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A note on a product formula for the cubic Gauss sum
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Hiroshi Ito (Yokohama)

1. Introduction. For an odd prime number p, denote by
( ·
p

)
2

the
quadratic residue symbol of the rational number field Q and consider the
quadratic Gauss sum

τ2(p) =
p−1∑
a=1

(
a

p

)
2

e2πia/p.

As is well-known, the product expression

(1.1) τ2(p) =
p−1∏
s=1
s odd

(
2i sin

2πs
p

)
holds, and by evaluating the right-hand side, we see that

τ2(p) =
{√

p, p ≡ 1 (mod 4),
i
√
p, p ≡ 3 (mod 4).

Let ρ = e2πi/3 and $ be the generator of a prime ideal of degree one
in Q(ρ) which satisfies the congruence $ ≡ 1 (mod 3). Let p be the norm
of $. Denote by

( ·
$

)
3

the cubic residue symbol of Q(ρ) and consider the
cubic Gauss sum

τ3($) =
p−1∑
a=1

(
a

$

)
3

e2πia/p.

Matthews [6] has proved a product formula for this Gauss sum:

(1.2) τ3($) = p1/3$α(S)−1
∏
s∈S

℘

(
sθ

$

)
.

Here, ℘(z) is the Weierstraß ℘-function satisfying ℘′2 = 4℘3 − 1 and we
write the period lattice of ℘(z) as Z[ρ]θ (θ > 0). The letter S denotes a
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12 H. Ito

1/3-representative system modulo $, that is, S is a set of (p−1)/3 elements
of Z[ρ] such that the numbers

s, ρs, ρ2s (s ∈ S),

together with 0, form a complete representative system modulo $. Finally,
we let α(S) be the cube root of −1 which satisfies the congruence

α(S) ≡
∏
s∈S

s (mod $).

This is possible by Wilson’s theorem.
The formula (1.2) is an analogue of (1.1) for the cubic Gauss sum τ3($).

In (1.1), the evaluation of the product of division values of the trigonomet-
ric function leads to the determination of the Gauss sum τ2(p). We have a
similar product of division values of the elliptic function ℘(z) in (1.2) and
hence it will be natural to ask what kind of knowledge we can get by “eval-
uating” this product. Now, for cubic Gauss sums τ3($), the arguments of
the sums τ3($) distribute uniformly, as has been proved by Heath-Brown
and Patterson [3] independently of (1.2) (cf. (3.3) in Section 3 for a precise
statement). Looking at the formula (1.2) again, we may have the following
expectation. Namely, if we assign to every $ a 1/3-representative system
S$ modulo $ which consists of lattice points in a plane region with a simple
shape, then the value of

∏
s∈S$

℘(sθ/$) will be expressed as a quantity of
elementary nature. And then, the uniform distribution of the arguments of
τ3($) will be understood as some uniformity of the distribution of α(S$).

In this note, the author would like to consider to what extent the above
expectation can be fulfilled. The main results are two theorems in the next
section. Theorem 1 provides a criterion on the usability of S$ for our purpose
in terms of the nature of the product

∏
s∈S$

℘(sθ/$). The discussion here
is rather formal. We then proceed to take S$ satisfying the condition in
Theorem 1 as a set of lattice points in a plane region and we try to make
the construction of the region as simple as possible. An example of the
choice of S$ is given in Theorem 2 by the use of a result of McGettrick [7]
on division values of elliptic functions. We prove Theorem 1 in Section 3
and Theorem 2 in Section 4.

2. Main results. Throughout this note, we shall denote by $ the gen-
erator of a prime ideal of degree one in Q(ρ) satisfying the congruence $ ≡ 1
(mod 3). We normalize the argument arg z of a complex number z (z 6= 0) by
−π ≤ arg z < π. For real numbers X,ψ1 and ψ2 (X > 0,−π ≤ ψ1 < ψ2 ≤ π)
and integers a and µ in Z[ρ], we put

P (X;ψ1, ψ2; a, µ) = {$ : N$ ≤ X, ψ1 ≤ arg$ < ψ2, $ ≡ a (mod µ)},
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where N$ denotes the norm of $. For a real number x, let [x] be the greatest
integer not exceeding x.

Theorem 1. Suppose that we have chosen a 1/3-representative system
S$ modulo $ for every $ and the following condition is satisfied: there exist
an integer ν in Z[ρ] and a natural number K such that the cube root ζ$ of
unity determined by the equation

(2.1) $
∏
s∈S$

℘

(
sθ

$

)
= ζ$

3
√
$ (|arg 3

√
$| < π/3)

depends only on the class $ mod ν and the integer
[
K
2π arg$

]
. Then, for ev-

ery pair of integers µ and a in Z[ρ] (µ 6= 0, µ ≡ 0 (mod 3), (a, µ) = 1, a ≡ 1
(mod 3)) and every pair of real numbers ψ1 and ψ2 (−π ≤ ψ1 < ψ2 ≤ π),
we have, for j = 0, 1, 2,

(2.2) lim
X→∞

#{$ ∈ P (X;ψ1, ψ2; a, µ) : α(S$) = −ρj}
#P (X;ψ1, ψ2; a, µ)

=
1
3
.

In (2.1), the fact that ζ3
$ = 1 follows from a formula due to Eisenstein

(cf., for example, Cassels [1, (3.4)]). From the proof of Theorem 1, we see
that the uniformity (2.2) of the distribution of α(S$) is equivalent to the
uniform distribution of the arguments of τ3($) proved in [3].

We shall next construct S$ satisfying the condition of Theorem 1 as a
set of lattice points in a plane region. Put λ = ρ− ρ2 =

√
3 i and

D = {z ∈ C : |z| < |z − α| (0 6= α ∈ Z[ρ])}.
The set D is a fundamental domain for C/Z[ρ] and is the interior of the
regular hexagon with vertices (−ρ)j/λ (0 ≤ j ≤ 5). For each $, we take the
integer n (0 ≤ n ≤ 5) and the number $′ such that

(2.3) $ = (−ρ)n$′, |arg$′| < π/6.

Moreover let c, d and σ be the integers such that

(2.4) $′ = c− dρσ (0 < d < c, σ = ±1).

For two points a and b in C, we let γ(a, b) = {at + b(1 − t) : 0 ≤ t ≤ 1}.
Now put L = γ($′/λ, c/λ) ∪ γ(c/λ,−c/λ) ∪ γ(−c/λ,−$′/λ) and let T$ be
the set of points of $D lying between L and −ρ2L. More precisely,

(2.5) T$ =
( ⋃

0<ψ≤π/3

eiψ · L
)
∩$D − {0}.

Then, setting S$ = T$ ∩Z[ρ], we get a 1/3-representative system S$ mod-
ulo $. We can prove the following theorem by using a result in [7].

Theorem 2. Let ζ$ be the cube root of unity determined by (2.1), where
the 1/3-representative system S$ is chosen as explained above. Then ζ$
depends only on the class $ mod 9 and the integer [(6/π) arg$].
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Though the construction of S$ becomes simpler if we use the diagonal
line γ($′/λ,−$′/λ) instead of L, there seems to be little possibility that the
1/3-representative system modulo $ thus constructed satisfies the condition
stated in Theorem 1 (cf. Remark 2 in Section 4).

Combining the above two theorems, we get the uniformity (2.2) of the
distribution of α(S$) for our S$. Here, we would like to call the reader’s
attention to a problem of a similar type. Let p be a prime number with
p ≡ 3 (mod 4). Then, by Wilson’s theorem,(

p− 1
2

!
)2

≡ −(p− 1)! ≡ 1 (mod p),

and hence,
p− 1

2
! ≡ ±1 (mod p).

One asks if +1 and −1 occur with the same frequency. As far as the author
knows, this problem is open.

3. The distribution of α(S$). We prove Theorem 1 in this section.
Keeping the notation already introduced, we further put

P (X; a, µ) = P (X;−π, π; a, µ), P (X) = P (X; 1, 3).

By a result of Mitsui [8], we have

(3.1) lim
X→∞

#P (X;ψ1, ψ2; a, µ)
#P (X)

=
ψ2 − ψ1

2π
· 6

# (Z[ρ]/Z[ρ]µ)×

if µ 6= 0, µ ≡ 0 (mod 3), (a, µ) = 1 and a ≡ 1 (mod 3). Here, (Z[ρ]/Z[ρ]µ)×

is the reduced residue class group modulo µ. For intervals in R, we use the
notation

[a, b) = {x ∈ R : a ≤ x < b}.

Note that, since τ3($)3 = −p$, the conditions

arg τ3($) ∈
⋃

j=1,3,5

(
1
3

[ψ1, ψ2) +
π

3
j

)
(mod 2π)

and arg$ ∈ [ψ1, ψ2) are equivalent to each other. Here, “(mod 2π)” means
that we see both sides of “∈” as the images of the natural projection R →
R/2πZ.

The next lemma is a reformulation of a result in [3] on the distribution
of the arguments of the cubic Gauss sums τ3($).

Lemma 1. Let µ and a be integers in Z[ρ] such that µ 6= 0, µ ≡ 0
(mod 3), (a, µ) = 1 and a ≡ 1 (mod 3). Let ψ1 and ψ2 be real numbers with
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−π ≤ ψ1 < ψ2 ≤ π. Then, for each j (j = 1, 3, 5), we have

(3.2) lim
X→∞

#{$∈P (X;ψ1, ψ2; a, µ) : arg τ3($)∈ 1
3 [ψ1, ψ2)+ π

3 j (mod 2π)}
#P (X;ψ1, ψ2; a, µ)

=
1
3
.

Proof. By [3, p. 113], we know that

(3.3) lim
X→∞

#{$ ∈ P (X; a, µ) : arg τ3($) ∈ [ξ1, ξ2) (mod 2π)}
#P (X; a, µ)

=
ξ2 − ξ1

2π

for every ξ1 and ξ2 (0 ≤ ξ2 − ξ1 ≤ 2π). By the remark before Lemma 1, the
condition “$ ∈ P (X;ψ1, ψ2; a, µ)” in (3.2) can be replaced by the condition
“$ ∈ P (X; a, µ)”. Hence, from (3.1) and (3.3) we see that the left hand side
of (3.2) equals

lim
X→∞

[
#{$ ∈ P (X; a, µ) : arg τ3($) ∈ 1

3 [ψ1, ψ2) + π
3 j (mod 2π)}

#P (X; a, µ)

× #P (X; a, µ)
#P (X;ψ1, ψ2; a, µ)

]
=

1
3(ψ2 − ψ1)

2π
· 2π
ψ2 − ψ1

=
1
3
.

This proves Lemma 1.

Now, suppose that we have assigned to each $ a 1/3-representative sys-
tem S$ modulo $ and the condition in Theorem 1 is satisfied. Fix a number
ν of Z[ρ] and a positive integer K appearing in the condition. We may as-
sume without loss of generality that ν ≡ 0 (mod 3) and K ≡ 0 (mod 2).
Put, for each integer J (−K/2 ≤ J ≤ K/2− 1),

IJ =
[

2π
K
J,

2π
K

(J + 1)
)
.

Lemma 2. Let ν and K be as above and let µ and a be integers in Z[ρ]
with µ 6= 0, µ ≡ 0 (mod ν), (a, µ) = 1 and a ≡ 1 (mod 3). Then, for every
pair of real numbers ψ1 and ψ2 (ψ1 < ψ2) such that [ψ1, ψ2) ⊂ IJ for some
J (−K/2 ≤ J ≤ K/2− 1), we have (2.2) for j = 0, 1, 2.

Proof. Let $ ∈ P (X;ψ1, ψ2; a, µ). Take S = S$ in (1.2) and use (2.1)
for the product of division values of ℘(z). Then we see that

(3.4) τ3($) = α(S$)−1ζ$
3
√
$p1/3.

Note that |arg 3
√
$ | < π/3 and that ζ$ does not depend on $ as long as $

belongs to P (X;ψ1, ψ2; a, µ). Write ζ$ = ρh (h ∈ Z). If α(S$) = −ρj , we
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have

arg τ3($) = arg{−ρ−j+h 3
√
$}

≡ π

3
(3− 2j + 2h) +

1
3

arg$ (mod 2π),

and hence

arg τ3($) ∈ 1
3

[ψ1, ψ2) +
π

3
(3− 2j + 2h) (mod 2π).

Conversely, if arg τ3($) belongs to the above interval, then α(S$) = −ρj .
The assertion of Lemma 2 then follows from Lemma 1.

We now prove Theorem 1. Suppose that the conditions on µ, a, ψ1 and
ψ2 are weakened from the conditions in Lemma 2 to those of Theorem 1. We
must show that (2.2) still holds. Now, take an integer µ′ 6= 0 in Z[ρ] which
is divisible by both µ and ν. Then we have a decomposition

P (X;ψ1, ψ2; a, µ) =
⋃

a′,ψ′
1,ψ

′
2

P (X;ψ′1, ψ
′
2; a′, µ′) ∪ {a finite number of $’s},

where the union on the right hand side is disjoint and the numbers a′, ψ′1 and
ψ′2 satisfy the condition that (a′, µ′) = 1, a′ ≡ 1 (mod 3) and [ψ′1, ψ

′
2) ⊂ IJ

for some J . From Lemma 2 we see that, for each j = 0, 1, 2,

lim
X→∞

#{$ ∈ P (X;ψ1, ψ2; a, µ) : α(S$) = −ρj}
#P (X;ψ1, ψ2; a, µ)

= lim
X→∞

∑
a′,ψ′

1,ψ
′
2

[
#{$ ∈ P (X;ψ′1, ψ

′
2; a′, µ′) : α(S$) = −ρj}

#P (X;ψ′1, ψ
′
2; a′, µ′)

× #P (X;ψ′1, ψ
′
2; a′, µ′)

#P (X;ψ1, ψ2; a, µ)

]
=

1
3

∑
a′,ψ′

1,ψ
′
2

lim
X→∞

#P (X;ψ′1, ψ
′
2; a′, µ′)

#P (X;ψ1, ψ2; a, µ)
=

1
3
.

This proves Theorem 1.

Tracing the above argument backward, we may deduce (3.3) for every
µ, a, ξ1 and ξ2 with µ 6= 0, µ ≡ 0 (mod 3), (a, µ) = 1, a ≡ 1 (mod 3)
and 0 ≤ ξ2 − ξ1 ≤ 2π from the assumption that (2.2) holds for every µ,
a, ψ1, ψ2 and j with µ 6= 0, µ ≡ 0 (mod 3), (a, µ) = 1, a ≡ 1 (mod 3),
−π ≤ ψ1 < ψ2 ≤ π and j = 0, 1, 2. In this sense, (2.2) is equivalent to the
uniform distribution of the arguments of the cubic Gauss sums τ3($).

4. The product of division values of ℘(z). In this section, we prove
Theorem 2 using a result of McGettrick [7]. First, we recall his result. Let,
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as before, $ be the generator of a prime ideal of degree one in Z[ρ] with
$ ≡ 1 (mod 3) and put J = [(6/π) arg$] (−6 ≤ J ≤ 5). We have

π

6
J ≤ arg$ <

π

6
(J + 1).

Take the integers n, σ, c, d and the number $′ in Z[ρ] satisfying (2.3) and
(2.4). Set ϕ′ = arg$′. Note that the condition ϕ′ > 0 is equivalent to the
condition σ = −1 and further to the condition J ≡ 0 (mod 2).

Let ℘∗(z) be the Weierstraß ℘-function associated to the lattice Z[ρ]$,
that is,

℘∗(z) =
1
z2

+
∑

06=w∈Z[ρ]$

{
1

(z − w)2
− 1
w2

}
.

Then

(4.1) ℘∗(z) = θ2$−2℘

(
zθ

$

)
.

Following [7], we define a function log℘∗(z) on C − (1/λ)Z[ρ]$ as follows.
Recall the path L defined in Section 2 and consider the following domain:

{z ∈ C : z is not congruent to a point of L modulo Z[ρ]$}.

First, we define log℘∗(z) on this domain to be the branch of the logarithm
of ℘∗(z) which is determined by the condition that

lim
ε→+0

Im(log℘∗(ε)) = 0.

The function log℘∗(z) is a single-valued regular function with period Z[ρ]$.
Next, for a point z on L different from 0 or ±$′/λ, we let

(4.2) log℘∗(z) =

{ lim
ε→+0

log℘∗(z + ε), Im z > 0,

lim
ε→+0

log℘∗(z − ε), Im z < 0.

Furthermore, if a point z′ is congruent modulo Z[ρ]$ to such a point z, we set
log℘∗(z′) = log℘∗(z). Thus we get a function log℘∗(z) on C− (1/λ)Z[ρ]$
which is periodic with respect to Z[ρ]$. The following is the main theorem
of [7].

Theorem 3 (McGettrick [7]). We have∑
06=a∈Z[ρ]/Z[ρ]$

Im(log℘∗(a)) = −2pϕ′ + sgnϕ′ · 2
3
πcd− 2πq − 2πk − 4

3
πl.
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Here, q, k and l are integers defined as follows:

q = #{b ∈ γ($′/λ, c/λ) ∩ Z[ρ] : b 6= $′/λ, c/λ},
k = #{b ∈ γ(c/λ, 0) ∩ Z[ρ] : b 6= c/λ, 0},

l =


1 if c ≡ 0 (mod 3) and ϕ′ > 0,
2 if c ≡ 0 (mod 3) and ϕ′ < 0,
0 if c ≡ 1, 2 (mod 3).

Note that the points A2, B, B′ and A5 in [7] coincide with our points
−$′/λ, −c/λ, c/λ and $′/λ respectively.

Since ℘∗(ρz) = ρ−2℘∗(z), there exists an integer g(z) such that

(4.3) log℘∗(ρz) = log℘∗(z)−
4
3
πi+ 2πig(z)

for every point z of C − (1/λ)Z[ρ]$. Clearly, g(z) is periodic with respect
to Z[ρ]$. We prepare a lemma concerning g(z).

Lemma 3. For every point z in T$, we have

g(z) = 0, g(ρz) = 1, g(ρ2z) = 1.

Proof. Since log℘∗(ρz) is continuous on the domain

{z ∈ C : z is not congruent to a point of ρ−1L modulo Z[ρ]$},
the function g(z) is continuous on the set

{z ∈ C : z is not congruent to a point of L ∪ ρ−1L modulo Z[ρ]$},
and hence it is constant on every connected component of this set. Note also
that the values of g(z) on the boundary of each connected component are
determined from (4.2). Then, we see that g(z), g(ρz) and g(ρ2z) are constant
and g(ρz) = g(ρ2z) on T$. Put g(z) = b0 and g(ρz) = g(ρ2z) = b1 (z ∈ T$).

Now, if z is a point in C− (1/λ)Z[ρ]$, we see, by (4.3),

0 = log℘∗(ρ3z)− log℘∗(z)
= (log℘∗(ρ3z)− log℘∗(ρ2z)) + (log℘∗(ρ2z)− log℘∗(ρz))

+ (log℘∗(ρz)− log℘∗(z))
= −4πi+ 2πi(g(ρ2z) + g(ρz) + g(z)).

Hence,
g(z) + g(ρz) + g(ρ2z) = 2

and b0 + 2b1 = 2. If a point z near to the origin moves around the origin
counter-clockwise, the value of log℘∗(z) increases by 2πi when z crosses L,
and the value of log℘∗(ρz) increases by 2πi when z crosses ρ−1L. Therefore,
if z is in the interior of T$ and near to the origin, (4.3) yields

g(ρz) = g(z) + 1
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and hence b1 = b0 + 1. It follows that b0 = 0 and b1 = 1. This proves
Lemma 3.

Let us now prove Theorem 2. Let ζ$ be defined by (2.1). From (4.1) we
have ∏

s∈S$

℘∗(s) = θ2(p−1)/3ζ$
3
√
$
−2p

,

and hence, setting
Y =

∑
s∈S$

Im(log℘∗(s)),

we see from arg 3
√
$ = 1

3 arg$ that

arg ζ$ ≡ Y +
2p
3

arg$ (mod 2π).

We also deduce, by the periodicity of log℘∗(z) with respect to Z[ρ]$ and
by Lemma 3, that∑
06=a∈Z[ρ]/Z[ρ]$

Im(log℘∗(a)) =
2∑
j=0

∑
s∈S$

Im(log℘∗(ρjs))

=
∑
s∈S$

{3 Im(log℘∗(s))− 4π + 2π(g(ρs) + 2g(z))} = 3Y − 2π · p− 1
3

.

Therefore, the value of Y can be determined from Theorem 3 and we see
that

arg ζ$ ≡
2p
3

arg$ +
2π
9

(p− 1)

+
1
3

(
−2pϕ′ + sgnϕ′ · 2

3
πcd− 2πq − 2πk − 4

3
πl

)
≡ 2p

3
(arg$ − ϕ′) +

2π
9

(p− 1)

+
1
3

(
sgnϕ′ · 2π

3
cd− 2πq − 2πk − 4π

3
l

)
(mod 2π).

Now it suffices to show that each factor appearing above depends only on
the class $ mod 9 and the integer J .

First, by (2.3), arg$−ϕ′ = arg$− arg$′ is determined by n, and n is
clearly determined by J . Next, since p = $$, p mod 9 is determined by
$ mod 9. Moreover, since

c− dρσ = (−ρ)−n$

from (2.3) and (2.4), the classes c mod 9 and d mod 9 are determined by the
class $ mod 9 and the integers σ and n, and hence by $ mod 9 and J (cf. the
remark in the first paragraph of this section). Thus, sgnϕ′ ·(2π/9)cd mod 2π
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is determined by $ mod 9 and J . Now, we see that l is also determined by
$ mod 9 and J , from the definition in Theorem 3. Finally, by Corollary to
Theorem 3.1 in [7],

q =
{

[d/3] if c+ 2d ≡ 1 (mod 3),
[(d+ 1)/3] if c+ 2d ≡ −1 (mod 3),

and
k = [(c− 1)/3].

Therefore, the classes q mod 3 and k mod 3 are determined by the classes
c mod 9 and d mod 9, and hence by the class $ mod 9 and the integer J .
This completes the proof of Theorem 2.

Remark 1. In (c) of Corollary to Theorem 3.1 in [7], the conditions
“ϕ′ > 0” and “ϕ′ < 0” should be exchanged. Note also that the relations

u = c+ d, v =
{
d if ϕ′ > 0,
c if ϕ′ < 0

hold between the integers u, v in [7] and our c, d, and therefore we have

sgn(u− 2v) = sgnϕ′.

Remark 2. Here we add some remarks on whether we can simplify the
construction of our 1/3-representative system S$ modulo $. The set S$
we use in Theorem 2 is defined as S$ = T$ ∩ Z[ρ], where T$ is defined by
(2.5) using the path L connecting the points $′/λ, c/λ, −c/λ and −$′/λ.
Let R$ be the 1/3-representative system modulo $ constructed in the same
way using the segment γ($′/λ,−$′/λ) instead of L. Then we see that∏

r∈R$
℘(rθ/$)∏

s∈S$
℘(sθ/$)

=
{
ρN if ϕ′ > 0,
ρ−(N+M) if ϕ′ < 0.

Here, N is the number of points in Z[ρ] which lie in the interior of the
triangle with vertices 0, c/λ and $′/λ, and M denotes the number of points
in Z[ρ] which lie on the path γ(0, c/λ)∪ γ(c/λ,$′/λ) and are different from
0 or $′/λ.

Since

M =
{
q + k + 1 if c ≡ 0 (mod 3),
q + k if c ≡ 1, 2 (mod 3),

where q and k are as in Theorem 3, the class M mod 3 is a simple quantity
determined by the class $ mod 9 and the integer J . However, the class
N mod 3 does not seem to be of simple nature. We may, for example, recall
the following fact. Let p and q be distinct odd prime numbers and let n be
the number of points of Z2 inside the triangle with vertices (0, 0), (p/2, 0)
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and (p/2, q/2). Then, for the quadratic residue symbol
( q
p

)
, we have(

q

p

)
= (−1)n

(cf. Hua [4, p. 40], for example). As N is the number of lattice points in a
triangle some of whose vertices are non-trivial 3-division points, the class
N mod 3 will share some properties with n mod 2, though it may not be
related directly to power residue symbols. Thus the author supposes N mod
3 is not of very simple nature and does not expect the 1/3-representative
system R$ to satisfy the condition described in Theorem 1.

Remark 3. In [2], Habicht considers various modifications of the par-
allelogram with vertices 0, $/λ, −ρ2$/λ and −ρ$ in order to give a proof
of the cubic reciprocity law in Q(ρ). Similar modifications are utilized by
Kubota [5] in more general situations. Although their treatments are more
complicated than our construction of T$ in (2.5), they will be helpful for
understanding the point of it and for considering 1/3-representative systems
modulo $ with the condition in Theorem 1 which are different from our S$
in Theorem 2.
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