A note on a product formula for the cubic Gauss sum

by
Hiroshi Ito (Yokohama)

1. Introduction. For an odd prime number p, denote by $(\dot{\bar{p}})_{2}$ the quadratic residue symbol of the rational number field \mathbb{Q} and consider the quadratic Gauss sum

$$
\tau_{2}(p)=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)_{2} e^{2 \pi i a / p}
$$

As is well-known, the product expression

$$
\begin{equation*}
\tau_{2}(p)=\prod_{\substack{s=1 \\ s \text { odd }}}^{p-1}\left(2 i \sin \frac{2 \pi s}{p}\right) \tag{1.1}
\end{equation*}
$$

holds, and by evaluating the right-hand side, we see that

$$
\tau_{2}(p)= \begin{cases}\sqrt{p}, & p \equiv 1(\bmod 4) \\ i \sqrt{p}, & p \equiv 3(\bmod 4)\end{cases}
$$

Let $\rho=e^{2 \pi i / 3}$ and ϖ be the generator of a prime ideal of degree one in $\mathbb{Q}(\rho)$ which satisfies the congruence $\varpi \equiv 1(\bmod 3)$. Let p be the norm of ϖ. Denote by $(\dot{\bar{\varpi}})_{3}$ the cubic residue symbol of $\mathbb{Q}(\rho)$ and consider the cubic Gauss sum

$$
\tau_{3}(\varpi)=\sum_{a=1}^{p-1}\left(\frac{a}{\varpi}\right)_{3} e^{2 \pi i a / p}
$$

Matthews [6] has proved a product formula for this Gauss sum:

$$
\begin{equation*}
\tau_{3}(\varpi)=p^{1 / 3} \varpi \alpha(S)^{-1} \prod_{s \in S} \wp\left(\frac{s \theta}{\varpi}\right) \tag{1.2}
\end{equation*}
$$

Here, $\wp(z)$ is the Weierstra $\wp \wp$-function satisfying $\wp^{\prime 2}=4 \wp^{3}-1$ and we write the period lattice of $\wp(z)$ as $\mathbb{Z}[\rho] \theta(\theta>0)$. The letter S denotes a

[^0]$1 / 3$-representative system modulo ϖ, that is, S is a set of $(p-1) / 3$ elements of $\mathbb{Z}[\rho]$ such that the numbers
$$
s, \rho s, \rho^{2} s \quad(s \in S)
$$
together with 0 , form a complete representative system modulo ϖ. Finally, we let $\alpha(S)$ be the cube root of -1 which satisfies the congruence
$$
\alpha(S) \equiv \prod_{s \in S} s(\bmod \varpi)
$$

This is possible by Wilson's theorem.
The formula (1.2) is an analogue of (1.1) for the cubic Gauss sum $\tau_{3}(\varpi)$. In (1.1), the evaluation of the product of division values of the trigonometric function leads to the determination of the Gauss sum $\tau_{2}(p)$. We have a similar product of division values of the elliptic function $\wp(z)$ in 1.2$)$ and hence it will be natural to ask what kind of knowledge we can get by "evaluating" this product. Now, for cubic Gauss sums $\tau_{3}(\varpi)$, the arguments of the sums $\tau_{3}(\varpi)$ distribute uniformly, as has been proved by Heath-Brown and Patterson [3] independently of (1.2) (cf. (3.3) in Section 3 for a precise statement). Looking at the formula (1.2) again, we may have the following expectation. Namely, if we assign to every ϖ a $1 / 3$-representative system S_{ϖ} modulo ϖ which consists of lattice points in a plane region with a simple shape, then the value of $\prod_{s \in S_{\varpi}} \wp(s \theta / \varpi)$ will be expressed as a quantity of elementary nature. And then, the uniform distribution of the arguments of $\tau_{3}(\varpi)$ will be understood as some uniformity of the distribution of $\alpha\left(S_{\varpi}\right)$.

In this note, the author would like to consider to what extent the above expectation can be fulfilled. The main results are two theorems in the next section. Theorem 1 provides a criterion on the usability of S_{ϖ} for our purpose in terms of the nature of the product $\prod_{s \in S_{\varpi}} \wp(s \theta / \varpi)$. The discussion here is rather formal. We then proceed to take S_{ϖ} satisfying the condition in Theorem 1 as a set of lattice points in a plane region and we try to make the construction of the region as simple as possible. An example of the choice of S_{ϖ} is given in Theorem 2 by the use of a result of McGettrick [7] on division values of elliptic functions. We prove Theorem 1 in Section 3 and Theorem 2 in Section 4.
2. Main results. Throughout this note, we shall denote by ϖ the generator of a prime ideal of degree one in $\mathbb{Q}(\rho)$ satisfying the congruence $\varpi \equiv 1$ $(\bmod 3)$. We normalize the $\operatorname{argument} \arg z$ of a complex number $z(z \neq 0)$ by $-\pi \leq \arg z<\pi$. For real numbers X, ψ_{1} and $\psi_{2}\left(X>0,-\pi \leq \psi_{1}<\psi_{2} \leq \pi\right)$ and integers a and μ in $\mathbb{Z}[\rho]$, we put

$$
P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right)=\left\{\varpi: N \varpi \leq X, \psi_{1} \leq \arg \varpi<\psi_{2}, \varpi \equiv a(\bmod \mu)\right\}
$$

where $N \varpi$ denotes the norm of ϖ. For a real number x, let $[x]$ be the greatest integer not exceeding x.

ThEOREM 1. Suppose that we have chosen a $1 / 3$-representative system S_{ϖ} modulo ϖ for every ϖ and the following condition is satisfied: there exist an integer ν in $\mathbb{Z}[\rho]$ and a natural number K such that the cube root ζ_{ϖ} of unity determined by the equation

$$
\begin{equation*}
\varpi \prod_{s \in S_{\varpi}} \wp\left(\frac{s \theta}{\varpi}\right)=\zeta_{\varpi} \sqrt[3]{\varpi} \quad(|\arg \sqrt[3]{\varpi}|<\pi / 3) \tag{2.1}
\end{equation*}
$$

depends only on the class $\varpi \bmod \nu$ and the integer $\left[\frac{K}{2 \pi} \arg \varpi\right]$. Then, for every pair of integers μ and a in $\mathbb{Z}[\rho](\mu \neq 0, \mu \equiv 0(\bmod 3),(a, \mu)=1, a \equiv 1$ $(\bmod 3))$ and every pair of real numbers ψ_{1} and $\psi_{2}\left(-\pi \leq \psi_{1}<\psi_{2} \leq \pi\right)$, we have, for $j=0,1,2$,

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{\#\left\{\varpi \in P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right): \alpha\left(S_{\varpi}\right)=-\rho^{j}\right\}}{\# P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right)}=\frac{1}{3} \tag{2.2}
\end{equation*}
$$

In (2.1), the fact that $\zeta_{\varpi}^{3}=1$ follows from a formula due to Eisenstein (cf., for example, Cassels [1, (3.4)]). From the proof of Theorem 1, we see that the uniformity 2.2 of the distribution of $\alpha\left(S_{\varpi}\right)$ is equivalent to the uniform distribution of the arguments of $\tau_{3}(\varpi)$ proved in 3].

We shall next construct S_{ϖ} satisfying the condition of Theorem 1 as a set of lattice points in a plane region. Put $\lambda=\rho-\rho^{2}=\sqrt{3} i$ and

$$
D=\{z \in \mathbb{C}:|z|<|z-\alpha|(0 \neq \alpha \in \mathbb{Z}[\rho])\}
$$

The set D is a fundamental domain for $\mathbb{C} / \mathbb{Z}[\rho]$ and is the interior of the regular hexagon with vertices $(-\rho)^{j} / \lambda(0 \leq j \leq 5)$. For each ϖ, we take the integer $n(0 \leq n \leq 5)$ and the number ϖ^{\prime} such that

$$
\begin{equation*}
\varpi=(-\rho)^{n} \varpi^{\prime}, \quad\left|\arg \varpi^{\prime}\right|<\pi / 6 \tag{2.3}
\end{equation*}
$$

Moreover let c, d and σ be the integers such that

$$
\begin{equation*}
\varpi^{\prime}=c-d \rho^{\sigma} \quad(0<d<c, \sigma= \pm 1) \tag{2.4}
\end{equation*}
$$

For two points a and b in \mathbb{C}, we let $\gamma(a, b)=\{a t+b(1-t): 0 \leq t \leq 1\}$. Now put $L=\gamma\left(\varpi^{\prime} / \lambda, c / \lambda\right) \cup \gamma(c / \lambda,-c / \lambda) \cup \gamma\left(-c / \lambda,-\varpi^{\prime} / \lambda\right)$ and let T_{ϖ} be the set of points of ϖD lying between L and $-\rho^{2} L$. More precisely,

$$
\begin{equation*}
T_{\varpi}=\left(\bigcup_{0<\psi \leq \pi / 3} e^{i \psi} \cdot L\right) \cap \varpi D-\{0\} \tag{2.5}
\end{equation*}
$$

Then, setting $S_{\varpi}=T_{\varpi} \cap \mathbb{Z}[\rho]$, we get a $1 / 3$-representative system $S_{\varpi} \bmod$ ulo ϖ. We can prove the following theorem by using a result in [7].

ThEOREM 2. Let ζ_{ϖ} be the cube root of unity determined by (2.1), where the $1 / 3$-representative system S_{ϖ} is chosen as explained above. Then ζ_{ϖ} depends only on the class $\varpi \bmod 9$ and the integer $[(6 / \pi) \arg \varpi]$.

Though the construction of S_{ϖ} becomes simpler if we use the diagonal line $\gamma\left(\varpi^{\prime} / \lambda,-\varpi^{\prime} / \lambda\right)$ instead of L, there seems to be little possibility that the $1 / 3$-representative system modulo ϖ thus constructed satisfies the condition stated in Theorem 1 (cf. Remark 2 in Section 4).

Combining the above two theorems, we get the uniformity (2.2) of the distribution of $\alpha\left(S_{\varpi}\right)$ for our S_{ϖ}. Here, we would like to call the reader's attention to a problem of a similar type. Let p be a prime number with $p \equiv 3(\bmod 4)$. Then, by Wilson's theorem,

$$
\left(\frac{p-1}{2}!\right)^{2} \equiv-(p-1)!\equiv 1(\bmod p)
$$

and hence,

$$
\frac{p-1}{2}!\equiv \pm 1(\bmod p)
$$

One asks if +1 and -1 occur with the same frequency. As far as the author knows, this problem is open.
3. The distribution of $\alpha\left(S_{\varpi}\right)$. We prove Theorem 1 in this section. Keeping the notation already introduced, we further put

$$
P(X ; a, \mu)=P(X ;-\pi, \pi ; a, \mu), \quad P(X)=P(X ; 1,3)
$$

By a result of Mitsui [8, we have

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{\# P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right)}{\# P(X)}=\frac{\psi_{2}-\psi_{1}}{2 \pi} \cdot \frac{6}{\#(\mathbb{Z}[\rho] / \mathbb{Z}[\rho] \mu)^{\times}} \tag{3.1}
\end{equation*}
$$

if $\mu \neq 0, \mu \equiv 0(\bmod 3),(a, \mu)=1$ and $a \equiv 1(\bmod 3)$. Here, $(\mathbb{Z}[\rho] / \mathbb{Z}[\rho] \mu)^{\times}$ is the reduced residue class group modulo μ. For intervals in \mathbb{R}, we use the notation

$$
[a, b)=\{x \in \mathbb{R}: a \leq x<b\}
$$

Note that, since $\tau_{3}(\varpi)^{3}=-p \varpi$, the conditions

$$
\arg \tau_{3}(\varpi) \in \bigcup_{j=1,3,5}\left(\frac{1}{3}\left[\psi_{1}, \psi_{2}\right)+\frac{\pi}{3} j\right)(\bmod 2 \pi)
$$

and $\arg \varpi \in\left[\psi_{1}, \psi_{2}\right)$ are equivalent to each other. Here, " $(\bmod 2 \pi)$ " means that we see both sides of " \in " as the images of the natural projection $\mathbb{R} \rightarrow$ $\mathbb{R} / 2 \pi \mathbb{Z}$.

The next lemma is a reformulation of a result in [3] on the distribution of the arguments of the cubic Gauss sums $\tau_{3}(\varpi)$.

Lemma 1. Let μ and a be integers in $\mathbb{Z}[\rho]$ such that $\mu \neq 0, \mu \equiv 0$ $(\bmod 3),(a, \mu)=1$ and $a \equiv 1(\bmod 3)$. Let ψ_{1} and ψ_{2} be real numbers with
$-\pi \leq \psi_{1}<\psi_{2} \leq \pi$. Then, for each $j(j=1,3,5)$, we have

$$
\begin{array}{r}
\lim _{X \rightarrow \infty} \frac{\#\left\{\varpi \in P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right): \arg \tau_{3}(\varpi) \in \frac{1}{3}\left[\psi_{1}, \psi_{2}\right)+\frac{\pi}{3} j(\bmod 2 \pi)\right\}}{\# P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right)} \tag{3.2}\\
=\frac{1}{3}
\end{array}
$$

Proof. By [3, p. 113], we know that

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{\#\left\{\varpi \in P(X ; a, \mu): \arg \tau_{3}(\varpi) \in\left[\xi_{1}, \xi_{2}\right)(\bmod 2 \pi)\right\}}{\# P(X ; a, \mu)}=\frac{\xi_{2}-\xi_{1}}{2 \pi} \tag{3.3}
\end{equation*}
$$

for every ξ_{1} and $\xi_{2}\left(0 \leq \xi_{2}-\xi_{1} \leq 2 \pi\right)$. By the remark before Lemma 1 , the condition " $\varpi \in P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right)$ " in (3.2) can be replaced by the condition " $\varpi \in P(X ; a, \mu)$ ". Hence, from (3.1) and (3.3) we see that the left hand side of 3.2 equals

$$
\begin{array}{r}
\lim _{X \rightarrow \infty}\left[\frac{\#\left\{\varpi \in P(X ; a, \mu): \arg \tau_{3}(\varpi) \in \frac{1}{3}\left[\psi_{1}, \psi_{2}\right)+\frac{\pi}{3} j(\bmod 2 \pi)\right\}}{\# P(X ; a, \mu)}\right. \\
\left.\times \frac{\# P(X ; a, \mu)}{\# P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right)}\right] \\
=\frac{\frac{1}{3}\left(\psi_{2}-\psi_{1}\right)}{2 \pi} \cdot \frac{2 \pi}{\psi_{2}-\psi_{1}}=\frac{1}{3}
\end{array}
$$

This proves Lemma 1.
Now, suppose that we have assigned to each ϖ a $1 / 3$-representative system S_{ϖ} modulo ϖ and the condition in Theorem 1 is satisfied. Fix a number ν of $\mathbb{Z}[\rho]$ and a positive integer K appearing in the condition. We may assume without loss of generality that $\nu \equiv 0(\bmod 3)$ and $K \equiv 0(\bmod 2)$. Put, for each integer $J(-K / 2 \leq J \leq K / 2-1)$,

$$
I_{J}=\left[\frac{2 \pi}{K} J, \frac{2 \pi}{K}(J+1)\right)
$$

Lemma 2. Let ν and K be as above and let μ and a be integers in $\mathbb{Z}[\rho]$ with $\mu \neq 0, \mu \equiv 0(\bmod \nu),(a, \mu)=1$ and $a \equiv 1(\bmod 3)$. Then, for every pair of real numbers ψ_{1} and $\psi_{2}\left(\psi_{1}<\psi_{2}\right)$ such that $\left[\psi_{1}, \psi_{2}\right) \subset I_{J}$ for some $J(-K / 2 \leq J \leq K / 2-1)$, we have (2.2) for $j=0,1,2$.

Proof. Let $\varpi \in P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right)$. Take $S=S_{\varpi}$ in (1.2) and use (2.1) for the product of division values of $\wp(z)$. Then we see that

$$
\begin{equation*}
\tau_{3}(\varpi)=\alpha\left(S_{\varpi}\right)^{-1} \zeta_{\varpi} \sqrt[3]{\varpi} p^{1 / 3} \tag{3.4}
\end{equation*}
$$

Note that $|\arg \sqrt[3]{\varpi}|<\pi / 3$ and that ζ_{ϖ} does not depend on ϖ as long as ϖ belongs to $P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right)$. Write $\zeta_{\varpi}=\rho^{h}(h \in \mathbb{Z})$. If $\alpha\left(S_{\varpi}\right)=-\rho^{j}$, we
have

$$
\begin{aligned}
\arg \tau_{3}(\varpi) & =\arg \left\{-\rho^{-j+h} \sqrt[3]{\varpi}\right\} \\
& \equiv \frac{\pi}{3}(3-2 j+2 h)+\frac{1}{3} \arg \varpi(\bmod 2 \pi)
\end{aligned}
$$

and hence

$$
\arg \tau_{3}(\varpi) \in \frac{1}{3}\left[\psi_{1}, \psi_{2}\right)+\frac{\pi}{3}(3-2 j+2 h)(\bmod 2 \pi)
$$

Conversely, if $\arg \tau_{3}(\varpi)$ belongs to the above interval, then $\alpha\left(S_{\varpi}\right)=-\rho^{j}$. The assertion of Lemma 2 then follows from Lemma 1.

We now prove Theorem 1. Suppose that the conditions on μ, a, ψ_{1} and ψ_{2} are weakened from the conditions in Lemma 2 to those of Theorem 1. We must show that (2.2) still holds. Now, take an integer $\mu^{\prime} \neq 0$ in $\mathbb{Z}[\rho]$ which is divisible by both μ and ν. Then we have a decomposition

$$
P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right)=\bigcup_{a^{\prime}, \psi_{1}^{\prime}, \psi_{2}^{\prime}} P\left(X ; \psi_{1}^{\prime}, \psi_{2}^{\prime} ; a^{\prime}, \mu^{\prime}\right) \cup\{\text { a finite number of } \varpi ' \mathrm{~s}\}
$$

where the union on the right hand side is disjoint and the numbers $a^{\prime}, \psi_{1}^{\prime}$ and ψ_{2}^{\prime} satisfy the condition that $\left(a^{\prime}, \mu^{\prime}\right)=1, a^{\prime} \equiv 1(\bmod 3)$ and $\left[\psi_{1}^{\prime}, \psi_{2}^{\prime}\right) \subset I_{J}$ for some J. From Lemma 2 we see that, for each $j=0,1,2$,

$$
\begin{aligned}
& \lim _{X \rightarrow \infty} \frac{\#\left\{\varpi \in P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right): \alpha\left(S_{\varpi}\right)=-\rho^{j}\right\}}{\# P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right)} \\
&= \lim _{X \rightarrow \infty} \sum_{a^{\prime}, \psi_{1}^{\prime}, \psi_{2}^{\prime}}\left[\frac{\#\left\{\varpi \in P\left(X ; \psi_{1}^{\prime}, \psi_{2}^{\prime} ; a^{\prime}, \mu^{\prime}\right): \alpha\left(S_{\varpi}\right)=-\rho^{j}\right\}}{\# P\left(X ; \psi_{1}^{\prime}, \psi_{2}^{\prime} ; a^{\prime}, \mu^{\prime}\right)}\right. \\
&\left.\times \frac{\# P\left(X ; \psi_{1}^{\prime}, \psi_{2}^{\prime} ; a^{\prime}, \mu^{\prime}\right)}{\# P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right)}\right] \\
&= \frac{1}{3} \sum_{a^{\prime}, \psi_{1}^{\prime}, \psi_{2}^{\prime}} \lim _{X \rightarrow \infty} \frac{\# P\left(X ; \psi_{1}^{\prime}, \psi_{2}^{\prime} ; a^{\prime}, \mu^{\prime}\right)}{\# P\left(X ; \psi_{1}, \psi_{2} ; a, \mu\right)}=\frac{1}{3}
\end{aligned}
$$

This proves Theorem 1.
Tracing the above argument backward, we may deduce (3.3) for every μ, a, ξ_{1} and ξ_{2} with $\mu \neq 0, \mu \equiv 0(\bmod 3),(a, \mu)=1, a \equiv 1(\bmod 3)$ and $0 \leq \xi_{2}-\xi_{1} \leq 2 \pi$ from the assumption that 2.2 holds for every μ, a, ψ_{1}, ψ_{2} and j with $\mu \neq 0, \mu \equiv 0(\bmod 3),(a, \mu)=1, a \equiv 1(\bmod 3)$, $-\pi \leq \psi_{1}<\psi_{2} \leq \pi$ and $j=0,1,2$. In this sense, 2.2 is equivalent to the uniform distribution of the arguments of the cubic Gauss sums $\tau_{3}(\varpi)$.
4. The product of division values of $\wp(z)$. In this section, we prove Theorem 2 using a result of McGettrick [7]. First, we recall his result. Let,
as before, ϖ be the generator of a prime ideal of degree one in $\mathbb{Z}[\rho]$ with $\varpi \equiv 1(\bmod 3)$ and put $J=[(6 / \pi) \arg \varpi](-6 \leq J \leq 5)$. We have

$$
\frac{\pi}{6} J \leq \arg \varpi<\frac{\pi}{6}(J+1) .
$$

Take the integers n, σ, c, d and the number ϖ^{\prime} in $\mathbb{Z}[\rho]$ satisfying (2.3) and (2.4). Set $\varphi^{\prime}=\arg \varpi^{\prime}$. Note that the condition $\varphi^{\prime}>0$ is equivalent to the condition $\sigma=-1$ and further to the condition $J \equiv 0(\bmod 2)$.

Let $\wp_{*}(z)$ be the Weierstraß \wp-function associated to the lattice $\mathbb{Z}[\rho] \varpi$, that is,

$$
\wp_{*}(z)=\frac{1}{z^{2}}+\sum_{0 \neq w \in \mathbb{Z}[\rho] w^{*}}\left\{\frac{1}{(z-w)^{2}}-\frac{1}{w^{2}}\right\} .
$$

Then

$$
\begin{equation*}
\wp_{*}(z)=\theta^{2} \varpi^{-2} \wp\left(\frac{z \theta}{\varpi}\right) . \tag{4.1}
\end{equation*}
$$

Following [7], we define a function $\log \wp_{*}(z)$ on $\mathbb{C}-(1 / \lambda) \mathbb{Z}[\rho] \varpi$ as follows. Recall the path L defined in Section 2 and consider the following domain:
$\{z \in \mathbb{C}: z$ is not congruent to a point of L modulo $\mathbb{Z}[\rho] \varpi\}$.
First, we define $\log \wp_{*}(z)$ on this domain to be the branch of the logarithm of $\wp_{*}(z)$ which is determined by the condition that

$$
\lim _{\varepsilon \rightarrow+0} \operatorname{Im}\left(\log \wp_{*}(\varepsilon)\right)=0
$$

The function $\log \wp_{*}(z)$ is a single-valued regular function with period $\mathbb{Z}[\rho] \varpi$. Next, for a point z on L different from 0 or $\pm \varpi^{\prime} / \lambda$, we let

$$
\log \wp_{*}(z)= \begin{cases}\lim _{\varepsilon \rightarrow+0} \log \wp_{*}(z+\varepsilon), & \operatorname{Im} z>0, \tag{4.2}\\ \lim _{\varepsilon \rightarrow+0} \log \wp_{*}(z-\varepsilon), & \operatorname{Im} z<0 .\end{cases}
$$

Furthermore, if a point z^{\prime} is congruent modulo $\mathbb{Z}[\rho] \varpi$ to such a point z, we set $\log \wp_{*}\left(z^{\prime}\right)=\log \wp_{\neq *}(z)$. Thus we get a function $\log \wp_{*}(z)$ on $\mathbb{C}-(1 / \lambda) \mathbb{Z}[\rho] \varpi$ which is periodic with respect to $\mathbb{Z}[\rho] \varpi$. The following is the main theorem of [7].

Theorem 3 (McGettrick [7]). We have

$$
\sum_{0 \neq a \in \mathbb{Z}[\rho] / \mathbb{Z}[\rho] \varpi} \operatorname{Im}\left(\log \wp_{*}(a)\right)=-2 p \varphi^{\prime}+\operatorname{sgn} \varphi^{\prime} \cdot \frac{2}{3} \pi c d-2 \pi q-2 \pi k-\frac{4}{3} \pi l .
$$

Here, q, k and l are integers defined as follows:

$$
\begin{aligned}
& q=\#\left\{b \in \gamma\left(\varpi^{\prime} / \lambda, c / \lambda\right) \cap \mathbb{Z}[\rho]: b \neq \varpi^{\prime} / \lambda, c / \lambda\right\}, \\
& k=\#\{b \in \gamma(c / \lambda, 0) \cap \mathbb{Z}[\rho]: b \neq c / \lambda, 0\}, \\
& l= \begin{cases}1 & \text { if } c \equiv 0(\bmod 3) \text { and } \varphi^{\prime}>0 \\
2 & \text { if } c \equiv 0(\bmod 3) \text { and } \varphi^{\prime}<0, \\
0 & \text { if } c \equiv 1,2(\bmod 3)\end{cases}
\end{aligned}
$$

Note that the points A_{2}, B, B^{\prime} and A_{5} in [7] coincide with our points $-\varpi^{\prime} / \lambda,-c / \lambda, c / \lambda$ and $\varpi^{\prime} / \lambda$ respectively.

Since $\wp_{*}(\rho z)=\rho^{-2} \wp_{*}(z)$, there exists an integer $g(z)$ such that

$$
\begin{equation*}
\log \wp_{*}(\rho z)=\log \wp_{*}(z)-\frac{4}{3} \pi i+2 \pi i g(z) \tag{4.3}
\end{equation*}
$$

for every point z of $\mathbb{C}-(1 / \lambda) \mathbb{Z}[\rho] \varpi$. Clearly, $g(z)$ is periodic with respect to $\mathbb{Z}[\rho] \varpi$. We prepare a lemma concerning $g(z)$.

Lemma 3. For every point z in T_{ϖ}, we have

$$
g(z)=0, \quad g(\rho z)=1, \quad g\left(\rho^{2} z\right)=1
$$

Proof. Since $\log \wp_{*}(\rho z)$ is continuous on the domain
$\left\{z \in \mathbb{C}: z\right.$ is not congruent to a point of $\rho^{-1} L$ modulo $\left.\mathbb{Z}[\rho] \varpi\right\}$,
the function $g(z)$ is continuous on the set
$\left\{z \in \mathbb{C}: z\right.$ is not congruent to a point of $L \cup \rho^{-1} L$ modulo $\left.\mathbb{Z}[\rho] \varpi\right\}$,
and hence it is constant on every connected component of this set. Note also that the values of $g(z)$ on the boundary of each connected component are determined from 4.2. Then, we see that $g(z), g(\rho z)$ and $g\left(\rho^{2} z\right)$ are constant and $g(\rho z)=g\left(\rho^{2} z\right)$ on T_{ϖ}. Put $g(z)=b_{0}$ and $g(\rho z)=g\left(\rho^{2} z\right)=b_{1}\left(z \in T_{\varpi}\right)$.

Now, if z is a point in $\mathbb{C}-(1 / \lambda) \mathbb{Z}[\rho] \varpi$, we see, by 4.3),

$$
\begin{aligned}
0= & \log \wp_{*}\left(\rho^{3} z\right)-\log \wp_{*}(z) \\
= & \left(\log \wp_{*}\left(\rho^{3} z\right)-\log \wp_{*}\left(\rho^{2} z\right)\right)+\left(\log \wp_{*}\left(\rho^{2} z\right)-\log \wp_{*}(\rho z)\right) \\
& +\left(\log \wp_{*}(\rho z)-\log \wp_{*}(z)\right) \\
= & -4 \pi i+2 \pi i\left(g\left(\rho^{2} z\right)+g(\rho z)+g(z)\right) .
\end{aligned}
$$

Hence,

$$
g(z)+g(\rho z)+g\left(\rho^{2} z\right)=2
$$

and $b_{0}+2 b_{1}=2$. If a point z near to the origin moves around the origin counter-clockwise, the value of $\log \wp_{*}(z)$ increases by $2 \pi i$ when z crosses L, and the value of $\log \wp_{*}(\rho z)$ increases by $2 \pi i$ when z crosses $\rho^{-1} L$. Therefore, if z is in the interior of T_{ϖ} and near to the origin, 4.3) yields

$$
g(\rho z)=g(z)+1
$$

and hence $b_{1}=b_{0}+1$. It follows that $b_{0}=0$ and $b_{1}=1$. This proves Lemma 3.

Let us now prove Theorem 2. Let ζ_{ϖ} be defined by (2.1). From (4.1) we have

$$
\prod_{s \in S_{\varpi}} \wp_{*}(s)=\theta^{2(p-1) / 3} \zeta_{\varpi} \sqrt[3]{\varpi}^{-2 p}
$$

and hence, setting

$$
Y=\sum_{s \in S_{\varpi}} \operatorname{Im}\left(\log \wp_{*}(s)\right)
$$

we see from $\arg \sqrt[3]{\varpi}=\frac{1}{3} \arg \varpi$ that

$$
\arg \zeta_{\varpi} \equiv Y+\frac{2 p}{3} \arg \varpi(\bmod 2 \pi)
$$

We also deduce, by the periodicity of $\log \wp_{*}(z)$ with respect to $\mathbb{Z}[\rho] \varpi$ and by Lemma 3, that

$$
\begin{aligned}
& \sum_{0 \neq a \in \mathbb{Z}[\rho] / \mathbb{Z}[\rho] \varpi} \operatorname{Im}\left(\log \wp_{*}(a)\right)=\sum_{j=0}^{2} \sum_{s \in S_{\varpi}} \operatorname{Im}\left(\log \wp_{*}\left(\rho^{j} s\right)\right) \\
& =\sum_{s \in S_{\varpi}}\left\{3 \operatorname{Im}\left(\log \wp_{*}(s)\right)-4 \pi+2 \pi(g(\rho s)+2 g(z))\right\}=3 Y-2 \pi \cdot \frac{p-1}{3} .
\end{aligned}
$$

Therefore, the value of Y can be determined from Theorem 3 and we see that

$$
\begin{aligned}
\arg \zeta_{\varpi} \equiv & \frac{2 p}{3} \arg \varpi+\frac{2 \pi}{9}(p-1) \\
& +\frac{1}{3}\left(-2 p \varphi^{\prime}+\operatorname{sgn} \varphi^{\prime} \cdot \frac{2}{3} \pi c d-2 \pi q-2 \pi k-\frac{4}{3} \pi l\right) \\
\equiv & \frac{2 p}{3}\left(\arg \varpi-\varphi^{\prime}\right)+\frac{2 \pi}{9}(p-1) \\
& +\frac{1}{3}\left(\operatorname{sgn} \varphi^{\prime} \cdot \frac{2 \pi}{3} c d-2 \pi q-2 \pi k-\frac{4 \pi}{3} l\right)(\bmod 2 \pi)
\end{aligned}
$$

Now it suffices to show that each factor appearing above depends only on the class $\varpi \bmod 9$ and the integer J.

First, by (2.3), $\arg \varpi-\varphi^{\prime}=\arg \varpi-\arg \varpi^{\prime}$ is determined by n, and n is clearly determined by J. Next, since $p=\varpi \bar{\varpi}, p \bmod 9$ is determined by $\varpi \bmod 9$. Moreover, since

$$
c-d \rho^{\sigma}=(-\rho)^{-n} \varpi
$$

from (2.3) and (2.4), the classes $c \bmod 9$ and $d \bmod 9$ are determined by the class $\varpi \bmod 9$ and the integers σ and n, and hence by $\varpi \bmod 9$ and J (cf. the remark in the first paragraph of this section). Thus, $\operatorname{sgn} \varphi^{\prime} \cdot(2 \pi / 9) c d \bmod 2 \pi$
is determined by $\varpi \bmod 9$ and J. Now, we see that l is also determined by $\varpi \bmod 9$ and J, from the definition in Theorem 3. Finally, by Corollary to Theorem 3.1 in [7,

$$
q= \begin{cases}{[d / 3]} & \text { if } c+2 d \equiv 1(\bmod 3), \\ {[(d+1) / 3]} & \text { if } c+2 d \equiv-1(\bmod 3),\end{cases}
$$

and

$$
k=[(c-1) / 3] .
$$

Therefore, the classes $q \bmod 3$ and $k \bmod 3$ are determined by the classes $c \bmod 9$ and $d \bmod 9$, and hence by the class $\varpi \bmod 9$ and the integer J. This completes the proof of Theorem 2.

Remark 1. In (c) of Corollary to Theorem 3.1 in [7], the conditions " $\varphi^{\prime}>0$ " and " $\varphi^{\prime}<0$ " should be exchanged. Note also that the relations

$$
u=c+d, \quad v= \begin{cases}d & \text { if } \varphi^{\prime}>0 \\ c & \text { if } \varphi^{\prime}<0\end{cases}
$$

hold between the integers u, v in [7] and our c, d, and therefore we have

$$
\operatorname{sgn}(u-2 v)=\operatorname{sgn} \varphi^{\prime} .
$$

Remark 2. Here we add some remarks on whether we can simplify the construction of our $1 / 3$-representative system S_{ϖ} modulo ϖ. The set S_{ϖ} we use in Theorem 2 is defined as $S_{\varpi}=T_{\varpi} \cap \mathbb{Z}[\rho]$, where T_{ϖ} is defined by (2.5) using the path L connecting the points $\varpi^{\prime} / \lambda, c / \lambda,-c / \lambda$ and $-\varpi^{\prime} / \lambda$. Let R_{ϖ} be the $1 / 3$-representative system modulo ϖ constructed in the same way using the segment $\gamma\left(\varpi^{\prime} / \lambda,-\varpi^{\prime} / \lambda\right)$ instead of L. Then we see that

$$
\frac{\prod_{r \in R_{\varpi}} \wp(r \theta / \varpi)}{\prod_{s \in S_{\varpi}} \wp(s \theta / \varpi)}= \begin{cases}\rho^{N} & \text { if } \varphi^{\prime}>0, \\ \rho^{-(N+M)} & \text { if } \varphi^{\prime}<0 .\end{cases}
$$

Here, N is the number of points in $\mathbb{Z}[\rho]$ which lie in the interior of the triangle with vertices $0, c / \lambda$ and $\varpi^{\prime} / \lambda$, and M denotes the number of points in $\mathbb{Z}[\rho]$ which lie on the path $\gamma(0, c / \lambda) \cup \gamma\left(c / \lambda, \varpi^{\prime} / \lambda\right)$ and are different from 0 or $\varpi^{\prime} / \lambda$.

Since

$$
M= \begin{cases}q+k+1 & \text { if } c \equiv 0(\bmod 3), \\ q+k & \text { if } c \equiv 1,2(\bmod 3),\end{cases}
$$

where q and k are as in Theorem 3, the class $M \bmod 3$ is a simple quantity determined by the class $\varpi \bmod 9$ and the integer J. However, the class $N \bmod 3$ does not seem to be of simple nature. We may, for example, recall the following fact. Let p and q be distinct odd prime numbers and let n be the number of points of \mathbb{Z}^{2} inside the triangle with vertices $(0,0),(p / 2,0)$
and $(p / 2, q / 2)$. Then, for the quadratic residue symbol $\left(\frac{q}{p}\right)$, we have

$$
\left(\frac{q}{p}\right)=(-1)^{n}
$$

(cf. Hua [4, p. 40], for example). As N is the number of lattice points in a triangle some of whose vertices are non-trivial 3 -division points, the class $N \bmod 3$ will share some properties with $n \bmod 2$, though it may not be related directly to power residue symbols. Thus the author supposes $N \bmod$ 3 is not of very simple nature and does not expect the $1 / 3$-representative system R_{ϖ} to satisfy the condition described in Theorem 1.

Remark 3. In [2], Habicht considers various modifications of the parallelogram with vertices $0, \varpi / \lambda,-\rho^{2} \varpi / \lambda$ and $-\rho \varpi$ in order to give a proof of the cubic reciprocity law in $\mathbb{Q}(\rho)$. Similar modifications are utilized by Kubota [5] in more general situations. Although their treatments are more complicated than our construction of T_{ϖ} in (2.5), they will be helpful for understanding the point of it and for considering $1 / 3$-representative systems modulo ϖ with the condition in Theorem 1 which are different from our S_{ϖ} in Theorem 2.

References

[1] J. W. S. Cassels, On Kummer sums, Proc. London Math. Soc. (3) 21 (1970), 19-27.
[2] W. Habicht, Ein elementarer Beweis des kubischen Reziprozitätsgesetzes, Math. Ann. 139 (1960), 343-365.
[3] D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime arguments, J. Reine Angew. Math. 310 (1979), 111-130.
[4] L. K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
[5] T. Kubota, Geometry of numbers and class field theory, Japan. J. Math. (N.S.) 13 (1987), 235-275.
[6] C. R. Matthews, Gauss sums and elliptic functions: I. The Kummer sum, Invent. Math. 52 (1979), 163-185.
[7] A. D. McGettrick, A result in the theory of Weierstrass elliptic functions, Proc. London Math. Soc. (3) 25 (1972), 41-54.
[8] T. Mitsui, Generalized prime number theorem, Japan. J. Math. 26 (1956), 1-42.
Hiroshi Ito
Department of Mathematics
Kanagawa University
Yokohama, Japan 221-8686
E-mail: itouh023@kanagawa-u.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary 11L05; Secondary 11G05, 11G16.
 Key words and phrases: Gauss sums, elliptic functions.

