Kloosterman sums in residue rings

by
J. Bourgain (Princeton, NJ) and M. Z. GaraEv (Morelia)

1. Introduction. In what follows, \mathbb{Z}_{m} denotes the ring of residue classes modulo a large positive integer m which frequently will be associated with the set $\{0,1, \ldots, m-1\}$. Given an integer x coprime to m (or an invertible element of \mathbb{Z}_{m}) we use x^{*} or x^{-1} to denote its multiplicative inverse modulo m.

Let I be an interval in \mathbb{Z}_{m}. In the present paper we establish some additive properties of the reciprocal-set

$$
I^{-1}=\left\{x^{-1}: x \in I\right\}
$$

We apply our results to estimate some double Kloosterman sums, to the Brun-Titchmarsh theorem, and, making use of multilinear exponential sum bounds for general moduli, we estimate short Kloosterman sums, hence generalizing our earlier work [3] to the setting of general moduli.

Throughout the paper we use the abbreviation $e_{m}(z):=e^{2 \pi i z / m}$.
2. Statement of our results. We start with the additive properties of the reciprocal-set.

Theorem 1. Let $I=[1, N]$. Then the number $J_{2 k}$ of solutions of the congruence

$$
x_{1}^{*}+\cdots+x_{k}^{*} \equiv x_{k+1}^{*}+\cdots+x_{2 k}^{*}(\bmod m), \quad x_{1}, \ldots, x_{2 k} \in I
$$

satisfies

$$
J_{2 k}<(2 k)^{90 k^{3}}(\log N)^{4 k^{2}}\left(\frac{N^{2 k-1}}{m}+1\right) N^{k}
$$

The following statement is a version of Theorem 1, where the variables x_{j} are restricted to prime numbers. By \mathcal{P} we denote the set of primes.

[^0]Theorem 2. Let $I=[1, N]$. Then the number $J_{2 k}$ of solutions of the congruence

$$
x_{1}^{*}+\cdots+x_{k}^{*} \equiv x_{k+1}^{*}+\cdots+x_{2 k}^{*}(\bmod m), \quad x_{1}, \ldots, x_{2 k} \in I \cap \mathcal{P}
$$

satisfies

$$
J_{2 k}<(2 k)^{k}\left(\frac{N^{2 k-1}}{m}+1\right) N^{k}
$$

We recall that an incomplete Kloosterman sum is a sum of the form

$$
\sum_{x=M+1}^{M+N} e_{m}\left(a x^{*}+b x\right)
$$

where a and b are integers with $\operatorname{gcd}(a, m)=1$. Here the summation over x is restricted to $\operatorname{gcd}(x, m)=1$ (if the range of summation is empty, then we consider this sum to be equal to zero). As a consequence of the Weil bounds it is known that

$$
\left|\sum_{x=1}^{m} e_{m}\left(a x^{*}+b x\right)\right| \leq \tau(m) m^{1 / 2}
$$

(see for example [7, Corollary 11.12]). This implies that for $N<m$ one has

$$
\left|\sum_{x=M+1}^{M+N} e_{m}\left(a x^{*}+b x\right)\right|<m^{1 / 2+o(1)}
$$

For $M=0$ and N very small (that is, $N=m^{o(1)}$) these sums have been estimated by Korolev [11].

The incomplete bilinear Kloosterman sum

$$
S=\sum_{x_{1}=M_{1}+1}^{M_{1}+N_{1}} \sum_{x_{2}=M_{2}+1}^{M_{2}+N_{2}} \alpha_{1}\left(x_{1}\right) \alpha_{2}\left(x_{2}\right) e_{m}\left(a x_{1}^{*} x_{2}^{*}\right)
$$

where $\alpha_{i}\left(x_{i}\right) \in \mathbb{C},\left|\alpha_{i}\left(x_{i}\right)\right| \leq 1$, is also well known in the literature. When $M_{1}=M_{2}=0$ the sum S (in a more general form in fact) has been estimated by Karatsuba [9, 10] for very short ranges of N_{1} and N_{2}.

Theorem 1 leads to the following improvement of the range of applicability of Karatsuba's estimate [9].

Theorem 3. Let $I_{1}=\left[1, N_{1}\right]$ and $I_{2}=\left[1, N_{2}\right]$. Then uniformly over all positive integers k_{1}, k_{2} and $\operatorname{gcd}(a, m)=1$ we have

$$
\begin{aligned}
&\left|\sum_{x_{1} \in I_{1}} \sum_{x_{2} \in I_{2}} \alpha_{1}\left(x_{1}\right) \alpha_{2}\left(x_{2}\right) e_{m}\left(a x_{1}^{*} x_{2}^{*}\right)\right| \\
&<\left(2 k_{1}\right)^{45 k_{1}^{2} / k_{2}}\left(2 k_{2}\right)^{45 k_{2}^{2} / k_{1}}(\log m)^{2\left(k_{1} / k_{2}+k_{2} / k_{1}\right)} \\
& \quad \times\left(\frac{N_{1}^{k_{1}-1}}{m^{1 / 2}}+\frac{m^{1 / 2}}{N_{1}^{k_{1}}}\right)^{1 /\left(2 k_{1} k_{2}\right)}\left(\frac{N_{2}^{k_{2}-1}}{m^{1 / 2}}+\frac{m^{1 / 2}}{N_{2}^{k_{2}}}\right)^{1 /\left(2 k_{1} k_{2}\right)} N_{1} N_{2} .
\end{aligned}
$$

Given N_{1}, N_{2} we choose k_{1}, k_{2} such that

$$
N_{1}^{2\left(k_{1}-1\right)}<m \leq N_{1}^{2 k_{1}}, \quad N_{2}^{2\left(k_{2}-1\right)}<m \leq N_{2}^{2 k_{2}}
$$

and the bound will be nontrivial unless each of N_{1} and N_{2} is within m^{ε}-ratio of an element of $\left\{m^{1 /(2 l)}: l \in \mathbb{Z}_{+}\right\}$. Thus, we have the following

Corollary 1. Let $I_{1}=\left[1, N_{1}\right]$ and $I_{2}=\left[1, N_{2}\right]$, where for $i=1$ or $i=2$,

$$
N_{i} \notin \bigcup_{j \geq 1}\left[m^{1 /(2 j)-\varepsilon}, m^{1 /(2 j)+\varepsilon}\right] .
$$

Then

$$
\max _{(a, m)=1}\left|\sum_{x_{1}=1}^{N_{1}} \sum_{x_{2}=1}^{N_{2}} \alpha_{1}\left(x_{1}\right) \alpha_{2}\left(x_{2}\right) e_{m}\left(a x_{1}^{*} x_{2}^{*}\right)\right|<m^{-\delta} N_{1} N_{2}
$$

for some $\delta=\delta(\varepsilon)>0$.
We shall then apply our bilinear Kloosterman sum bound to the BrunTitchmarsh theorem and improve the result of Friedlander-Iwaniec [5] on $\pi(x ; q, a)$ as follows:

Theorem 4. Let $x^{\theta} \leq q \leq 2 x^{\theta}$, where $\theta<1$ is close to 1 . Then

$$
\pi(x ; q, a)<\frac{c x}{\phi(q) \log (x / q)}
$$

with $c=2-c_{1}(1-\theta)^{2}$, for some absolute constant $c_{1}>0$ and all x sufficiently large in terms of θ.

Recall that for $(a, q)=1, \pi(x ; q, a)$ denotes the number of primes $p \leq x$ with $p \equiv a(\bmod q)$. The constants implied in Theorem 4 are effective and can be made explicit. We mention that for primes q, Theorem 4 is contained in our work [3].

Finally, we shall apply multilinear exponential sum bounds from [2] (see Lemma 1 below) to establish the following estimate of a short linear Kloosterman sum.

Theorem 5. Let $N>m^{c}$, where c is a small fixed positive constant. Then

$$
\max _{(a, m)=1}\left|\sum_{n \leq N} e_{m}\left(a n^{*}\right)\right|<\frac{(\log \log m)^{O(1)}}{(\log m)^{1 / 2}} N
$$

where the implied constant may depend only on c.
This improves some results of Korolev [11]. We also refer the reader to [12] for some variants of the problem. We remark that a stronger bound is claimed in [8], but the proof there is in doubt.

Since

$$
\sum_{n=1}^{m} e_{m}\left(a n^{*}\right)=\mu(m),
$$

in Theorem 5 one can assume that $N<m$. We also note that the aforementioned consequence of the Weil bounds gives a stronger estimate in the case $N>m^{1 / 2+c_{0}}$ for any arbitrarily small fixed positive constant c_{0}.
3. Lemmas. The following result, which we state as a lemma, has been proved by Bourgain [2]. It is based on results from additive combinatorics, in particular sum-product estimates. This lemma will be used in the proof of our results on short Kloosterman sums.

Lemma 1. For all $\gamma>0$ there exist $\varepsilon=\varepsilon(\gamma)>0, \tau=\tau(\gamma)>0$ and $k=k(\gamma) \in \mathbb{Z}_{+}$such that the following holds. Let $A_{1}, \ldots, A_{k} \subset \mathbb{Z}_{q}, q$ arbitrary, and assume $\left|A_{i}\right|>q^{\gamma}(1 \leq i \leq k)$ and also

$$
\max _{\xi \in \mathbb{Z} q_{1}}\left|A_{i} \cap \pi_{q_{1}}^{-1}(\xi)\right|<q_{1}^{-\gamma}\left|A_{i}\right| \quad \text { for all } q_{1} \mid q, q_{1}>q^{\varepsilon} .
$$

Then

$$
\max _{\xi \in \mathbb{Z}_{q}^{*}}\left|\sum_{x_{1} \in A_{1}} \ldots \sum_{x_{k} \in A_{k}} e_{q}\left(\xi x_{1} \ldots x_{k}\right)\right|<C q^{-\tau}\left|A_{1}\right| \ldots\left|A_{k}\right| .
$$

Here, $\left|A \cap \pi_{q_{1}}^{-1}(\xi)\right|$ can be viewed as the number of solutions of the congruence $x \equiv \xi\left(\bmod q_{1}\right), x \in A$.

Clearly, the conclusion of Lemma 1 can be stated in basically equivalent form

$$
\max _{\xi \in \mathbb{Z}_{q}^{*}} \sum_{x_{1} \in A_{1}} \ldots \sum_{x_{k-1} \in A_{k-1}}\left|\sum_{x_{k} \in A_{k}} e_{q}\left(\xi x_{1} \ldots x_{k-1} x_{k}\right)\right|<C q^{-\tau}\left|A_{1}\right| \ldots\left|A_{k}\right| .
$$

Indeed, applying the Cauchy-Schwarz inequality, it follows that

$$
\begin{aligned}
\left(\sum_{x_{1} \in A_{1}} \ldots\right. & \left.\sum_{x_{k-1} \in A_{k-1}}\left|\sum_{x_{k} \in A_{k}} e_{q}\left(\xi x_{1} \ldots x_{k-1} x_{k}\right)\right|\right)^{2} \\
& \leq\left|A_{1}\right| \ldots\left|A_{k-1}\right| \sum_{x_{k}^{\prime} \in A_{k}} \mid \sum_{x_{1} \in A_{1}} \ldots \sum_{x_{k} \in A_{k}} e_{q}\left(\xi x_{1} \ldots x_{k-1}\left(x_{k}-x_{k}^{\prime}\right) \mid .\right.
\end{aligned}
$$

We fix $x_{k}^{\prime} \in A_{k}$ such that

$$
\begin{aligned}
\left(\sum_{x_{1} \in A_{1}} \ldots\right. & \left.\sum_{x_{k-1} \in A_{k-1}}\left|\sum_{x_{k} \in A_{k}} e_{q}\left(\xi x_{1} \ldots x_{k-1} x_{k}\right)\right|\right)^{2} \\
& \leq\left|A_{1}\right| \ldots\left|A_{k-1}\right|\left|A_{k}\right| \mid \sum_{x_{1} \in A_{1}} \ldots \sum_{x_{k-1} \in A_{k-1}} \sum_{x_{k} \in A_{k}^{\prime}} e_{q}\left(\xi x_{1} \ldots x_{k-1} x_{k} \mid\right.
\end{aligned}
$$

where $A_{k}^{\prime}=A_{k}-\left\{x_{k}^{\prime}\right\}$. Then we observe that the set A_{k}^{\prime} also satisfies the condition of Lemma 1 .

We need some facts from the geometry of numbers. Recall that a lattice in \mathbb{R}^{n} is an additive subgroup of \mathbb{R}^{n} generated by n linearly independent vectors. Take an arbitrary convex compact body $D \subset \mathbb{R}^{n}$, symmetric with respect to 0 . Recall that, for a lattice $\Gamma \subset \mathbb{R}^{n}$ and $i=1, \ldots, n$, the i th successive minimum $\lambda_{i}(D, \Gamma)$ of the set D with respect to the lattice Γ is defined as the minimal number λ such that the set λD contains i linearly independent vectors of the lattice Γ. Obviously, $\lambda_{1}(D, \Gamma) \leq \cdots \leq$ $\lambda_{n}(D, \Gamma)$. We need the following result given in [1, Proposition 2.1] (see also [13, Exercise 3.5.6] for a simplified form that is still enough for our purposes).

Lemma 2. We have

$$
|D \cap \Gamma| \leq \prod_{i=1}^{n}\left(\frac{2 i}{\lambda_{i}(D, \Gamma)}+1\right)
$$

Denoting, as usual, by $(2 n+1)$!! the product of all odd positive numbers up to $2 n+1$, we get the following

Corollary 2. We have

$$
\prod_{i=1}^{n} \min \left\{\lambda_{i}(D, \Gamma), 1\right\} \leq \frac{(2 n+1)!!}{|D \cap \Gamma|}
$$

We also need the following lemma due to Karatsuba 9 .
Lemma 3. The following bound holds:

$$
\begin{aligned}
\left\lvert\,\left\{\left(x_{1}, \ldots, x_{2 k}\right) \in[1, N]^{2 k}: \frac{1}{x_{1}}+\cdots+\frac{1}{x_{k}}=\frac{1}{x_{k+1}}\right.\right. & \left.+\cdots+\frac{1}{x_{2 k}}\right\} \mid \\
& <(2 k)^{80 k^{3}}(\log N)^{4 k^{2}} N^{k}
\end{aligned}
$$

4. Proofs of Theorems 1-3

Proof of Theorem 1. It suffices to consider the case $k N^{k}<m$ as otherwise the statement is trivial. For $\lambda=0,1, \ldots, m-1$ denote

$$
J(\lambda)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in I^{k}: x_{1}^{*}+\cdots+x_{k}^{*} \equiv \lambda(\bmod m)\right\}
$$

Let

$$
\Omega=\{\lambda \in[1, m-1]:|J(\lambda)| \geq 1\} .
$$

Since $J(0)=0$, we have

$$
J_{2 k}=\sum_{\lambda \in \Omega}|J(\lambda)|^{2}
$$

Consider the lattice

$$
\Gamma_{\lambda}=\left\{(u, v) \in \mathbb{Z}^{2}: \lambda u \equiv v(\bmod m)\right\}
$$

and the body

$$
D=\left\{(u, v) \in \mathbb{R}^{2}:|u| \leq N^{k},|v| \leq k N^{k-1}\right\}
$$

If we denote by μ_{1}, μ_{2} the successive minima of the body D with respect to the lattice Γ_{λ}, Corollary 2 yields

$$
\prod_{i=1}^{2} \min \left\{\mu_{i}, 1\right\} \leq \frac{15}{\left|\Gamma_{\lambda} \cap D\right|}
$$

Observe that for $\left(x_{1}, \ldots, x_{k}\right) \in J(\lambda)$ one has

$$
\lambda x_{1} \ldots x_{k} \equiv x_{2} \ldots x_{k}+\cdots+x_{1} \ldots x_{k-1}(\bmod m)
$$

implying

$$
\left(x_{1} \ldots x_{k}, x_{2} \ldots x_{k}+\cdots+x_{1} \ldots x_{k-1}\right) \in \Gamma_{\lambda} \cap D .
$$

Thus, for $\lambda \in \Omega$ we have $\mu_{1} \leq 1$. We split the set Ω into two subsets:

$$
\Omega^{\prime}=\left\{\lambda \in \Omega: \mu_{2} \leq 1\right\}, \quad \Omega^{\prime \prime}=\left\{\lambda \in \Omega: \mu_{2}>1\right\} .
$$

We have

$$
\begin{equation*}
J_{2 k}=\sum_{\lambda \in \Omega^{\prime}}|J(\lambda)|^{2}+\sum_{\lambda \in \Omega^{\prime \prime}}|J(\lambda)|^{2} \tag{1}
\end{equation*}
$$

CASE 1: $\lambda \in \Omega^{\prime}$, that is, $\mu_{2} \leq 1$. Let $\left(u_{i}, v_{i}\right) \in \mu_{i} D \cap \Gamma_{\lambda}, i=1,2$, be linearly independent. Then

$$
0 \neq u_{1} v_{2}-v_{1} u_{2} \equiv u_{1} \lambda u_{2}-u_{2} \lambda u_{1} \equiv 0(\bmod m)
$$

whence

$$
\left|u_{1} v_{2}-v_{1} u_{2}\right| \geq m
$$

Also

$$
\left|u_{1} v_{2}-v_{1} u_{2}\right| \leq 2 k \mu_{1} \mu_{2} N^{2 k-1} \leq \frac{30 k N^{2 k-1}}{\left|\Gamma_{\lambda} \cap D\right|}
$$

Thus, for $\lambda \in \Omega^{\prime}$, the number $\left|\Gamma_{\lambda} \cap D\right|$ of solutions of the congruence

$$
\lambda u \equiv v(\bmod m)
$$

in integers u, v with $|u| \leq N^{k},|v| \leq k N^{k-1}$ is bounded by

$$
\begin{equation*}
\left|\Gamma_{\lambda} \cap D\right| \leq \frac{30 k N^{2 k-1}}{m} \tag{2}
\end{equation*}
$$

Note that for $\lambda \in \Omega^{\prime}$ the sets

$$
\mathcal{W}_{\lambda}:=\left\{(u, v):(u, v) \in \Gamma_{\lambda} \cap D, \operatorname{gcd}(u, m)=1\right\}
$$

are pairwise disjoint. Therefore, if we denote by $S(u, v)$ the set of k-tuples $\left(x_{1}, \ldots, x_{k}\right)$ of positive integers $x_{1}, \ldots, x_{k} \leq N$ coprime to m with

$$
x_{1} \ldots x_{k}=u, \quad x_{2} \ldots x_{k}+\cdots+x_{1} \ldots x_{k-1}=v
$$

we get

$$
\sum_{\lambda \in \Omega^{\prime}}|J(\lambda)|^{2}=\sum_{\lambda \in \Omega^{\prime}}\left(\sum_{\substack{(u, v) \in \Gamma_{\lambda} \cap D \\ \operatorname{gcd}(u, m)=1}} \sum_{\left(x_{1}, \ldots, x_{k}\right) \in S(u, v)} 1\right)^{2}
$$

Applying the Cauchy-Schwarz inequality and taking into account (2), we get

$$
\begin{equation*}
\sum_{\lambda \in \Omega^{\prime}}|J(\lambda)|^{2} \leq \frac{30 k N^{2 k-1}}{m} \sum_{\lambda \in \Omega^{\prime}} \sum_{\substack{(u, v) \in \Gamma_{\lambda} \cap D \\ \operatorname{gcd}(u, m)=1}}\left(\sum_{\substack{\left(x_{1}, \ldots, x_{k}\right) \in S(u, v)}} 1\right)^{2} \tag{3}
\end{equation*}
$$

From the disjointness of the sets W_{λ} it follows that the sum on the right is bounded by the number of solutions of the system

$$
\left\{\begin{array}{l}
x_{1} \ldots x_{k}=y_{1} \ldots y_{k} \\
x_{1} \ldots x_{k-1}+\cdots+x_{2} \ldots x_{k}=y_{2} \ldots y_{k}+\cdots+y_{1} \ldots y_{k-1}
\end{array}\right.
$$

in positive integers $x_{i}, y_{j} \leq N$ coprime to m. Hence, by Lemma 3 ,

$$
\begin{equation*}
\sum_{\lambda \in \Omega^{\prime}}|J(\lambda)|^{2}<30 k(2 k)^{80 k^{3}}(\log N)^{4 k^{2}} \frac{N^{3 k-1}}{m} \tag{4}
\end{equation*}
$$

Case 2: $\lambda \in \Omega^{\prime \prime}$, that is, $\mu_{2}>1$. Then the vectors from $\Gamma_{\lambda} \cap D$ are linearly dependent and in particular there is some $\widehat{\lambda} \in \mathbb{Q}$ such that

$$
\widehat{\lambda} x_{1} \ldots x_{k}=x_{2} \ldots x_{k}+\cdots+x_{1} \ldots x_{k-1} \quad \text { for }\left(x_{1}, \ldots, x_{k}\right) \in J(\lambda)
$$

Thus,

$$
\begin{aligned}
& \sum_{\lambda \in \Omega^{\prime \prime}}|J(\lambda)|^{2} \leq \sum_{\widehat{\lambda} \in \mathbb{Q}} \left\lvert\,\left\{\left(x_{1}, \ldots, x_{k}\right) \in I^{k}: \frac{1}{x_{1}}+\cdots+\frac{1}{x_{k}}=\left.\widehat{\lambda}\right|^{2}\right.\right. \\
& \quad=\left|\left\{\left(x_{1}, \ldots, x_{2 k}\right) \in[1, N]^{2 k}: \frac{1}{x_{1}}+\cdots+\frac{1}{x_{k}}=\frac{1}{x_{k+1}}+\cdots+\frac{1}{x_{2 k}}\right\}\right| \\
& \quad<(2 k)^{80 k^{3}}(\log N)^{4 k^{2}} N^{k}
\end{aligned}
$$

Inserting this and (4) into (1), we obtain

$$
J_{2 k}<(2 k)^{90 k^{3}}(\log N)^{4 k^{2}}\left(\frac{N^{2 k-1}}{m}+1\right) N^{k}
$$

which concludes the proof of Theorem 1 .

Proof of Theorem 园. This proof follows the same lines, with the only difference that instead of Lemma 3 one should apply the bound

$$
\begin{aligned}
\left\lvert\,\left\{\left(x_{1}, \ldots, x_{2 k}\right) \in([1, N] \cap \mathcal{P})^{2 k}: \frac{1}{x_{1}}+\cdots+\frac{1}{x_{k}}=\frac{1}{x_{k+1}}\right.\right. & \left.+\cdots+\frac{1}{x_{2 k}}\right\} \mid \\
& <(2 k)^{k}\left(\frac{N}{\log N}\right)^{k} .
\end{aligned}
$$

Proof of Theorem 3. Let

$$
S=\sum_{x_{1} \in I_{1}} \sum_{x_{2} \in I_{2}} \alpha_{1}\left(x_{1}\right) \alpha_{2}\left(x_{2}\right) e_{m}\left(a x_{1}^{*} x_{2}^{*}\right) .
$$

Then by Hölder's inequality,

$$
|S|^{k_{2}} \leq N_{1}^{k_{2}-1} \sum_{x_{1} \in I_{1}}\left|\sum_{x_{2} \in I_{2}} \alpha_{2}\left(x_{2}\right) e_{m}\left(a x_{1}^{*} x_{2}^{*}\right)\right|^{k_{2}}
$$

Thus, for some $\sigma\left(x_{1}\right) \in \mathbb{C}$ with $\left|\sigma\left(x_{1}\right)\right|=1$,

$$
|S|^{k_{2}} \leq N_{1}^{k_{2}-1} \sum_{y_{1}, \ldots, y_{k_{2}} \in I_{2}} \mid \sum_{x_{1} \in I_{1}} \sigma\left(x_{1}\right) e_{m}\left(a x_{1}^{*}\left(y_{1}^{*}+\cdots+y_{k_{2}}^{*}\right) \mid .\right.
$$

Again by Hölder's inequality,

$$
|S|^{k_{1} k_{2}} \leq N_{1}^{k_{1} k_{2}-k_{1}} N_{2}^{k_{1} k_{2}-k_{2}} \sum_{\lambda=0}^{p-1} J_{k_{2}}\left(\lambda ; N_{2}\right) \mid \sum_{x_{1} \in I_{1}} \sigma\left(x_{1}\right) e_{m}\left(\left.a x_{1}^{*} \lambda\right|^{k_{1}},\right.
$$

where $J_{k}(\lambda ; N)$ is the number of solutions of the congruence

$$
x_{1}^{*}+\cdots+x_{k}^{*} \equiv \lambda(\bmod m), \quad x_{i} \in[1, N] .
$$

Then applying the Cauchy-Schwarz inequality and using

$$
\sum_{\lambda=0}^{p-1} J_{k_{2}}\left(\lambda ; N_{2}\right)^{2}=J_{2 k_{2}}\left(N_{2}\right), \quad \sum_{\lambda=0}^{p-1} \mid \sum_{x_{1} \in I_{1}} \sigma\left(x_{1}\right) e_{m}\left(\left.a x_{1}^{*} \lambda\right|^{2 k_{1}} \leq m J_{2 k_{1}}\left(N_{1}\right)\right.
$$

we get

$$
\begin{equation*}
|S|^{2 k_{1} k_{2}} \leq m N_{1}^{2 k_{1} k_{2}-2 k_{1}} N_{2}^{2 k_{1} k_{2}-2 k_{2}} J_{2 k_{1}}\left(N_{1}\right) J_{2 k_{2}}\left(N_{2}\right) . \tag{5}
\end{equation*}
$$

Applying Theorem 1, we obtain

$$
\begin{aligned}
|S|^{2 k_{1} k_{2}} \leq & \left(2 k_{1}\right)^{90 k_{1}^{3}}\left(2 k_{2}\right)^{90 k_{2}^{3}}\left(\log N_{1}\right)^{4 k_{1}^{2}}\left(\log N_{2}\right)^{4 k_{2}^{2}} \\
& \times N_{1}^{2 k_{1} k_{2}} N_{2}^{2 k_{1} k_{2}}\left(\frac{N_{1}^{k_{1}-1}}{m^{1 / 2}}+\frac{m^{1 / 2}}{N_{1}^{k_{1}}}\right)\left(\frac{N_{2}^{k_{2}-1}}{m^{1 / 2}}+\frac{m^{1 / 2}}{N_{2}^{k_{2}}}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
|S|< & \left(2 k_{1}\right)^{45 k_{1}^{2} / k_{2}}\left(2 k_{2}\right)^{45 k_{2}^{2} / k_{1}}(\log m)^{2\left(k_{1} / k_{2}+k_{2} / k_{1}\right)} \\
& \times\left(\frac{N_{1}^{k_{1}-1}}{m^{1 / 2}}+\frac{m^{1 / 2}}{N_{1}^{k_{1}}}\right)^{1 /\left(2 k_{1} k_{2}\right)}\left(\frac{N_{2}^{k_{2}-1}}{m^{1 / 2}}+\frac{m^{1 / 2}}{N_{2}^{k_{2}}}\right)^{1 /\left(2 k_{1} k_{2}\right)} N_{1} N_{2},
\end{aligned}
$$

which finishes the proof of Theorem 3.
5. Proof of Theorem 4. Let ε be a positive constant very small in terms of $\delta=1-\theta\left(\right.$ say, $\left.\varepsilon=\delta^{4}\right)$. Denote

$$
\begin{aligned}
\mathcal{A} & =\{n \leq x: n \equiv a(\bmod q)\}, \\
\mathcal{A}_{d} & =\{n \in \mathcal{A}: n \equiv 0(\bmod d)\}, \\
S(\mathcal{A}, z) & =\mid\{n \in \mathcal{A}:(n, p)=1 \text { for } p<z,(p, q)=1\} \mid, \\
r_{d} & =\left|\mathcal{A}_{d}\right|-\frac{x}{q d} .
\end{aligned}
$$

We take $z=D^{1 / 2}$, where D is the level of distribution. We shall define D to satisfy

$$
D \sim\left(\frac{x}{q}\right)^{1+c \delta^{2}} \sim x^{\delta+c \delta^{3}} \sim q^{\delta+\delta^{2}+O\left(\delta^{3}\right)}
$$

where c is a suitable absolute positive constant ($c=0.01$ will do).
Take an integer k such that

$$
\frac{1}{2 k-1} \leq \frac{\delta}{2}<\frac{1}{2 k-3} .
$$

Having in mind [6, Theorem 12.21], we consider the factorization $D=M N$ in the form

$$
N=q^{1 /(2 k-1)}, \quad M=D / N .
$$

Following the proof of [6, Theorem 13.1] we find that

$$
S(\mathcal{A}, z) \leq \frac{(2+\varepsilon) x}{\phi(q) \log D}+R(M, N) .
$$

Here the remainder $R(M, N)$ is estimated by

$$
R(M, N) \ll \sum_{\substack{m \leq M, n \leq N \\ \operatorname{gcd}(m n, q)=1}} \alpha_{m} \beta_{n} r_{m n},
$$

where the implied constant may depend on ε. Our aim is to prove the bound $R(M, N) \ll x^{1-\varepsilon} q^{-1}$. For this we may assume that α_{m}, β_{n} are supported on dyadic intervals

$$
0.5 M_{1}<m \leq M_{1}, \quad 0.5 N_{1}<n \leq N_{1}
$$

for some $1 \leq M_{1} \leq M$ and $1 \leq N_{1} \leq N$ with $M_{1} N_{1} q>x^{1-\varepsilon}$. Then according to [6, p. 262] we have the bound

$$
R(M, N) \ll \frac{x}{q M_{1} N_{1}} \sum_{0<|h| \leq H} \sum_{m \sim M_{1}}\left|\sum_{n \sim N_{1}} \gamma(h ; n) e_{q}\left(a h m^{*} n^{*}\right)\right|+\frac{x^{1-\varepsilon}}{q}
$$

where

$$
H=q M_{1} N_{1} x^{3 \varepsilon-1} \leq q D x^{3 \varepsilon-1} \ll x^{c \delta^{3}+3 \varepsilon}
$$

In particular, $\operatorname{gcd}(h, q)<q^{O\left(\delta^{3}\right)}$. Thus, for some $\gamma(n) \in \mathbb{C}$ with $|\gamma(n)| \leq 1$, we have

$$
R(M, N) \ll x^{3 \varepsilon} \sum_{m \leq M}\left|\sum_{n \leq N} \gamma(n) e_{q_{1}}\left(a_{1} m^{*} n^{*}\right)\right|+\frac{x^{1-\varepsilon}}{q}
$$

where, say, $q^{1-\delta^{2}} \leq q_{1} \leq q$ and $\operatorname{gcd}\left(a_{1}, q_{1}\right)=1$. Then our Theorem 3 applied with $k_{1}=k$ and $k_{2} \sim k$ (defined from $M^{2\left(k_{2}-1\right)}<m \leq M^{2 k_{2}}$) implies that

$$
R(M, N) \ll M N^{1-c_{0} / k^{2}}+\frac{x^{1-\varepsilon}}{q}<D^{1-c_{0} \delta^{2}}+\frac{x^{1-\varepsilon}}{q}
$$

where $c_{0}>0$ is an absolute constant. Therefore, from the choice $D \sim x^{\delta+c \delta^{2}}$ with $0<c<0.5 c_{0}$, we obtain

$$
S(\mathcal{A}, z)<\frac{\left(2-c^{\prime} \delta^{2}\right) x}{\phi(q) \log (x / q)}
$$

for some absolute constant $c^{\prime}>0$. The result follows.
6. Proof of Theorem 5. The proof of Theorem 5 is based on Bourgain's multilinear exponential sum bounds for general moduli [2] (see Lemma 1 above). We will also need a version of Theorem 3 on bilinear Kloosterman sum estimates with the variables of summation restricted to prime and almost prime numbers.
6.1. Double Kloosterman sums with primes and almost primes. As a consequence of Theorem 2 we have the following bilinear Kloosterman sum estimate.

Corollary 3. Let $N_{1}, N_{2}, k_{1}, k_{2}$ be positive integers, and $\operatorname{gcd}(a, m)=1$. Then for any coefficients $\alpha(p), \beta(q) \in \mathbb{C}$ with $|\alpha(p)|,|\beta(q)| \leq 1$, we have

$$
\begin{aligned}
& \left|\sum_{p \leq N_{1}} \sum_{q \leq N_{2}} \alpha(p) \beta(q) e_{m}\left(a p^{*} q^{*}\right)\right| \\
& <\left(2 k_{1}\right)^{1 / k_{2}}\left(2 k_{2}\right)^{1 / k_{1}}\left(\frac{N_{1}^{k_{1}-1}}{m^{1 / 2}}+\frac{m^{1 / 2}}{N_{1}^{k_{1}}}\right)^{1 /\left(2 k_{1} k_{2}\right)}\left(\frac{N_{2}^{k_{2}-1}}{m^{1 / 2}}+\frac{m^{1 / 2}}{N_{2}^{k_{2}}}\right)^{1 /\left(2 k_{1} k_{2}\right)} N_{1} N_{2}
\end{aligned}
$$

where the variables p and q of the summations are restricted to prime numbers.

Indeed, denoting the quantity on the left hand side by $|S|$ and following the proof of Theorem 3 we arrive at the bound (see (5))

$$
|S|^{2 k_{1} k_{2}} \leq m N_{1}^{2 k_{1} k_{2}-2 k_{1}} N_{2}^{2 k_{1} k_{2}-2 k_{2}} J_{2 k_{1}}\left(N_{1}\right) J_{2 k_{2}}\left(N_{2}\right),
$$

where in our case $J_{2 k}(N)$ denotes the number of solutions of the congruence

$$
p_{1}^{*}+\cdots+p_{k}^{*} \equiv p_{k+1}^{*}+\cdots+p_{2 k}^{*}(\bmod m)
$$

in prime numbers $p_{1}, \ldots, p_{2 k} \leq N$. The statement then follows from the bounds for $J_{2 k}(N)$ given in Theorem 2 .

Lemma 4. Let K, L be large positive integers with $2 L<K$. Then uniformly over k the number $T_{2 k}(K, L)$ of solutions of the diophantine equation

$$
\frac{1}{p_{1} q_{1}}+\cdots+\frac{1}{p_{k} q_{k}}=\frac{1}{p_{k+1} q_{k+1}}+\cdots+\frac{1}{p_{2 k} q_{2 k}}
$$

in prime numbers p_{i}, q_{i} satisfying $0.5 K<p_{i}<K$ and $q_{i}<L$ is bounded by

$$
T_{2 k}(K, L)<k^{4 k}\left(\frac{K}{\log K}\right)^{k}\left(\frac{L}{\log L}\right)^{k} .
$$

The proof is straightforward. For any given $1 \leq i_{0} \leq 2 k$ we have

$$
\frac{p_{1} \ldots p_{2 k} q_{1} \ldots q_{2 k}}{p_{i_{0}} q_{i_{0}}} \equiv 0\left(\bmod p_{i_{0}} q_{i_{0}}\right) .
$$

Since $p_{i} \neq q_{j}$, it follows that $p_{i_{0}}$ appears in the sequence $p_{1}, \ldots, p_{2 k}$ at least twice. Thus, the sequence $p_{1}, \ldots, p_{2 k}$ contains at most k different prime numbers. Accordingly, the sequence $q_{1}, \ldots, q_{2 k}$ contains at most k different prime numbers. Therefore, there are at most

$$
k^{2 k}\left(\frac{0.9 K}{\log K}\right)^{k} k^{2 k}\left(\frac{1.1 L}{\log L}\right)^{k}<k^{4 k}\left(\frac{K}{\log K}\right)^{k}\left(\frac{L}{\log L}\right)^{k}
$$

possibilities for $\left(p_{1}, \ldots, p_{2 k}, q_{1}, \ldots, q_{2 k}\right)$. The result follows.
Now following the proof of Theorems 1 and 2, with the only difference that in the course of proof we replace Lemma 3 by Lemma 4, we get the following statement.

Lemma 5. Let K, L be large positive integers, $2 L<K$. Then uniformly over k the number $J_{2 k}(K, L)$ of solutions of the congruence

$$
\frac{1}{p_{1} q_{1}}+\cdots+\frac{1}{p_{k} q_{k}} \equiv \frac{1}{p_{k+1} q_{k+1}}+\cdots+\frac{1}{p_{2 k} q_{2 k}}(\bmod m)
$$

in prime numbers p_{i}, q_{i} satisfying $0.5 K<p_{i}<K$ and $q_{i}<L$ is bounded by

$$
J_{2 k}(K, L)<k^{4 k}\left(\frac{(K L)^{2 k-1}}{m}+1\right)(K L)^{k} .
$$

From Lemma 5 we get the following corollary.
Corollary 4. Let N, K, L, k_{1}, k_{2} be positive integers with $2 L<K$. Then for any coefficients $\alpha(p), \beta(q ; r) \in \mathbb{C}$ with $|\alpha(p)|,|\beta(q ; r)| \leq 1$, we have

$$
\begin{aligned}
& \max _{\operatorname{gcd}(a, m)=1}\left|\sum_{p \leq N} \sum_{0.5 K<q \leq K} \sum_{r \leq L} \alpha(p) \beta(q ; r) e_{m}\left(a p^{*} q^{*} r^{*}\right)\right| \\
& <k_{1}^{2 / k_{2}} k_{2}^{2 / k_{1}}\left(\frac{N^{k_{1}-1}}{m^{1 / 2}}+\frac{m^{1 / 2}}{N^{k_{1}}}\right)^{1 /\left(2 k_{1} k_{2}\right)}\left(\frac{(K L)^{k_{2}-1}}{m^{1 / 2}}+\frac{m^{1 / 2}}{(K L)^{k_{2}}}\right)^{1 /\left(2 k_{1} k_{2}\right)} N K L,
\end{aligned}
$$

where the variables p, q and r of the summations are restricted to prime numbers.
6.2. Proof of Theorem 5. Denote $\varepsilon:=\log N / \log m>c$. As mentioned before, we can assume that $\varepsilon<4 / 7$.

In what follows, r is a large absolute integer constant. More explicitly, we define r to be the choice of k in Lemma 1 with, say, $\gamma=1 / 10$. Denote

$$
\mathcal{G}=\left\{x<N: p_{1} \geq N^{\alpha}, p_{r} \geq N^{\beta}, p_{1} \ldots p_{r}<N^{1-\beta}\right\}
$$

where $p_{1} \geq \cdots \geq p_{r}$ are the largest prime factors of x and

$$
0.1>\alpha>\beta>1 / \log N
$$

are parameters to specify. Note that the number of positive integers not exceeding N which are products of at most $r-1$ prime numbers is estimated by

$$
\begin{aligned}
\sum_{\substack{k=1}}^{r-1} \sum_{\substack{p_{1} \ldots p_{k} \leq N \\
p_{1} \geq \cdots \geq p_{k}}} 1 & \ll \frac{N}{\log N}+\sum_{k=2}^{r-1} \sum_{p_{2} \ldots p_{k} \leq N^{(k-1) / k}} \frac{N}{p_{2} \ldots p_{k} \log \left(N /\left(p_{2} \ldots p_{k}\right)\right)} \\
& \ll \frac{N}{\log N}+\sum_{k=2}^{r-1} \sum_{p_{2} \leq N} \ldots \sum_{p_{k} \leq N} \frac{N}{p_{2} \ldots p_{k} \log N} \\
& \ll \frac{N(\log \log N)^{r-1}}{\log N} .
\end{aligned}
$$

Here and below, the implied constants may depend only on r. Hence,

$$
N-|\mathcal{G}| \leq \frac{c N(\log \log N)^{r-1}}{\log N}+\sum_{\substack{x<N \\ p_{1}<N^{\alpha}}} 1+\sum_{\substack{x<N \\ p_{r}<N^{\beta}}} 1+\sum_{\substack{x<N \\ p_{1} \ldots p_{r}>N^{1-\beta}}} 1
$$

for some constant $c=c(r)>0$. Next, we have

$$
\begin{aligned}
\sum_{\substack{x<N \\
p_{1} \ldots p_{r}>N^{1-\beta}}} 1 & \leq \sum_{\substack{y<N^{\beta} \\
p_{1} \ldots p_{r}<N / y \\
p_{1} \geq \cdots \geq p_{r} \geq P(y)}} 1 \\
& \ll \sum_{y<N^{\beta}} \sum_{\substack{p_{2} \ldots p_{r}<(N / y)(r-1) / r \\
p_{2} \geq \cdots \geq p_{r} \geq P(y)}} \frac{N}{y p_{2} \ldots p_{r} \log \left(N /\left(y p_{2} \ldots p_{r}\right)\right)} \\
& \ll \frac{N}{\log N} \sum_{y<N^{\beta}} \sum_{P(y) \leq p_{r} \leq N^{1 / r}} \frac{\left(\log \frac{\log N}{\log p_{r}}\right)^{r-2}}{y p_{r}} .
\end{aligned}
$$

We would like to prove that the quantity on the right hand side is \ll $\beta N\left(\log \frac{1}{\beta}\right)^{r-1}$. This is trivially true if $N^{\beta^{2}}<2$, as in this case we have

$$
\begin{aligned}
\frac{N}{\log N} \sum_{y<N^{\beta}} \sum_{P(y) \leq p_{r} \leq N^{1 / r}} & \frac{\left(\log \frac{\log N}{\log p_{r}}\right)^{r-2}}{y p_{r}} \\
& \ll \frac{N}{\log N}(\log \log N)^{r-2} \sum_{y<N^{\beta}} \sum_{p_{r} \leq N} \frac{1}{y p_{r}} \\
& \ll \beta N(\log \log N)^{r-1} \ll \beta N\left(\log \frac{1}{\beta}\right)^{r-1}
\end{aligned}
$$

Let now $N^{\beta^{2}} \geq 2$. Since

$$
\frac{N}{\log N} \sum_{y<N^{\beta}} \sum_{N^{\beta^{2}} \leq p_{r} \leq N} \frac{\left(\log \frac{\log N}{\log p_{r}}\right)^{r-2}}{y p_{r}} \ll \beta N\left(\log \frac{1}{\beta}\right)^{r-1}
$$

it follows that
(6)

$$
\sum_{\substack{x<N \\ . . p_{r}>N^{1-\beta}}} 1 \ll \frac{N}{\log N} \sum_{y<N^{\beta}} \sum_{P(y) \leq p_{r} \leq N^{\beta^{2}}} \frac{\left(\log \frac{\log N}{\log p_{r}}\right)^{r-2}}{y p_{r}}+\beta N\left(\log \frac{1}{\beta}\right)^{r-1}
$$

Next, splitting the sum over p_{r} into intervals of the type $N^{\beta^{k+1}} \leq p_{r} \leq N^{\beta^{k}}$ and denoting by k_{0} the largest positive integer with $N^{\beta^{k_{0}}} \geq 2$ we get

$$
\begin{gathered}
\sum_{y<N^{\beta}} \sum_{P(y) \leq p_{r} \leq N^{\beta^{2}}} \frac{\left(\log \frac{\log N}{\log p_{r}}\right)^{r-2}}{y p_{r}} \leq \sum_{k=2}^{k_{0}} \sum_{\substack{y<N^{\beta} \\
P(y) \leq N^{\beta^{k}}}} \sum_{N^{\beta^{k+1} \leq p_{r} \leq N^{\beta^{k}}}} \frac{\left(\log \frac{\log N}{\log p_{r}}\right)^{r-2}}{y p_{r}} \\
\ll \sum_{k=2}^{k_{0}} \sum_{\substack{y<N^{\beta} \\
P(y) \leq N^{\beta^{k}}}} \frac{\left(k \log \frac{1}{\beta}\right)^{r-1}}{y}=\left(\log \frac{1}{\beta}\right)^{r-1} \sum_{k=2}^{k_{0}}\left(k^{r-1} \sum_{\substack{y<N^{\beta} \\
P(y) \leq N^{\beta^{k}}}} \frac{1}{y}\right) \\
\ll\left(\log \frac{1}{\beta}\right)^{r-1} \sum_{k=2}^{k_{0}}\left(k^{r-1} \sum_{\substack{N^{k / 2} \leq y<N^{\beta} \\
P(y) \leq N^{\beta^{k}}}} \frac{1}{y}\right)+\left(\log \frac{1}{\beta}\right)^{r-1} \sum_{k=2}^{k_{0}} k^{r-1}\left(\log N^{\beta^{k / 2}}\right) .
\end{gathered}
$$

Then observing that

$$
\sum_{k \geq 2} k^{r-1}\left(\log N^{\beta^{k / 2}}\right) \ll \beta \log N \sum_{k \geq 2} \frac{k^{r-1}}{10^{(k-2) / 2}} \ll \beta \log N
$$

from (6) it follows that

$$
\sum_{\substack{x<N \\ p_{1} \ldots p_{r}>N^{1-\beta}}} 1 \ll \frac{N\left(\log \frac{1}{\beta}\right)^{r-1}}{\log N} \sum_{k \geq 2}\left(k^{r-1} \sum_{\substack{N^{\beta / 2} \leq y<N^{\beta} \\ P(y) \leq N^{\beta^{k}}}} \frac{1}{y}\right)+\beta N\left(\log \frac{1}{\beta}\right)^{r-1} .
$$

Let $\Psi(x, y)$, as usual, denote the number of positive integers $\leq x$ having no prime divisors $>y$. Denote by j_{0} the integer with $2^{j_{0}} \leq N^{\beta^{k / 2}}<2^{j_{0}+1}$. Then splitting the range of y into dyadic intervals and using the well-known bound $\Psi(u, v) \ll u \exp \left(-\frac{\log u}{2 \log v}\right)$ uniformly over $u \geq v \geq 2$ (see Tenenbaum [14, p. 359]), we get

$$
\begin{aligned}
\sum_{\substack{N^{\beta^{k / 2} \leq y<N^{\beta}} \\
P(y) \leq N^{\beta^{k}}}} \frac{1}{y} & \ll \sum_{j_{0} \leq j \ll \beta \log N} \frac{1}{2^{j}} \Psi\left(2^{j}, N^{\beta^{k}}\right) \ll \sum_{j_{0} \leq j \ll \beta \log N} \exp \left(-\frac{\log 2^{j}}{2 \log N^{\beta^{k}}}\right) \\
& \ll \sum_{j_{0} \leq j \ll \beta \log N} \exp \left(-\frac{\log 2^{j_{0}}}{2 \log N^{\beta^{k}}}\right) \\
& \ll \beta \log N \exp \left(-0.1(1 / \beta)^{k / 2}\right) \ll \beta \log N \exp \left(-10^{(k-1) / 2}\right) .
\end{aligned}
$$

It follows that

$$
\sum_{k \geq 2}\left(k^{r-1} \sum_{\substack{\beta^{k / 2} \leq y<N^{\beta}}} \frac{1}{y}\right) \ll \beta \log N \sum_{k \geq 2} k^{r-1} \exp \left(-10^{(k-1) / 2}\right) \ll \beta \log N
$$

and therefore

$$
\sum_{\substack{x<N \\ \ldots p_{r}>N^{1-\beta}}} 1 \ll \beta N\left(\log \frac{1}{\beta}\right)^{r-1}
$$

Thus, we have

$$
N-|\mathcal{G}| \leq c_{1} \beta N\left(\log \frac{1}{\beta}\right)^{r-1}+\Psi\left(N, N^{\alpha}\right)+\sum_{\substack{x<N \\ p_{r}<N^{\beta}}} 1
$$

for some constant $c_{1}=c_{1}(r)>0$.
Letting $0.1>\beta_{1}>\beta$ be another parameter, we similarly deduce that

$$
\sum_{x<N} 1 \ll \beta_{1} N\left(\log \frac{1}{\beta_{1}}\right)^{r-2}
$$

Hence,

$$
N-|\mathcal{G}| \leq c_{1} \beta N\left(\log \frac{1}{\beta}\right)^{r-1}+c_{2} \beta_{1} N\left(\log \frac{1}{\beta_{1}}\right)^{r-2}+\Psi\left(N, N^{\alpha}\right)+\sum_{\substack{x<N \\ p_{r}<N^{\beta} \\ p_{1} \ldots p_{r-1} \leq N^{1-\beta_{1}}}} 1
$$

Observing that

$$
\sum_{\substack{x<N \\ p_{r}<N^{\beta} \\ p_{r-1} \leq N^{1-\beta_{1}}}} 1 \leq \sum_{p_{1} \ldots p_{r-1} \leq N^{1-\beta_{1}}} \Psi\left(\frac{N}{p_{1} \ldots p_{r-1}}, N^{\beta}\right)
$$

we get

$$
\begin{aligned}
N-|\mathcal{G}| \leq & c_{1} \beta N\left(\log \frac{1}{\beta}\right)^{r-1}+c_{2} \beta_{1} N\left(\log \frac{1}{\beta_{1}}\right)^{r-2} \\
& +\Psi\left(N, N^{\alpha}\right)+\sum_{p_{1} \ldots p_{r-1} \leq N^{1-\beta_{1}}} \Psi\left(\frac{N}{p_{1} \ldots p_{r-1}}, N^{\beta}\right) .
\end{aligned}
$$

By the classical result of de Bruijn [4], if $y>(\log x)^{1+\delta}$, where $\delta>0$ is a fixed constant, then

$$
\Psi(x, y) \leq x u^{-u(1+o(1))} \quad \text { as } u=\frac{\log x}{\log y} \rightarrow \infty
$$

We now take

$$
\alpha=\frac{1}{\log \log m}, \quad \beta=\frac{\log \log m}{(\log m)^{1 / 2}}, \quad \beta_{1}=\beta \log \log m=\frac{(\log \log m)^{2}}{(\log m)^{1 / 2}}
$$

and obtain

$$
\begin{aligned}
N-|\mathcal{G}|< & \alpha^{1 /(2 \alpha)} N \\
& +\sum_{p_{1} \ldots p_{r-1}<N^{1-\beta_{1}}} \frac{N}{p_{1} \ldots p_{r-1}}\left(\frac{\beta}{\beta_{1}}\right)^{\beta_{1} /(2 \beta)}+c \beta N(\log \log m)^{r-1} \\
< & \left(\alpha^{1 /(2 \alpha)}+(\log \log N)^{r-1}\left(\frac{\beta}{\beta_{1}}\right)^{\beta_{1} /(2 \beta)}+c_{3} \beta(\log \log m)^{r-1}\right) N \\
< & c_{4} \beta(\log \log m)^{r-1} N .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left|\sum_{x<N} e_{m}\left(a x^{*}\right)\right| \leq c_{4} \beta(\log \log m)^{r-1} N+\left|\sum_{x \in \mathcal{G}} e_{m}\left(a x^{*}\right)\right| \tag{7}
\end{equation*}
$$

The sum $\sum_{x \in \mathcal{G}} e_{m}\left(a x^{*}\right)$ may be bounded by

$$
\begin{equation*}
\sum_{p_{1}} \ldots \sum_{p_{r}}\left|\sum_{y} e_{m}\left(a p_{1}^{*} \ldots p_{r}^{*} y^{*}\right)\right| \tag{8}
\end{equation*}
$$

where the summations are over primes p_{1}, \ldots, p_{r} and integers y such that

$$
p_{1} \geq \cdots \geq p_{r}, \quad p_{1} \geq N^{\alpha}, \quad p_{r} \geq N^{\beta}, \quad p_{1} \ldots p_{r} \leq N^{1-\beta}
$$

and

$$
y<\frac{N}{p_{1} \ldots p_{r}}, \quad P(y) \leq p_{r}
$$

Note that if t and T are such that

$$
\left(1-\frac{c_{0}}{\log m}\right) p_{r}<t<p_{r}, \quad\left(1-\frac{c_{0}}{\log m}\right) \frac{N}{p_{1} \ldots p_{r}}<T<\left(1+\frac{c_{0}}{\log m}\right) \frac{N}{p_{1} \ldots p_{r}}
$$

where $c_{0}>0$ is any constant, then in 8 we can replace the condition on y with

$$
P(y) \leq t, \quad y<T
$$

up to adding to (8) an additional term of size at most

$$
\frac{N(\log \log m)^{O(1)}}{\log m}
$$

Now we split the range of summation of primes p_{1}, \ldots, p_{r} into subintervals of the form $\left[L, L+L(\log m)^{-1}\right]$ and choosing suitable t and T we find that for some numbers M_{1}, \ldots, M_{r} with

$$
M_{1}>\cdots>M_{r}, \quad M_{1} \geq N^{\alpha} / 2, \quad M_{r} \geq N^{\beta} / 2, \quad M_{1} \ldots M_{r}<N^{1-\beta}
$$

one has

$$
\begin{align*}
\left|\sum_{x \in \mathcal{G}} e_{m}\left(a x^{*}\right)\right|< & \frac{N(\log \log m)^{O(1)}}{\log m} \tag{9}\\
& +(\log m)^{3 r} \sum_{p_{1} \in I_{1}} \ldots \sum_{p_{r} \in I_{r}}\left|\sum_{\substack{y \leq M \\
P(y) \leq M_{r}}} e_{m}\left(a p_{1}^{*} \ldots p_{r}^{*} y^{*}\right)\right|
\end{align*}
$$

where

$$
I_{j}=\left[M_{j}, M_{j}+\frac{M_{j}}{\log m}\right], \quad M=\frac{N}{M_{1} \ldots M_{r}} \geq N^{\beta}
$$

Denote

$$
W=\sum_{p_{1} \in I_{1}} \ldots \sum_{p_{r} \in I_{r}}\left|\sum_{\substack{y \leq M \\ P(y) \leq M_{r}}} e_{m}\left(a p_{1}^{*} \ldots p_{r}^{*} y^{*}\right)\right|
$$

Applying the Cauchy-Schwarz inequality, we get

$$
W^{2} \leq M_{1} \ldots M_{r} \sum_{y \leq M} \sum_{z \leq M}\left|\sum_{p_{1} \in I_{1}} \ldots \sum_{p_{r} \in I_{r}} e_{m}\left(a p_{1}^{*} \ldots p_{r}^{*}\left(y^{*}-z^{*}\right)\right)\right|
$$

Taking into account the contribution from the pairs y and z with, say,

$$
\operatorname{gcd}(y-z, m)>e^{10 \log m / \log \log m}
$$

and then fixing the pairs y and z with $\operatorname{gcd}(y-z, m) \leq e^{10 \log m / \log \log m}$, we get the bound

$$
\begin{equation*}
W^{2} \leq \frac{N^{2}}{M}+\frac{N^{2}}{e^{\log m / \log \log m}}+N M|S| \leq 2 N^{2-\beta}+\frac{N^{2}}{M_{1} \ldots M_{r}}|S| \tag{10}
\end{equation*}
$$

where

$$
S=\sum_{p_{1} \in I_{1}} \ldots \sum_{p_{r} \in I_{r}} e_{m_{1}}\left(b p_{1}^{*} \ldots p_{r}^{*}\right)
$$

Here b and m_{1} are some positive integers satisfying

$$
\operatorname{gcd}\left(b, m_{1}\right)=1, \quad m_{1} \geq m e^{-10 \log m / \log \log m} .
$$

We consider two cases, depending on whether $M_{r}>N^{\alpha^{3}}$ or $M_{r} \leq N^{\alpha^{3}}$.
CASE 1: $M_{r}>N^{\alpha^{3}}$. Then $M_{j}>N^{\alpha^{3}}$ for all $j=1, \ldots, r$. The idea is to use Theorem 2 and amplify each of these factors to size $m^{1 / 3+o(1)}$ say and then apply Lemma 1 .

Let k_{1}, \ldots, k_{r} be positive integers defined from

$$
M_{i}^{2 k_{i}-1}<m_{1} \leq M_{i}^{2 k_{i}+1}
$$

Since $M_{i}>N^{\alpha^{3}}>m^{c \alpha^{3}}$, it follows that

$$
k_{i}<\frac{1}{c \alpha^{3}}=\frac{(\log \log m)^{3}}{c}
$$

Consequently, applying Hölder's inequality, we get the bound

$$
|S|^{2^{r} k_{1} \ldots k_{r}} \leq\left(\prod_{i=1}^{r} M_{i}^{2^{r} k_{1} \ldots k_{r}-2 k_{i}}\right) \sum_{\substack{p_{11}, \ldots, p_{1 k_{1}} \in I_{1} \cap \mathcal{P} \\ q_{11}, \ldots, q_{1} k_{1} \in I_{1} \cap \mathcal{P}}} \ldots \sum_{\substack{p_{r 1}, \ldots, p_{r k_{r} \in I_{r} \cap \mathcal{P}}^{q_{r 1}, \ldots, q_{r k} \in I_{r} \cap \mathcal{P}}}} e^{2 \pi i b\{\ldots\} / m_{1}}
$$

where $\{\ldots\}$ indicates the expression

$$
\left(p_{11}^{*}+\cdots+p_{1 k_{1}}^{*}-q_{11}^{*}-\cdots-q_{1 k_{1}}^{*}\right) \cdots\left(p_{r 1}^{*}+\cdots+p_{r k_{r}}^{*}-q_{r 1}^{*}-\cdots-q_{r k_{r}}^{*}\right) .
$$

Next, we can fix the variables $q_{i j}$ and then infer that for some integers μ_{1}, \ldots, μ_{r},

$$
\begin{equation*}
\frac{|S|}{M_{1} \ldots M_{r}} \leq\left(\frac{\left|S_{1}\right|}{M_{1}^{k_{1}} \ldots M_{r}^{k_{r}}}\right)^{1 /\left(2^{r} k_{1} \ldots k_{r}\right)} \tag{11}
\end{equation*}
$$

where
$S_{1}=$

$$
\sum_{p_{11}, \ldots, p_{1 k_{1}} \in I_{1} \cap \mathcal{P}} \ldots \sum_{p_{r 1}, \ldots, p_{r k_{r}} \in I_{r} \cap \mathcal{P}} e^{2 \pi i b\left(p_{11}^{*}+\cdots+p_{1 k_{1}}^{*}-\mu_{1}\right) \cdots\left(p_{r 1}^{*}+\cdots+p_{r k_{r}}^{*}-\mu_{r}\right) / m_{1}} .
$$

Let A_{1}, \ldots, A_{r} be subsets of $\mathbb{Z}_{m_{1}}$ defined by

$$
\begin{aligned}
A_{1} & =\left\{p_{11}^{*}+\cdots+p_{1 k_{1}}^{*}-\mu_{1}:\left(p_{11}, \ldots, p_{1 k_{1}}\right) \in\left(I_{1} \cap \mathcal{P}\right)^{k_{1}}\right\} \\
& \ldots \\
A_{r} & =\left\{p_{r 1}^{*}+\cdots+p_{r k_{r}}^{*}-\mu_{r}:\left(p_{r 1}, \ldots, p_{r k_{r}}\right) \in\left(I_{r} \cap \mathcal{P}\right)^{k_{r}}\right\}
\end{aligned}
$$

where $p_{i j}^{*}$ are taken modulo m_{1}. Then we have

$$
S_{1}=\sum_{\lambda_{1} \in A_{1}} \ldots \sum_{\lambda_{r} \in A_{r}} I_{1}\left(\lambda_{1}\right) \ldots I_{r}\left(\lambda_{r}\right) e^{2 \pi i b \lambda_{1} \ldots \lambda_{r} / m_{1}}
$$

where $I_{j}(\lambda)$ is the number of solutions of the congruence

$$
p_{j 1}^{*}+\cdots+p_{j k_{j}}^{*}-\mu_{j} \equiv \lambda\left(\bmod m_{1}\right), \quad\left(p_{j 1}, \ldots, p_{j k_{j}}\right) \in\left(I_{j} \cap \mathcal{P}\right)^{k_{j}}
$$

We apply the Cauchy-Schwarz inequality to the sum over $\lambda_{1}, \ldots, \lambda_{r-1}$ to get

$$
\begin{aligned}
\left|S_{1}\right|^{2} \leq & J_{2 k_{1}}\left(M_{1}\right) \ldots J_{2 k_{r}}\left(M_{r}\right) \\
& \times \sum_{\lambda_{1} \in A_{1}} \ldots \sum_{\lambda_{r-1} \in A_{r-1}}\left|\sum_{\lambda_{r} \in A_{r}} I_{r}\left(\lambda_{r}\right) e^{2 \pi i b \lambda_{1} \ldots \lambda_{r-1} \lambda_{r} / m_{1}}\right|^{2}
\end{aligned}
$$

where

$$
J_{2 k_{j}}\left(M_{j}\right)=\sum_{\lambda \in A_{j}}\left(I_{j}(\lambda)\right)^{2}
$$

Changing the order of summation, we get

$$
\begin{aligned}
\left|S_{1}\right|^{2} \leq & J_{2 k_{1}}\left(M_{1}\right) \ldots J_{2 k_{r-1}}\left(M_{r-1}\right) \\
& \times \sum_{\lambda_{r}, \lambda_{r}^{\prime} \in A_{r}} I_{r}\left(\lambda_{r}\right) I_{r}\left(\lambda_{r}^{\prime}\right)\left|\sum_{\lambda_{1} \in A_{1}} \ldots \sum_{\lambda_{r-1} \in A_{r-1}} e^{2 \pi i b \lambda_{1} \ldots \lambda_{r-1}\left(\lambda_{r}-\lambda_{r}^{\prime}\right) / m_{1}}\right| .
\end{aligned}
$$

We apply the Cauchy-Schwarz inequality to the sum over $\lambda_{r}, \lambda_{r}^{\prime}$ to get

$$
\begin{aligned}
\left|S_{1}\right|^{4} \leq & \left(J_{2 k_{1}}\left(M_{1}\right) \ldots J_{2 k_{r}}\left(M_{r}\right)\right)^{2} \\
& \times \sum_{\lambda_{r}, \lambda_{r}^{\prime} \in A_{r}}\left|\sum_{\lambda_{1} \in A_{1}} \ldots \sum_{\lambda_{r-1} \in A_{r-1}} e^{2 \pi i b \lambda_{1} \ldots \lambda_{r-1}\left(\lambda_{r}-\lambda_{r}^{\prime}\right) / m_{1}}\right|^{2} .
\end{aligned}
$$

We can fix $\lambda_{r}^{\prime} \in A_{r}$ such that

$$
\begin{aligned}
\left|S_{1}\right|^{4} \leq & \left(J_{2 k_{1}}\left(M_{1}\right) \ldots J_{2 k_{r}}\left(M_{r}\right)\right)^{2}\left|A_{r}\right| \\
& \times \sum_{\lambda_{r} \in A_{r}^{\prime}}\left|\sum_{\lambda_{1} \in A_{1}} \ldots \sum_{\lambda_{r-1} \in A_{r-1}} e^{2 \pi i b \lambda_{1} \ldots \lambda_{r-1} \lambda_{r} / m_{1}}\right|^{2}
\end{aligned}
$$

where $A_{r}^{\prime}=A_{r}-\left\{\lambda_{r}^{\prime}\right\}$. Using the trivial bound

$$
\begin{aligned}
&\left|\sum_{\lambda_{1} \in A_{1}} \ldots \sum_{\lambda_{r-1} \in A_{r-1}} e^{2 \pi i b \lambda_{1} \ldots \lambda_{r-1} \lambda_{r} / m_{1}}\right|^{2} \\
& \leq\left|A_{1}\right| \ldots\left|A_{r-1}\right|\left|\sum_{\lambda_{1} \in A_{1}} \ldots \sum_{\lambda_{r-1} \in A_{r-1}} e^{2 \pi i b \lambda_{1} \ldots \lambda_{r-1} \lambda_{r} / m_{1}}\right|
\end{aligned}
$$

we get

$$
\begin{aligned}
\left|S_{1}\right|^{4} \leq & \left(J_{2 k_{1}}\left(M_{1}\right) \ldots J_{2 k_{r}}\left(M_{r}\right)\right)^{2}\left|A_{1}\right| \ldots\left|A_{r}\right| \\
& \times \sum_{\lambda_{r} \in A_{r}^{\prime}}\left|\sum_{\lambda_{1} \in A_{1}} \ldots \sum_{\lambda_{r-1} \in A_{r-1}} e^{2 \pi i b \lambda_{1} \ldots \lambda_{r-1} \lambda_{r} / m_{1}}\right|
\end{aligned}
$$

From the definition of A_{i} we have $\left|A_{i}\right| \leq M_{i}^{k_{i}}$. From the choice of k_{i} and Theorem 2 we also have

$$
J_{2 k_{i}}\left(M_{i}\right)<\left(5 k_{i}\right)^{k_{i}} M_{i}^{k_{i}}
$$

Thus,

$$
\begin{align*}
\left|S_{1}\right|^{4} \leq & \left(\prod_{i=1}^{r}\left(5 k_{i}\right)^{2 k_{i}} M_{i}^{3 k_{i}}\right) \tag{12}\\
& \times \sum_{\lambda_{r} \in A_{r}^{\prime}}\left|\sum_{\lambda_{1} \in A_{1}} \ldots \sum_{\lambda_{r-1} \in A_{r-1}} e^{\left.2 \pi i b \lambda_{1} \ldots \lambda_{r-1} \lambda_{r}\right) / m_{1}}\right|
\end{align*}
$$

Let $\gamma=1 / 10$ and define $\varepsilon=\varepsilon(\gamma)>0$ to be the absolute constant from Lemma 1. We shall verify that the sets A_{1}, \ldots, A_{r} satisfy the condition of Lemma 1 with $q=m_{1}$ (note that if A_{r} satisfies the condition of Lemma 1 , so does \vec{A}_{r}^{\prime}). From the choice of k_{i}, the conditions on M_{i} and distribution of primes (in short intervals if needed) it follows that the interval I_{i} contains at least $M_{i}(2 \log m)^{-2}$ primes coprime to m. From the definition of A_{i} and the connection between the cardinality of a set and the corresponding additive energies, we have

$$
\begin{equation*}
\left|A_{i}\right| \geq \frac{\left(M_{i}(2 \log m)^{-2}\right)^{2 k_{i}}}{J_{2 k_{i}}\left(M_{i}\right)} \geq \frac{M_{i}^{k_{i}}}{\left(5 k_{i}\right)^{k_{i}}(2 \log m)^{4 k_{i}}} \tag{13}
\end{equation*}
$$

From the choice of k_{i} it then follows that

$$
\left|A_{i}\right| \geq \frac{m_{1}^{1 / 3}}{\left(5 k_{i}\right)^{k_{i}}(2 \log m)^{4 k_{i}}}=m_{1}^{1 / 3+o(1)}
$$

Thus, the first condition $\left|A_{i}\right|>m_{1}^{1 / 10}$ is satisfied.
Next, let $q_{1} \mid m_{1}, q_{1}>m_{1}^{\varepsilon}$ and let $\xi \in \mathbb{Z}_{q_{1}}$. Let T_{i} be the number of solutions of the congruence

$$
x \equiv \xi\left(\bmod q_{1}\right), \quad x \in A_{i}
$$

It follows that T_{i} is bounded by the number of solutions of the congruence

$$
p_{1}^{*}+\cdots+p_{k_{i}}^{*} \equiv \xi+\mu_{1}\left(\bmod q_{1}\right), \quad\left(p_{1}, \ldots, p_{k_{i}}\right) \in\left(I_{i} \cap \mathcal{P}\right)^{k_{i}}
$$

Consider two possibilities here. If $M_{i} \geq q_{1}^{1 / 8}$ say, then we fix $p_{2}, \ldots, p_{k_{i}}$ and we have at most $1+M_{i} q_{1}^{-1}$ possibilities for p_{1}. Thus, using (13), we get

$$
T_{i} \leq\left(1+\frac{M_{i}}{q_{1}}\right) M_{i}^{k_{i}-1}<\frac{M_{i}^{k_{i}}}{q_{1}^{1 / 9}}<q_{1}^{-1 / 10}\left|A_{i}\right|
$$

Therefore, in this case the condition of Lemma 1 is satisfied.

Let now $M_{i}<q_{1}^{1 / 8}$. Define k_{i}^{\prime} from the condition

$$
M_{i}^{4 k_{i}^{\prime}+1}<q_{1}<M_{i}^{4 k_{i}^{\prime}+5}
$$

We then have $2 k_{i}^{\prime}<k_{i}$. Thus,

$$
T_{i} \leq M_{i}^{k_{i}-2 k_{i}^{\prime}} J_{2 k_{i}^{\prime}}\left(M_{i}\right)
$$

where $J_{2 k_{i}^{\prime}}\left(M_{i}\right)$, as before, denotes the number of solutions of the congruence

$$
p_{1}^{*}+\cdots+p_{k_{i}^{\prime}}^{*} \equiv p_{k_{i}^{\prime}+1}^{*}+\cdots+p_{2 k_{i}^{\prime}}^{*}\left(\bmod q_{1}\right), \quad\left(p_{1}, \ldots, p_{2 k_{i}^{\prime}}\right) \in\left(I_{i} \cap \mathcal{P}\right)^{2 k_{i}^{\prime}}
$$

From the choice of k_{i} and Theorem 2 we get

$$
J_{2 k_{i}^{\prime}}\left(M_{i}\right)<2\left(2 k_{i}\right)^{k_{i}} M_{i}^{k_{i}^{\prime}}
$$

Therefore, using (13),

$$
T_{i} \leq 2\left(2 k_{i}\right)^{k_{i}} M_{i}^{k_{i}-k_{i}^{\prime}} \leq 2\left(2 k_{i}\right)^{k_{i}} M_{i}^{k_{i}} q^{-1 / 9}<q_{1}^{-1 / 10}\left|A_{i}\right|
$$

Thus, the condition of Lemma 1 is satisfied and hence

$$
\sum_{\lambda_{r} \in A_{r}^{\prime}}\left|\sum_{\lambda_{1} \in A_{1}} \ldots \sum_{\lambda_{r-1} \in A_{r-1}} e^{2 \pi i b \lambda_{1} \ldots \lambda_{r-1} \lambda_{r} / m_{1}}\right|<m^{-\tau}\left|A_{1}\right| \ldots\left|A_{r}\right|
$$

for some absolute constant $\tau>0$ (see the discussion following Lemma 1). Inserting this into 12 and using the estimates $k_{i} \ll(\log \log m)^{3}$ and $\left|A_{i}\right| \leq$ $M_{i}^{k_{i}}$, we get

$$
\left|S_{1}\right|<m^{-\tau / 5} M_{1}^{k_{1}} \ldots M_{r}^{k_{r}}
$$

Thus, from (11) it follows that

$$
\frac{|S|}{M_{1} \ldots M_{r}}<m^{-c_{1}(\log \log m)^{-3 r}}
$$

and from 10 we get

$$
W<2 N^{1-0.5 \beta}
$$

Inserting this into (9) and using (7), we conclude the proof.
CASE 2: $M_{r}<N^{\alpha^{3}}$. In this case we fix all the factors except p_{1}, p_{2}, p_{r}. We apply Corollary 3 or 4. We choose for the first two factors either p_{1} and p_{2}, or $p_{1} p_{r}$ and p_{2}. Because $M_{1}>N^{\alpha}$ and $M_{r}<N^{\alpha^{3}}$, we will get the required saving in one of these cases. Let us give some details of this argument.

Define $k_{1}, k_{2} \in \mathbb{Z}_{+}$by

$$
M_{1}^{k_{1}-1}<m_{1}^{1 / 2} \leq M_{1}^{k_{1}}, \quad M_{2}^{k_{2}-1}<m_{1}^{1 / 2} \leq M_{2}^{k_{2}}
$$

From the definition of α and β we have

$$
k_{1} \leq \frac{1}{c} \log \log m, \quad k_{2} \leq \frac{1}{c \beta} \ll \frac{(\log m)^{1 / 2}}{\log \log m}
$$

Let

$$
\delta=\frac{k_{1} \log M_{r}}{3 \log M_{1}} .
$$

Note that $\delta \leq \frac{1}{c}(\log \log m)^{-1}$. We further consider three subcases:
CASE 2.1: $M_{1}^{k_{1}-1+\delta}<m_{1}^{1 / 2} \leq M_{1}^{k_{1}-\delta}$. Then we apply Corollary 3 to get (recall that $\left|I_{j}\right| \sim M_{j} / \log m$)

$$
\frac{|S|}{M_{1} \ldots M_{r}}<0.1\left(\frac{M_{1}^{k_{1}-1}}{m_{1}^{1 / 2}}+\frac{m_{1}^{1 / 2}}{M_{1}^{k_{1}}}\right)^{1 /\left(2 k_{1} k_{2}\right)}<M_{1}^{-\delta /\left(2 k_{1} k_{2}\right)}=M_{r}^{-1 /\left(6 k_{2}\right)}
$$

The upper bound for k_{2} and the lower bound $M_{r} \geq N^{\beta}$ yield

$$
\frac{|S|}{M_{1} \ldots M_{r}}<e^{-0.01 c^{2} \beta^{2} \log m} .
$$

CASE 2.2: $M_{1}^{k_{1}-\delta}<m_{1}^{1 / 2} \leq M_{1}^{k_{1}}$. We apply Corollary 4 in the form

$$
\begin{aligned}
\frac{|S|}{M_{1} \ldots M_{r}} & <\left(\frac{\left(M_{1} M_{r}\right)^{k_{1}-1}}{m_{1}^{1 / 2}}+\frac{m_{1}^{1 / 2}}{\left(M_{1} M_{r}\right)^{k_{1}}}\right)^{1 /\left(2 k_{1} k_{2}\right)} \\
& <\left(\frac{M_{r}^{k_{1}-1}}{M_{1}^{1-\delta}}+\frac{1}{M_{r}^{k_{1}}}\right)^{1 /\left(2 k_{1} k_{2}\right)} .
\end{aligned}
$$

CASE 2.3: $M_{1}^{k_{1}-1}<m_{1}^{1 / 2} \leq M_{1}^{k_{1}-1+\delta}$. Then $k_{1} \geq 2$ and we apply Corollary 4 with k_{1} replaced by $k_{1}-1$ in the form

$$
\begin{aligned}
\frac{|S|}{M_{1} \ldots M_{r}} & <\left(\frac{\left(M_{1} M_{r}\right)^{k_{1}-2}}{m_{1}^{1 / 2}}+\frac{m_{1}^{1 / 2}}{\left(M_{1} M_{r}\right)^{k_{1}-1}}\right)^{1 /\left(2 k_{1} k_{2}\right)} \\
& <\left(\frac{M_{r}^{k_{1}-2}}{M_{1}}+\frac{M_{1}^{\delta}}{M_{r}^{k_{1}-1}}\right)^{1 /\left(2 k_{1} k_{2}\right)}
\end{aligned}
$$

In all three subcases we get the bound

$$
\frac{|S|}{M_{1} \ldots M_{r}}<e^{-c^{\prime} \beta^{2} \log m}
$$

for some constant $c^{\prime}>0$. Thus, we eventually arrive at the bound

$$
W<N e^{-c^{\prime \prime} \beta^{2} \log m} \log m
$$

for some constant $c^{\prime \prime}>0$. Inserting this into (9) and using (7), we conclude that

$$
\begin{aligned}
\left|\sum_{x<N} e_{m}\left(a x^{*}\right)\right| & \ll \beta(\log \log m)^{r-1} N+N e^{-c^{\prime \prime \prime} \beta^{2} \log m}(\log m)^{3 r} \\
& \ll \frac{(\log \log m)^{r}}{(\log m)^{1 / 2}} N .
\end{aligned}
$$

References

[1] U. Betke, M. Henk and J. M. Wills, Successive-minima-type inequalities, Discrete Comput. Geom. 9 (1993), 165-175.
[2] J. Bourgain, The sum-product theorem in \mathbb{Z}_{q} with q arbitrary, J. Anal. Math. 106 (2008), 1-93.
[3] J. Bourgain and M. Z. Garaev, Sumsets of reciprocals in prime fields and multilinear Kloosterman sums, Izv. Math., to appear.
[4] N. G. de Bruijn, On the number of positive integers $\leq x$ and free prime factors $>y$, II, Indag. Math. 28 (1966), 239-247.
[5] J. Friedlander and H. Iwaniec, The Brun-Titchmarsh theorem, in: Analytic Number Theory (Kyoto, 1996), London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, Cambridge, 1997, 85-93.
[6] J. Friedlander and H. Iwaniec, Opera de Cribro, Colloq. Publ. 57, Amer. Math. Soc., 2010.
[7] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc., Providence, RI, 2004.
[8] A. A. Karatsuba, New estimates of short Kloosterman sums, Math. Notes 88 (2010), 347-359 (prepared by E. A. Karatsuba, M. A. Korolev and I. S. Rezvyakova from notes and drafts of A. A. Karatsuba).
[9] A. A. Karatsuba, Analogues of Kloosterman sums, Izv. Math. 59 (1995), 971-981.
[10] A. A. Karatsuba, Fractional parts of functions of a special form, Izv. Math. 59 (1995), 721-740.
[11] M. A. Korolev, Incomplete Kloosterman sums and their applications, Izv. Math. 64 (2000), 1129-1152.
[12] M. A. Korolev, Short Kloosterman sums with weights, Math. Notes 88 (2010), 374385.
[13] T. Tao and V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math. 105, Cambridge Univ. Press, Cambridge, 2006.
[14] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Stud. Adv. Math. 46, Cambridge Univ. Press, Cambridge, 1995.
J. Bourgain

Institute for Advanced Study
Princeton, NJ 08540, U.S.A.
E-mail: bourgain@ias.edu
M. Z. Garaev

Centro de Ciencias Matemáticas
Universidad Nacional Autónoma de México
Morelia 58089, Michoacán, México E-mail: garaev@matmor.unam.mx

[^0]: 2010 Mathematics Subject Classification: Primary 11L05.
 Key words and phrases: Kloosterman sums, multilinear exponential sums, general modulus, congruences.

