a (mod q)},
Ad = {n ∈ A : n ≡ 0 (mod d)},

S(A, z) = |{n ∈ A : (n, p) = 1 for p < z, (p, q) = 1}|,

rd = |Ad| −
x

qd
.

We take z = D1/2, where D is the level of distribution. We shall define D
to satisfy

D ∼
(
x

q

)1+cδ2

∼ xδ+cδ3 ∼ qδ+δ2+O(δ3),

where c is a suitable absolute positive constant (c = 0.01 will do).

Take an integer k such that

1

2k − 1
≤ δ

2
<

1

2k − 3
.

Having in mind [6, Theorem 12.21], we consider the factorization D = MN
in the form

N = q1/(2k−1), M = D/N.

Following the proof of [6, Theorem 13.1] we find that

S(A, z) ≤ (2 + ε)x

φ(q) logD
+R(M,N).

Here the remainder R(M,N) is estimated by

R(M,N)�
∑

m≤M,n≤N
gcd(mn,q)=1

αmβnrmn,

where the implied constant may depend on ε. Our aim is to prove the bound
R(M,N)� x1−εq−1. For this we may assume that αm, βn are supported on
dyadic intervals

0.5M1 < m ≤M1, 0.5N1 < n ≤ N1
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for some 1 ≤ M1 ≤ M and 1 ≤ N1 ≤ N with M1N1q > x1−ε. Then
according to [6, p. 262] we have the bound

R(M,N)� x

qM1N1

∑
0<|h|≤H

∑
m∼M1

∣∣∣ ∑
n∼N1

γ(h;n)eq(ahm
∗n∗)

∣∣∣+
x1−ε

q
,

where
H = qM1N1x

3ε−1 ≤ qDx3ε−1 � xcδ
3+3ε.

In particular, gcd(h, q) < qO(δ3). Thus, for some γ(n) ∈ C with |γ(n)| ≤ 1,
we have

R(M,N)� x3ε
∑
m≤M

∣∣∣∑
n≤N

γ(n)eq1(a1m
∗n∗)

∣∣∣+
x1−ε

q
,

where, say, q1−δ
2 ≤ q1 ≤ q and gcd(a1, q1) = 1. Then our Theorem 3 applied

with k1 = k and k2 ∼ k (defined from M2(k2−1) < m ≤M2k2) implies that

R(M,N)�MN1−c0/k2 +
x1−ε

q
< D1−c0δ2 +

x1−ε

q
,

where c0 > 0 is an absolute constant. Therefore, from the choice D ∼ xδ+cδ2

with 0 < c < 0.5c0, we obtain

S(A, z) < (2− c′δ2)x
φ(q) log(x/q)

for some absolute constant c′ > 0. The result follows.

6. Proof of Theorem 5. The proof of Theorem 5 is based on Bour-
gain’s multilinear exponential sum bounds for general moduli [2] (see
Lemma 1 above). We will also need a version of Theorem 3 on bilinear
Kloosterman sum estimates with the variables of summation restricted to
prime and almost prime numbers.

6.1. Double Kloosterman sums with primes and almost primes.
As a consequence of Theorem 2 we have the following bilinear Kloosterman
sum estimate.

Corollary 3. Let N1, N2, k1, k2 be positive integers, and gcd(a,m) = 1.
Then for any coefficients α(p), β(q) ∈ C with |α(p)|, |β(q)| ≤ 1, we have∣∣∣ ∑
p≤N1

∑
q≤N2

α(p)β(q)em(ap∗q∗)
∣∣∣

< (2k1)
1/k2(2k2)

1/k1

(
Nk1−1

1

m1/2
+
m1/2

Nk1
1

)1/(2k1k2)(Nk2−1
2

m1/2
+
m1/2

Nk2
2

)1/(2k1k2)

N1N2,

where the variables p and q of the summations are restricted to prime num-
bers.
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Indeed, denoting the quantity on the left hand side by |S| and following
the proof of Theorem 3 we arrive at the bound (see (5))

|S|2k1k2 ≤ mN2k1k2−2k1
1 N2k1k2−2k2

2 J2k1(N1)J2k2(N2),

where in our case J2k(N) denotes the number of solutions of the congruence

p∗1 + · · ·+ p∗k ≡ p∗k+1 + · · ·+ p∗2k (mod m)

in prime numbers p1, . . . , p2k ≤ N . The statement then follows from the
bounds for J2k(N) given in Theorem 2.

Lemma 4. Let K,L be large positive integers with 2L < K. Then uni-
formly over k the number T2k(K,L) of solutions of the diophantine equation

1

p1q1
+ · · ·+ 1

pkqk
=

1

pk+1qk+1
+ · · ·+ 1

p2kq2k
in prime numbers pi, qi satisfying 0.5K < pi < K and qi < L is bounded by

T2k(K,L) < k4k
(

K

logK

)k( L

logL

)k
.

The proof is straightforward. For any given 1 ≤ i0 ≤ 2k we have
p1 . . . p2kq1 . . . q2k

pi0qi0
≡ 0 (mod pi0qi0).

Since pi 6= qj , it follows that pi0 appears in the sequence p1, . . . , p2k at least
twice. Thus, the sequence p1, . . . , p2k contains at most k different prime
numbers. Accordingly, the sequence q1, . . . , q2k contains at most k different
prime numbers. Therefore, there are at most

k2k
(

0.9K

logK

)k
k2k
(

1.1L

logL

)k
< k4k

(
K

logK

)k( L

logL

)k
possibilities for (p1, . . . , p2k, q1, . . . , q2k). The result follows.

Now following the proof of Theorems 1 and 2, with the only difference
that in the course of proof we replace Lemma 3 by Lemma 4, we get the
following statement.

Lemma 5. Let K,L be large positive integers, 2L < K. Then uniformly
over k the number J2k(K,L) of solutions of the congruence

1

p1q1
+ · · ·+ 1

pkqk
≡ 1

pk+1qk+1
+ · · ·+ 1

p2kq2k
(mod m)

in prime numbers pi, qi satisfying 0.5K < pi < K and qi < L is bounded by

J2k(K,L) < k4k
(

(KL)2k−1

m
+ 1

)
(KL)k.

From Lemma 5 we get the following corollary.

Corollary 4. Let N,K,L, k1, k2 be positive integers with 2L < K.
Then for any coefficients α(p), β(q; r) ∈ C with |α(p)|, |β(q; r)| ≤ 1, we have
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max
gcd(a,m)=1

∣∣∣∑
p≤N

∑
0.5K<q≤K

∑
r≤L

α(p)β(q; r)em(ap∗q∗r∗)
∣∣∣

< k
2/k2
1 k

2/k1
2

(
Nk1−1

m1/2
+
m1/2

Nk1

)1/(2k1k2)((KL)k2−1

m1/2
+

m1/2

(KL)k2

)1/(2k1k2)

NKL,

where the variables p, q and r of the summations are restricted to prime
numbers.

6.2. Proof of Theorem 5. Denote ε := logN/logm > c. As mentioned
before, we can assume that ε < 4/7.

In what follows, r is a large absolute integer constant. More explicitly,
we define r to be the choice of k in Lemma 1 with, say, γ = 1/10. Denote

G = {x < N : p1 ≥ Nα, pr ≥ Nβ, p1 . . . pr < N1−β},
where p1 ≥ · · · ≥ pr are the largest prime factors of x and

0.1 > α > β > 1/logN

are parameters to specify. Note that the number of positive integers not
exceeding N which are products of at most r−1 prime numbers is estimated
by

r−1∑
k=1

∑
p1...pk≤N
p1≥···≥pk

1� N

logN
+

r−1∑
k=2

∑
p2...pk≤N(k−1)/k

N

p2 . . . pk log(N/(p2 . . . pk))

� N

logN
+

r−1∑
k=2

∑
p2≤N

. . .
∑
pk≤N

N

p2 . . . pk logN

� N(log logN)r−1

logN
.

Here and below, the implied constants may depend only on r. Hence,

N − |G| ≤ cN(log logN)r−1

logN
+
∑
x<N
p1<Nα

1 +
∑
x<N
pr<Nβ

1 +
∑
x<N

p1...pr>N1−β

1,

for some constant c = c(r) > 0. Next, we have∑
x<N

p1...pr>N1−β

1 ≤
∑
y<Nβ

p1...pr<N/y
p1≥···≥pr≥P (y)

1

�
∑
y<Nβ

∑
p2...pr<(N/y)(r−1)/r

p2≥···≥pr≥P (y)

N

yp2 . . . pr log(N/(yp2 . . . pr))

� N

logN

∑
y<Nβ

∑
P (y)≤pr≤N1/r

(
log logN

log pr

)r−2
ypr

.
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We would like to prove that the quantity on the right hand side is �
βN
(
log 1

β

)r−1
. This is trivially true if Nβ2

< 2, as in this case we have

N

logN

∑
y<Nβ

∑
P (y)≤pr≤N1/r

(log logN
log pr

)r−2

ypr

� N

logN
(log logN)r−2

∑
y<Nβ

∑
pr≤N

1

ypr

� βN(log logN)r−1 � βN(log 1
β )r−1.

Let now Nβ2 ≥ 2. Since

N

logN

∑
y<Nβ

∑
Nβ2≤pr≤N

(log logN
log pr

)r−2

ypr
� βN

(
log 1

β

)r−1
,

it follows that

(6) ∑
x<N

p1...pr>N1−β

1� N

logN

∑
y<Nβ

∑
P (y)≤pr≤Nβ2

(log logN
log pr

)r−2

ypr
+ βN

(
log 1

β

)r−1
.

Next, splitting the sum over pr into intervals of the type Nβk+1 ≤ pr ≤ Nβk

and denoting by k0 the largest positive integer with Nβk0 ≥ 2 we get

∑
y<Nβ

∑
P (y)≤pr≤Nβ2

(log logN
log pr

)r−2

ypr
≤

k0∑
k=2

∑
y<Nβ

P (y)≤Nβk

∑
Nβk+1≤pr≤Nβk

(log logN
log pr

)r−2

ypr

�
k0∑
k=2

∑
y<Nβ

P (y)≤Nβk

(k log 1
β )r−1

y
= (log 1

β )r−1
k0∑
k=2

(
kr−1

∑
y<Nβ

P (y)≤Nβk

1

y

)

�
(
log 1

β

)r−1 k0∑
k=2

(
kr−1

∑
Nβk/2≤y<Nβ

P (y)≤Nβk

1

y

)
+
(
log 1

β

)r−1 k0∑
k=2

kr−1(logNβk/2).

Then observing that∑
k≥2

kr−1(logNβk/2)� β logN
∑
k≥2

kr−1

10(k−2)/2
� β logN,

from (6) it follows that
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∑
x<N

p1...pr>N1−β

1�
N
(
log 1

β

)r−1
logN

∑
k≥2

(
kr−1

∑
Nβk/2≤y<Nβ

P (y)≤Nβk

1

y

)
+ βN

(
log 1

β

)r−1
.

Let Ψ(x, y), as usual, denote the number of positive integers ≤ x having no

prime divisors > y. Denote by j0 the integer with 2j0 ≤ Nβk/2 < 2j0+1. Then
splitting the range of y into dyadic intervals and using the well-known bound
Ψ(u, v) � u exp

(
− log u

2 log v

)
uniformly over u ≥ v ≥ 2 (see Tenenbaum [14,

p. 359]), we get∑
Nβk/2≤y<Nβ

P (y)≤Nβk

1

y
�

∑
j0≤j�β logN

1

2j
Ψ(2j , Nβk)�

∑
j0≤j�β logN

exp

(
− log 2j

2 logNβk

)

�
∑

j0≤j�β logN

exp

(
− log 2j0

2 logNβk

)
� β logN exp(−0.1(1/β)k/2)� β logN exp(−10(k−1)/2).

It follows that∑
k≥2

(
kr−1

∑
Nβk/2≤y<Nβ

P (y)≤Nβk

1

y

)
� β logN

∑
k≥2

kr−1 exp(−10(k−1)/2)� β logN

and therefore ∑
x<N

p1...pr>N1−β

1� βN
(
log 1

β

)r−1
.

Thus, we have

N − |G| ≤ c1βN(log 1
β )r−1 + Ψ(N,Nα) +

∑
x<N
pr<Nβ

1

for some constant c1 = c1(r) > 0.

Letting 0.1 > β1 > β be another parameter, we similarly deduce that∑
x<N

p1...pr−1>N1−β1

1� β1N
(
log 1

β1

)r−2
.

Hence,

N−|G| ≤ c1βN
(
log 1

β

)r−1
+c2β1N

(
log 1

β1

)r−2
+Ψ(N,Nα)+

∑
x<N
pr<Nβ

p1...pr−1≤N1−β1

1.
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Observing that ∑
x<N
pr<Nβ

p1...pr−1≤N1−β1

1 ≤
∑

p1...pr−1≤N1−β1

Ψ

(
N

p1 . . . pr−1
, Nβ

)
,

we get

N − |G| ≤ c1βN(log 1
β )r−1 + c2β1N(log 1

β1
)r−2

+ Ψ(N,Nα) +
∑

p1...pr−1≤N1−β1

Ψ

(
N

p1 . . . pr−1
, Nβ

)
.

By the classical result of de Bruijn [4], if y > (log x)1+δ, where δ > 0 is a
fixed constant, then

Ψ(x, y) ≤ xu−u(1+o(1)) as u =
log x

log y
→∞.

We now take

α =
1

log logm
, β =

log logm

(logm)1/2
, β1 = β log logm =

(log logm)2

(logm)1/2

and obtain

N − |G| < α1/(2α)N

+
∑

p1...pr−1<N1−β1

N

p1 . . . pr−1

(
β

β1

)β1/(2β)
+ cβN(log logm)r−1

<

(
α1/(2α) + (log logN)r−1

(
β

β1

)β1/(2β)
+ c3β(log logm)r−1

)
N

< c4β(log logm)r−1N.

Therefore

(7)
∣∣∣∑
x<N

em(ax∗)
∣∣∣ ≤ c4β(log logm)r−1N +

∣∣∣∑
x∈G

em(ax∗)
∣∣∣.

The sum
∑

x∈G em(ax∗) may be bounded by

(8)
∑
p1

. . .
∑
pr

∣∣∣∑
y

em(ap∗1 . . . p
∗
ry
∗)
∣∣∣,

where the summations are over primes p1, . . . , pr and integers y such that

p1 ≥ · · · ≥ pr, p1 ≥ Nα, pr ≥ Nβ, p1 . . . pr ≤ N1−β

and

y <
N

p1 . . . pr
, P (y) ≤ pr.
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Note that if t and T are such that(
1− c0

logm

)
pr < t < pr,

(
1− c0

logm

)
N

p1 . . . pr
< T <

(
1+

c0
logm

)
N

p1 . . . pr
,

where c0 > 0 is any constant, then in (8) we can replace the condition on y
with

P (y) ≤ t, y < T,

up to adding to (8) an additional term of size at most

N(log logm)O(1)

logm
.

Now we split the range of summation of primes p1, . . . , pr into subinter-
vals of the form [L,L + L(logm)−1] and choosing suitable t and T we find
that for some numbers M1, . . . ,Mr with

M1 > · · · > Mr, M1 ≥ Nα/2, Mr ≥ Nβ/2, M1 . . .Mr < N1−β,

one has∣∣∣∑
x∈G

em(ax∗)
∣∣∣ < N(log logm)O(1)

logm
(9)

+ (logm)3r
∑
p1∈I1

. . .
∑
pr∈Ir

∣∣∣ ∑
y≤M

P (y)≤Mr

em(ap∗1 . . . p
∗
ry
∗)
∣∣∣,

where

Ij =

[
Mj ,Mj +

Mj

logm

]
, M =

N

M1 . . .Mr
≥ Nβ.

Denote

W =
∑
p1∈I1

. . .
∑
pr∈Ir

∣∣∣ ∑
y≤M

P (y)≤Mr

em(ap∗1 . . . p
∗
ry
∗)
∣∣∣.

Applying the Cauchy–Schwarz inequality, we get

W 2 ≤M1 . . .Mr

∑
y≤M

∑
z≤M

∣∣∣ ∑
p1∈I1

. . .
∑
pr∈Ir

em
(
ap∗1 . . . p

∗
r(y
∗ − z∗)

)∣∣∣.
Taking into account the contribution from the pairs y and z with, say,

gcd(y − z,m) > e10 logm/log logm

and then fixing the pairs y and z with gcd(y − z,m) ≤ e10 logm/log logm, we
get the bound

(10) W 2 ≤ N2

M
+

N2

elogm/log logm
+NM |S| ≤ 2N2−β +

N2

M1 . . .Mr
|S|,
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where

S =
∑
p1∈I1

. . .
∑
pr∈Ir

em1(bp∗1 . . . p
∗
r).

Here b and m1 are some positive integers satisfying

gcd(b,m1) = 1, m1 ≥ me−10 logm/log logm.

We consider two cases, depending on whether Mr > Nα3
or Mr ≤ Nα3

.

Case 1: Mr > Nα3
. Then Mj > Nα3

for all j = 1, . . . , r. The idea is to
use Theorem 2 and amplify each of these factors to size m1/3+o(1) say and
then apply Lemma 1.

Let k1, . . . , kr be positive integers defined from

M2ki−1
i < m1 ≤M2ki+1

i .

Since Mi > Nα3
> mcα3

, it follows that

ki <
1

cα3
=

(log logm)3

c
.

Consequently, applying Hölder’s inequality, we get the bound

|S|2rk1...kr ≤
( r∏
i=1

M2rk1...kr−2ki
i

) ∑
p11,...,p1k1∈I1∩P
q11,...,q1k1∈I1∩P

. . .
∑

pr1,...,prkr∈Ir∩P
qr1,...,qrkr∈Ir∩P

e2πib{...}/m1 ,

where {. . .} indicates the expression

(p∗11 + · · ·+ p∗1k1 − q
∗
11 − · · · − q∗1k1) · · · (p∗r1 + · · ·+ p∗rkr − q

∗
r1 − · · · − q∗rkr).

Next, we can fix the variables qij and then infer that for some integers
µ1, . . . , µr,

(11)
|S|

M1 . . .Mr
≤
(

|S1|
Mk1

1 . . .Mkr
r

)1/(2rk1...kr)

,

where

S1 = ∑
p11,...,p1k1∈I1∩P

. . .
∑

pr1,...,prkr∈Ir∩P
e
2πib(p∗11+···+p∗1k1−µ1)···(p

∗
r1+···+p∗rkr−µr)/m1 .

Let A1, . . . , Ar be subsets of Zm1 defined by

A1 = {p∗11 + · · ·+ p∗1k1 − µ1 : (p11, . . . , p1k1) ∈ (I1 ∩ P)k1},
. . .

Ar = {p∗r1 + · · ·+ p∗rkr − µr : (pr1, . . . , prkr) ∈ (Ir ∩ P)kr},
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where p∗ij are taken modulo m1. Then we have

S1 =
∑
λ1∈A1

. . .
∑
λr∈Ar

I1(λ1) . . . Ir(λr)e
2πibλ1...λr/m1 ,

where Ij(λ) is the number of solutions of the congruence

p∗j1 + · · ·+ p∗jkj − µj ≡ λ (mod m1), (pj1, . . . , pjkj ) ∈ (Ij ∩ P)kj .

We apply the Cauchy–Schwarz inequality to the sum over λ1, . . . , λr−1 to
get

|S1|2 ≤ J2k1(M1) . . . J2kr(Mr)

×
∑
λ1∈A1

. . .
∑

λr−1∈Ar−1

∣∣∣ ∑
λr∈Ar

Ir(λr)e
2πibλ1...λr−1λr/m1

∣∣∣2,
where

J2kj (Mj) =
∑
λ∈Aj

(Ij(λ))2.

Changing the order of summation, we get

|S1|2 ≤ J2k1(M1) . . . J2kr−1(Mr−1)

×
∑

λr,λ′r∈Ar

Ir(λr)Ir(λ
′
r)
∣∣∣ ∑
λ1∈A1

. . .
∑

λr−1∈Ar−1

e2πibλ1...λr−1(λr−λ′r)/m1

∣∣∣.
We apply the Cauchy–Schwarz inequality to the sum over λr, λ

′
r to get

|S1|4 ≤ (J2k1(M1) . . . J2kr(Mr))
2

×
∑

λr,λ′r∈Ar

∣∣∣ ∑
λ1∈A1

. . .
∑

λr−1∈Ar−1

e2πibλ1...λr−1(λr−λ′r)/m1

∣∣∣2.
We can fix λ′r ∈ Ar such that

|S1|4 ≤ (J2k1(M1) . . . J2kr(Mr))
2|Ar|

×
∑
λr∈A′r

∣∣∣ ∑
λ1∈A1

. . .
∑

λr−1∈Ar−1

e2πibλ1...λr−1λr/m1

∣∣∣2,
where A′r = Ar − {λ′r}. Using the trivial bound∣∣∣ ∑
λ1∈A1

. . .
∑

λr−1∈Ar−1

e2πibλ1...λr−1λr/m1

∣∣∣2
≤ |A1| . . . |Ar−1|

∣∣∣ ∑
λ1∈A1

. . .
∑

λr−1∈Ar−1

e2πibλ1...λr−1λr/m1

∣∣∣,
we get
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|S1|4 ≤ (J2k1(M1) . . . J2kr(Mr))
2|A1| . . . |Ar|

×
∑
λr∈A′r

∣∣∣ ∑
λ1∈A1

. . .
∑

λr−1∈Ar−1

e2πibλ1...λr−1λr/m1

∣∣∣.
From the definition of Ai we have |Ai| ≤ Mki

i . From the choice of ki and
Theorem 2 we also have

J2ki(Mi) < (5ki)
kiMki

i .

Thus,

|S1|4 ≤
( r∏
i=1

(5ki)
2kiM3ki

i

)
(12)

×
∑
λr∈A′r

∣∣∣ ∑
λ1∈A1

. . .
∑

λr−1∈Ar−1

e2πibλ1...λr−1λr)/m1

∣∣∣,
Let γ = 1/10 and define ε = ε(γ) > 0 to be the absolute constant from

Lemma 1. We shall verify that the sets A1, . . . , Ar satisfy the condition of
Lemma 1 with q = m1 (note that if Ar satisfies the condition of Lemma 1,
so does A′r). From the choice of ki, the conditions on Mi and distribution of
primes (in short intervals if needed) it follows that the interval Ii contains at
least Mi(2 logm)−2 primes coprime to m. From the definition of Ai and the
connection between the cardinality of a set and the corresponding additive
energies, we have

(13) |Ai| ≥
(Mi(2 logm)−2)2ki

J2ki(Mi)
≥

Mki
i

(5ki)ki(2 logm)4ki
.

From the choice of ki it then follows that

|Ai| ≥
m

1/3
1

(5ki)ki(2 logm)4ki
= m

1/3+o(1)
1 .

Thus, the first condition |Ai| > m
1/10
1 is satisfied.

Next, let q1 |m1, q1 > mε
1 and let ξ ∈ Zq1 . Let Ti be the number of

solutions of the congruence

x ≡ ξ (mod q1), x ∈ Ai.
It follows that Ti is bounded by the number of solutions of the congruence

p∗1 + · · ·+ p∗ki ≡ ξ + µ1 (mod q1), (p1, . . . , pki) ∈ (Ii ∩ P)ki .

Consider two possibilities here. If Mi ≥ q1/81 say, then we fix p2, . . . , pki and
we have at most 1 +Miq

−1
1 possibilities for p1. Thus, using (13), we get

Ti ≤
(

1 +
Mi

q1

)
Mki−1
i <

Mki
i

q
1/9
1

< q
−1/10
1 |Ai|.

Therefore, in this case the condition of Lemma 1 is satisfied.
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Let now Mi < q
1/8
1 . Define k′i from the condition

M
4k′i+1
i < q1 < M

4k′i+5
i .

We then have 2k′i < ki. Thus,

Ti ≤M
ki−2k′i
i J2k′i(Mi),

where J2k′i(Mi), as before, denotes the number of solutions of the congruence

p∗1 + · · ·+ p∗k′i
≡ p∗k′i+1 + · · ·+ p∗2k′i

(mod q1), (p1, . . . , p2k′i) ∈ (Ii ∩ P)2k
′
i .

From the choice of ki and Theorem 2 we get

J2k′i(Mi) < 2(2ki)
kiM

k′i
i .

Therefore, using (13),

Ti ≤ 2(2ki)
kiM

ki−k′i
i ≤ 2(2ki)

kiMki
i q
−1/9 < q

−1/10
1 |Ai|.

Thus, the condition of Lemma 1 is satisfied and hence∑
λr∈A′r

∣∣∣ ∑
λ1∈A1

. . .
∑

λr−1∈Ar−1

e2πibλ1...λr−1λr/m1

∣∣∣ < m−τ |A1| . . . |Ar|

for some absolute constant τ > 0 (see the discussion following Lemma 1).
Inserting this into (12) and using the estimates ki � (log logm)3 and |Ai| ≤
Mki
i , we get

|S1| < m−τ/5Mk1
1 . . .Mkr

r .

Thus, from (11) it follows that

|S|
M1 . . .Mr

< m−c1(log logm)−3r

and from (10) we get

W < 2N1−0.5β.

Inserting this into (9) and using (7), we conclude the proof.

Case 2: Mr < Nα3
. In this case we fix all the factors except p1, p2, pr.

We apply Corollary 3 or 4. We choose for the first two factors either p1
and p2, or p1pr and p2. Because M1 > Nα and Mr < Nα3

, we will get
the required saving in one of these cases. Let us give some details of this
argument.

Define k1, k2 ∈ Z+ by

Mk1−1
1 < m

1/2
1 ≤Mk1

1 , Mk2−1
2 < m

1/2
1 ≤Mk2

2 .

From the definition of α and β we have

k1 ≤
1

c
log logm, k2 ≤

1

cβ
� (logm)1/2

log logm
.
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Let

δ =
k1 logMr

3 logM1
.

Note that δ ≤ 1
c (log logm)−1. We further consider three subcases:

Case 2.1: Mk1−1+δ
1 < m

1/2
1 ≤ Mk1−δ

1 . Then we apply Corollary 3 to
get (recall that |Ij | ∼Mj/logm)

|S|
M1 . . .Mr

< 0.1

(
Mk1−1

1

m
1/2
1

+
m

1/2
1

Mk1
1

)1/(2k1k2)

< M
−δ/(2k1k2)
1 = M−1/(6k2)r .

The upper bound for k2 and the lower bound Mr ≥ Nβ yield

|S|
M1 . . .Mr

< e−0.01c
2β2 logm.

Case 2.2: Mk1−δ
1 < m

1/2
1 ≤Mk1

1 . We apply Corollary 4 in the form

|S|
M1 . . .Mr

<

(
(M1Mr)

k1−1

m
1/2
1

+
m

1/2
1

(M1Mr)k1

)1/(2k1k2)

<

(
Mk1−1
r

M1−δ
1

+
1

Mk1
r

)1/(2k1k2)

.

Case 2.3: Mk1−1
1 < m

1/2
1 ≤ Mk1−1+δ

1 . Then k1 ≥ 2 and we apply
Corollary 4 with k1 replaced by k1 − 1 in the form

|S|
M1 . . .Mr

<

(
(M1Mr)

k1−2

m
1/2
1

+
m

1/2
1

(M1Mr)k1−1

)1/(2k1k2)

<

(
Mk1−2
r

M1
+

M δ
1

Mk1−1
r

)1/(2k1k2)

.

In all three subcases we get the bound

|S|
M1 . . .Mr

< e−c
′β2 logm

for some constant c′ > 0. Thus, we eventually arrive at the bound

W < Ne−c
′′β2 logm logm

for some constant c′′ > 0. Inserting this into (9) and using (7), we conclude
that ∣∣∣∑

x<N

em(ax∗)
∣∣∣� β(log logm)r−1N +Ne−c

′′′β2 logm(logm)3r

� (log logm)r

(logm)1/2
N.
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