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0. Introduction. Let p be a prime and u an integer coprime with p.
The Fermat quotient qp(u) is the unique integer satisfying

(0.1) qp(u) ≡ up−1 − 1
p

mod p and 0 ≤ qp(u) ≤ p− 1.

If p |u, we set qp(u) = 0.
The distribution of Fermat quotients and related sequences is interesting

from several perspectives. First, there are several applications, in particular
to algebraic number theory and computer science. Fermat quotients play for
instance a role in primality testing (see [L]) and are well-studied as model
for generating pseudo-random numbers (see [COW]). On the analytical side,
establishing discrepancy bounds for those sequences relies on the theory of
exponential sums. Those methods provide nontrivial results, but there is
nevertheless often a large gap between what can be proven and the conjec-
tured truth. Some other papers related to Fermat quotients are [S3], [S4]
and [S5].

Exponential sum estimates for partial sequences qp(u), u = n + 1,
. . . , n + N , appear in the work of Heath-Brown [Hb]. Our interest in the
present paper is in incomplete character sums, following up on the paper [S1].
More precisely, we obtain nontrivial estimates on sums of the type

N∑
u=1

χ(qp(u)) (Theorem 3.1),

N∑
u=1

χ(uqp(u)) (Theorem 3.2)
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for N > p1+δ (δ > 0 arbitrary) and also for sums over primes∑
l≤N
l prime

χ(qp(l)) (Theorem 4.1)

for N > p3/2+δ.
Thus the restriction on N is weaker than those imposed in [S1]. Our

results contribute to some of the problems put forward in [S2].
For shorter range (N > p3/4+δ), we have the following result (the saving

on the bound is only logarithmic):∣∣∣ ∑
u≤N

χ(qp(u))
∣∣∣ . δ N(logN)−1+ε (Theorem 5.1).

With respect to Theorems 3.1 and 3.2, the statements remain valid for
general intervals [M,M +N ] as in [S1].

The method is based on a new result on the distribution (modp) of the
sequence uqp(u) for u = 1, . . . , p (see Proposition 2.1), which is another is-
sue brought up in [S1]. Its proof relies on the Heilbronn exponential sum
bound from [Hb] and [HBK], which is combined with combinatorial esti-
mates from [BKS].

1. Preliminaries

Theorem 1.1 ([BKS]). Let G be a multiplicative subgroup of (Z/nZ)∗.
For T ∈ Z+, denote

N(n,G, T ) = |{(x, y) : 0 < |x|, |y| < T, xy−1 ∈ G}|.
Then for t = max{|G|,

√
n} and T arbitrary, we have

(1.1) N(n,G, T ) < cv,ε{Tt(2v+1)/(2v(v+1))n−1/(2(v+1))+ε + T 2 t1/vn−1/v+ε},
where v is an arbitrary integer.

Theorem 1.2 ([HBK]). Let G < (Z/p2Z)∗ be the subgroup of p-powers,
i.e.

G = {xp mod p2 : (x, p) = 1},
and let 1G be the indicator function of G. Then

(1.2)
∑

1≤x≤p2
|1̂G(x)|4 � p9/2.

Remark 1.2.1. The subgroup G in Theorem 1.2 has the following prop-
erties:

(i) |G| = p− 1.
(ii) There is a one-to-one correspondence between {1, . . . , p− 1} and G

by sending x to xp.



Short character sums with Fermat quotients 25

Fact 1.3. Note that

qp(xy) = qp(x) + qp(y).(1.3)

For later use, we also specify a bilinear character sum estimate. The
result is well-known. We include the proof here, since there is a need to
specify the role of small parameters in the final estimate.

Theorem 1.4. Let η1, η2 be functions defined on Z/pZ such that
p∑

x=1

|ηi(x)| ≤ 1 for i = 1, 2,(1.4)

p∑
x=1

|η1(x)|2 < p−1/2−δ1 ,(1.5)

‖η2‖∞ < p−δ2(1.6)

for some δ1, δ2 > 0. Let χ be a nontrivial multiplicative character modulo p.
Then

(1.7)
∣∣∣ ∑
x1,x2

η1(x1)η2(x2)χ(x1 + x2)
∣∣∣ < cδ−1

2 p−δ1δ2/2,

where c is a constant.

Proof. Using the high moment method originating from Burgess’ work
([Bu]), we let r ∈ Z+ (to be specified) and estimate the left hand side of
(1.7) by

(1.8)
p∑

x1=1

|η1(x1)|
∣∣∣∑
x2

η2(x2)χ(x1 + x2)
∣∣∣

≤
[ p∑
x1=1

|η1(x1)|2r/(2r−1)
]1−1/2r[ p∑

x1=1

∣∣∣∑
x2

η2(x2)χ(x1 + x2)
∣∣∣2r]1/2r

≤
[ p∑
x1=1

|η1(x1)|
]1−1/r[ p∑

x1=1

|η1(x1)|2
]1/2r

M1/2r< p(1/2+δ1)/2rM1/2r,

where we used Hölder’s inequality, (1.4) and (1.5), and defined

M =
p∑

x=1

∣∣∣∑
y

η2(y)χ(x+ y)
∣∣∣2r.

Then

M < cr
√
p
(∑

|η2(y)|
)2r

+ p

(
2r
r

)
rr
(∑

|η2(y)|
)r
‖η2‖r∞(1.9)

< cr
√
p+ (4r)rp1−rδ2 ,

where the first term comes from an application of Weil’s character sum
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bound to polynomials (x+y1) · · · (x+yr)(x+yr+1)p−2 · · · (x+y2r)p−2 with at
least one single root, and the second term from the remaining contributions.

Substitution of (1.9) into (1.8) gives the estimate

(1.10) crp(1/2+δ1)/2r(p1/4r + p1/2r−δ2/2) < crp−δ1δ2/4

by taking 1/δ2 < r < 2/δ2.

2. A distributional inequality. Our main result is the following.

Proposition 2.1. For ξ ∈ Z/pZ, define

(2.1) u(ξ) = |{x ∈ [1, p] : xp − x ≡ pξ mod p2}|.
Then, for any ε > 0 and any p sufficiently large,

(2.2)
p∑
ξ=1

u(ξ)2 < p11/8+ε.

Proof. It follows from property (ii) in Remark 1.2.1 that

(2.3) u(ξ) = |{y ∈ G : y ∈ pξ + [1, p− 1]}| ≤
∑
y∈G

K(y − pξ),

where we define K(x) = φ(x/p) for |x| < 1
2p

2 with φ a smooth function such
that φ(u) = 1 for |u| ≤ 1 and φ(u) = 0 for |u| ≥ 2.

Hence

(2.4) |K̂(λ)| < p−100 for λ > p1+ε,

where

K̂(λ) =
p2∑
x=1

K(x)ep2(λx).

Putting (2.3) and (2.4) together, we have

u(ξ) ≤ 1
p2

p2∑
λ=1

K̂(λ)ep(λξ) 1̂G(−λ),

and

(2.5)
p∑
ξ=1

u(ξ)2

≤ 1
p4

p2∑
λ1,λ2=1

K̂(λ1)K̂(λ2)
[ p∑
ξ=1

ep(ξ(λ1 − λ2))
]

1̂G(−λ1) 1̂G(−λ2)

≤ 1
p3

p2∑
λ1,λ2=1

λ1≡λ2 mod p

|K̂(λ1)| |K̂(λ2)| |1̂G(−λ1)| |1̂G(−λ2)|.
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Since |K̂(λ)| . p and (2.4) holds, we have
p∑
ξ=1

u(ξ)2 .
1
p

∑
|λi|<p1+ε

λ1≡λ2 mod p

|1̂G(λ1)| |1̂G(λ2)| . pε

p

∑
|λ|<p1+ε

|1̂G(λ)|2(2.6)

.
|G|2

p1−ε +
1

p1−ε

∑
0<|λ|<p1+ε

|1̂G(λ)|2.

(The second inequality is by Cauchy–Schwarz.)
To bound

∑
0<|λ|<p1+ε |1̂G(λ)|2, we will use Theorems 1.1 and 1.2 and an

argument from [KS].
First, we note that 1̂G(λ) = 1̂G(λx) for x ∈ G. Hence∑

0<|λ|<p1+ε
|1̂G(λ)|2 =

1
p− 1

∑
x∈G

0<|λ|<p1+ε

|1̂G(xλ)|2(2.7)

=
1

p− 1

∑
0<j<p2

c(j)|1̂G(j)|2

≤ 1
p− 1

[∑
c(j)2

]1/2[∑
|1̂G(j)|4

]1/2
� p5/4

[∑
c(j)2

]1/2
,

where

c(j) = |{(x, λ) ∈ G× [0 < |λ| < p1+ε] : xλ ≡ j mod p2}|.

(The first inequality is by Cauchy–Schwarz, and the second inequality by
Theorem 1.2.)

Next,∑
c(j)2 = |{(x1, x2, λ1, λ2) ∈ G2 × [0< |λ| < p1+ε]2 : x1λ1 = x2λ2 mod p2}|

= (p− 1)|{(x, λ1, λ2) ∈ G× [0< |λ| < p1+ε]2 : xλ1 = λ2 mod p2}|.

Applying Theorem 1.1 with n = p2, T = p1+ε, v = 1, t = p, we have∑
c(j)2 < (p− 1){p1+εp3/4p−1/2+ε + p2+2εpp−2+ε} < p9/4+ε.(2.8)

Combining (2.6)–(2.8), we get
p∑
ξ=1

u(ξ)2 < p11/8+2ε.
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3. Character sums with Fermat quotients

Theorem 3.1. Let χ be a nontrivial multiplicative character modulo p
and k = p1+δ, with 1 ≥ δ > 0. Then for p sufficiently large,∣∣∣ k∑

x=1

χ(qp(x))
∣∣∣ < ckp−δ/33.

Proof. For gcd(x, p) = 1, we write

x = s+ py with 1 ≤ s ≤ p− 1 and y ≤ pδ.
Since

(s+ py)p−1 ≡ sp−1 + p(p− 1)sp−2y ≡ sp−1 − psp−2y mod p2,

this gives∣∣∣ k∑
x=1

χ(qp(x)
∣∣∣ =

∣∣∣∣ p−1∑
s=1

∑
y≤pδ

χ

(
sp−1−1

p
− sp−2y

)∣∣∣∣(3.1)

≤
p−1∑
s=1

∣∣∣∣ ∑
y≤pδ

χ

(
sp−s
p
− y
)∣∣∣∣=∑

ξ

u(ξ)
∣∣∣ ∑
y≤pδ

χ(ξ−y)
∣∣∣,

where the inequality uses the fact that sp−1 ≡ 1 mod p, and u(ξ) is defined
as in Proposition 2.1.

We estimate (3.1) by applying Theorem 1.4, taking

η1 =
1
p
u, η2 = p−δ1[0,pδ].

Thus, from (2.2) in Proposition 2.1, we may take δ1 = 1/8− ε in (1.5) and
deduce from (1.7) that∣∣∣ k∑

x=1

χ(qp(x))
∣∣∣ < cδ−1p1+δ−δδ1/4 < ckp−δ/33

as claimed.

The same approach applies to
∑k

x=1 χ((xp − x)/p).

Theorem 3.2. Let χ be a nontrivial multiplicative character modulo p
and k = p1+δ, with 1 ≥ δ > 0. Then∣∣∣∣ k∑

x=1

χ

(
xp − x
p

)∣∣∣∣ < ckp−δ/33+ε.

Proof. As in the proof of Theorem 3.1, for gcd(x, p) = 1, we set

x = s+ py with 1 ≤ s ≤ p− 1 and 0 ≤ y ≤ pδ.
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Then
xp − x
p

≡ sp − s
p
− y mod p.

We obtain ∣∣∣∣ k∑
x=1

χ

(
xp − x
p

)∣∣∣∣ ≤ p−1∑
s=1

∣∣∣∣ ∑
y≤pδ

χ

(
sp − s
p
− y
)∣∣∣∣.

This is (3.1) in the proof of Theorem 3.1.

4. Sums over primes. In [S1], Shparlinski also obtained a nontrivial
bound on

(4.1)
∑
x≤N
xprime

χ(qp(x)),

the character sums with Fermat quotients over primes, for N > p3+ε. In the
next theorem, we improve his result.

Theorem 4.1. Assume N > p3/2+δ. Then

(4.2)
∑
x≤N
xprime

χ(qp(x)) < Np−δ1 ,

where δ1 ∼ δ.

Remark 4.1.1. The analysis in the proof of Theorem 4.1 can be made
more precise to give a better dependence of δ1 on δ but we only want to get
a nontrivial bound under the weakest possible assumption on N .

We will use the following lemma.

Lemma 4.2. For 1� T , define

σ(z) = |{x ∈ [1, T ] : qp(x) = z}|.

Then for 0 < θ < 1/2 and p large enough:

(i) If p > T > pθ with θ > 0, then
∑
σ(z)2 < T 3/2+ε.

(ii) If T > p3/4+θ with 1/2 > θ > 0, then
∑
σ(z)2 < T 2p−1/2−θ/2.

Proof. In Theorem 1.1, we take n = p2, t = p and

G = {xp mod p2 : 1 ≤ x ≤ p− 1}.

Then

(4.3) N(p2, G, T ) < cv,ε(Tp1/(2v(v+1))+ε + T 2p−1/v+ε).
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Also, ∑
z<T

σ(z)2 = |{(x1, x2) ∈ [1, T ]2 : qp(x1) = qp(x2)}|

= |{(x1, x2) ∈ [1, T ]2 : xp−1
1 ≡ xp−1

2 mod p}|
= |{(x1, x2) ∈ [1, T ]2 : x1 ∈ x2G}|
≤ N(p2, G, T ).

To prove the lemma, for case (i), in (4.3), we take v ∈ Z+ such that
p1/(v+1) < T . p1/v. Hence (4.3) is bounded by T 1+1/2v+ε < T 3/2+ε. For
case (ii), we take v = 1 in (4.3).

Proof of Theorem 4.1. We follow the usual procedure, estimating

(4.4)
∑
n≤N

Λ(n)χ
(
qp(n)

)
using Vaughan’s identity (see [IK, Prop. 13.4])

(4.5) Λ(n) =
∑
b|n
b≤y

µ(b) log
n

b
−
∑∑
bc|n

b≤y, c≤z

µ(b)Λ(c) +
∑∑
bc|n

b>y, c>z

µ(b)Λ(c).

Take
y = z = 2

√
N

so that the last term in (4.5) can be omitted. We obtain

(4.6)
∑
n≤N

Λ(n)χ
(
qp(n)

)
≤
∣∣∣ ∑
b≤y
bd≤N

µ(b) log(d)χ(qp(bd))
∣∣∣+
∣∣∣ ∑
b≤y, c≤z
bcd≤N

µ(b)Λ(c)χ
(
qp(bcd)

)∣∣∣.
Using Fact 1.3 and a standard argument (see e.g. Theorem 3.4 in [S1]), we
reduce both sums in the right-hand side of (4.6) to bilinear sums of the form

(4.7)
∣∣∣ ∑
U≤u≤2U
V≤v≤2V

α(u)β(v)χ(qp(u) + qp(v))
∣∣∣

with N . UV < N , N1/20 < U ≤ V , ‖α‖∞, ‖β‖∞ < pε, and linear sums

(4.8)
∣∣∣ ∑
U≤u≤2U

χ
(
qp(ξu)

)∣∣∣
with N9/10 < U < N .

Bounding (4.8) is straightforward. Since N > p3/2 and U > p27/20 >
p5/4, we may use Corollary 3.2 of [S1]. (In fact, the argument used in the
proof of Theorem 3.1 may be adapted as well.)
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To estimate (4.7), we will use Theorem 1.4 and Lemma 4.2.
Define

η1(x) =
1
V

∑
V≤v≤2V
qp(v)=x

β(v), η2(x) =
1
U

∑
U≤u≤2U
qp(u)=x

α(u).

Recall that U > N1/20 > p3/40 and V & N1/2 & p3/4+δ/2.
Clearly,

∑
|η2(x)| ≤ U−1

∑
U≤u≤2U |α(u)| < pε and similarly for η1.

From Lemma 4.2,

‖η2‖2∞ ≤
∑
x

|η2(x)|2 ≤ ‖α‖2∞U−2
∑
x

|{U ≤ u ≤ 2U : qp(u) = x}|2

< pεU−1/2+ε < p−3/80+ε < p−1/27,

and ∑
x

|η1(x)|2 ≤ ‖β‖2∞ V −2
∑
x

|{V ≤ v ≤ 2V : qp(v) = x}|2

< p−1/2−δ/4+ε < p−1/2−δ/5.

We rewrite (4.7) as

UV
∣∣∣ ∑
x1,x2

η1(x1)η2(x2)χ(x1 + x2)
∣∣∣,

and use Theorem 1.4 to get the estimate

UV p−δ/270 < Np−δ/270.

An argument similar to the one above can be used to treat the sums∑
n≤N
n prime

χ

(
np − n
p

)

from Problem 46 in [S2].

Theorem 4.3. Assume N > p3/2+δ. Then there is δ′ = δ′(δ) > 0 such
that ∣∣∣∣ ∑

n≤N
n prime

χ

(
np − n
p

)∣∣∣∣ < Np−δ
′
.

Proof. First, we note that

(xy)p − xy
p

≡ xyqp(xy) ≡ xy(qp(x) + qp(y)) mod p.
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Thus, instead of (4.7) and (4.8), we have

(4.9)
∣∣∣ ∑
U≤u≤2U
V≤v≤2V

α(u)β(v)χ(u)χ(v)χ(qp(u) + qp(v))
∣∣∣

with UV ∼ N , N1/20 < U ≤ V , ‖α‖∞, ‖β‖∞ < pε, and

(4.10)
∣∣∣ ∑
U≤u≤2U

χ(u)χ(qp(ξu))
∣∣∣

with N9/10 < U < N .
For (4.9), we define α1(u) = α(u)χ(u) and β1(v) = β(v)χ(v). We obtain

the same bound as for (4.7).
Bounding (4.10) amounts to estimating

(4.11)
∑
x≤X

χ

(
(ξx)p − ξx

p

)
with ξ fixed, (ξ, p) = 1 and X > N9/10 > p27/20. In fact, it suffices to assume
X > p1+δ since the same argument as for Theorem 3.2 is applicable.

Thus, setting

x = s+ py with 1 ≤ s ≤ p− 1 and 0 ≤ y ≤ pδ,
we have

(4.12)
(ξx)p − ξx

p
≡ (ξs)p − ξs

p
− ξy mod p.

Following the same argument, we need the analogue of Proposition 2.1 with
u on Z/pZ defined as

u(z) = |{s ∈ [1, p− 1] : (ξs)p − ξs ≡ p zξ mod p2}|.
Following the proof of Proposition 2.1, we have

u(z) = |{y ∈ G : ξpy ∈ pzξ + ξ[1, p− 1] mod p2}|
= |{y ∈ G : ξp−1y ∈ pz + [1, p− 1] mod p2}|.

Let K be as in the proof of Proposition 2.1. Then

u(z) ≤
∑
y∈G

K(ξp−1y − pz) ≤ 1
p2

p2∑
λ=1

K̂(λ)ep(λz) 1̂G(−ξp−1λ),

and
p∑
z=1

u(z)2 ≤ 1
p3

p2∑
λ1,λ2=1

λ1≡λ2 mod p

|K̂(λ1)| |K̂(λ2)| |1̂G(−ξp−1λ1)| |1̂G(−ξp−1λ2)|.
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As for (2.5), we need to estimate∑
0<|λ|<p1+ε

|1̂G(ξp−1λ)|2 =
1
p

∑
0<t<p2

c(t)|1̂G(t)|2,

where

c(t) = |{(x, λ) ∈ G× [0 < |λ| < p1+ε] : xξp−1λ ≡ t mod p2}|
= |{(x, λ) ∈ G× [0 < |λ| < p1+ε] : xλ ≡ ξp−1

1 t mod p2}|

with ξξ1 ≡ 1 mod p2.
The argument is completed exactly as in Proposition 2.1 and we obtain

p∑
z=1

u(z)2 < p11/8+ε.

5. Shorter ranges. We return to Problem 45 in [S2]. It is in fact pos-
sible to obtain a nontrivial bound on∑

n≤N
χ

(
np−1 − 1

p

)
for N as small as p3/4+δ, but the saving on the bound is only logarithmic.

Theorem 5.1. For N > p3/4+δ with δ > 0, we have∣∣∣∣ ∑
n≤N

χ

(
np−1 − 1

p

)∣∣∣∣ . δ N(logN)−1+ε.

Proof. We will remove subintervals (where we use the trivial bounds on
the character sums) until Lemma 4.2 is applicable.

We fix
δ1 = (log p)−1+ε.

(Note that δ1 < δ/10.) Let

V = {n ∈ [1, N ] : n has a prime divisor in [pδ1 , pδ/2]}.

To estimate |[1, N ] \ V |, rather than a reference we give the following
standard argument.

Defining Xl = {n < N : l |n}, we have

[1, N ] \ V =
⋂

pδ1<l<pδ/2

l prime

([1, N ] \Xl) ⊂
⋂

pδ1<l<pδ2
l prime

([1, N ] \Xl)

with δ1 < δ2 < δ/2 to be specified. Take an even integer r such that
rδ2 < 3/4. From the inclusion-exclusion principle and the Prime Number
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Theorem,

(5.1) |[1, N ] \ V |

≤ N −
∑

pδ1<l<pδ2
l prime

|Xl|+
∑

pδ1<l1,l2<pδ2
li prime

|Xl1l2 | − · · ·+
∑

pδ1<l1,...,lr<pδ2
li prime

|Xl1···lr |

≤ N −
∑
l

N

l
+
∑
l1,l2

N

l1l2
− · · ·+

∑
l1,...,lr

N

l1 · · · lr
+ prδ2

≤ N
∏

pδ1<l<pδ2
l prime

(
1− 1

l

)
+N

∑
s>r

1
s!

( ∑
pδ1<l<pδ2
l prime

1
l

)s
+ prδ2

. N
δ1
δ2

+N

(
e

r
log

δ2
δ1

)r
,

provided r > 1
2 log(δ2/δ1).

We take r ∼ log(1/δ1) and δ2 ∼ 1/r. Then (5.1) implies that

(5.2) |[1, N ] \ V | . Nδ1 log
1
δ1
< N(log p)−1+ε.

We will make a further subdivision of V .
Let

α = δ1 = (log p)−1+ε

be a small parameter. We choose j1, j2 such that

(5.3) pδ1 ∼ (1 + α)j1 , pδ/2 ∼ (1 + α)j2 .

Let Pj be the set of primes in [(1 + α)j , (1 + α)j+1] and let

(5.4) Vj =
{
n ∈ [1, N ] : n has a single prime divisor in Pj

and no prime divisors in
⋃
i<j

Pi

}
.

Clearly, from the definition,

(5.7) V \
⋃

j1≤j≤j2

Vj

⊂ {n ∈ [1, N ] : n has two prime divisors in some Pj , j1 ≤ j ≤ j2}.
Hence, by the Prime Number Theorem and since j ≤ (log p)/α,

(5.5)
∣∣∣V \ ⋃

j1≤j≤j2

Vj

∣∣∣
≤
∑
j≥j1

{ ∑
l1,l2∈Pj

N

l1l2

}
≤ N

∑
j≥j1

{∑
l∈Pj

1
l

}2

≤ N
∑
j≥j1

{
|Pj |

(1 + α)j

}2
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≤ N
∑
j≥j1

{
1 + α

(1 + j) log(1 + α)
− 1
j log(1 + α)

+O(e−
√
δ1 log p)

}2

. N
∑
j≥j1

(
1
j

+
1
j2α

+O(e−
√
δ1 log p)

)2

. N

(
1
j 1

+
log p
α

e−
√
δ1 log p

)

.
N

j1
.

N

log p
.

Next, denote

Ωj =
{
m ∈

[
1,

N

(1 + α)j+1

]
: m has no prime divisors in

⋃
i≤j

Pi

}
.

It follows from the definition (5.4) of Vj that

PjΩj ⊂ Vj and Vj \ (Pj Ωj) ⊂ Pj ×
[

N

(1 + α)j+1
,

N

(1 + α)j

]
.

Hence, using the bound on |Pj | obtained in (5.5), we have

|Vj \ (Pj Ωj)| ≤ |Pj |
Nα

(1 + α)j+1
. Nα

[
1
j

+O(e−
√
δ1 log p)

]
.

Therefore,∑
j1≤j≤j2

|Vj \ (PjΩj)| . Nα[log j2 + j2e
−
√
δ1 log p](5.6)

< N

[
α

(
log log p+ log

1
α

)
+ (log p)e−

√
δ1 log p

]
. N(log p)−1+2ε.

Note also that from the definition of Ωj , the product map

Pj ×Ωj → PjΩj

is one-to-one and onto.
Combining (5.2), (5.5) and (5.6), we have

(5.7)
∣∣∣ ∑
n≤N

χ(qp(n))
∣∣∣

. N(log p)−1+2ε +
∑

j1≤j≤j2

∣∣∣ ∑
l∈Pj , m∈Ωj

χ(qp(l) + qp(m))
∣∣∣.

For each j, the double sum satisfies

(5.8)
∑

l∈Pj ,m∈Ωj

χ(qp(l) + qp(m)) =
∑

η1(x)η2(y)χ(x+ y)
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with

η1(x) = |{m ∈ Ωj : qp(m) = x}| ≤ |{m ≤ N/(1 + α)j : qp(m) = x}|,

η2(y) = |{l ∈ Pj : qp(l) = y}| ≤ |{l ≤ (1 + α)j+1 : qp(l) = y}|.
We will use Lemma 4.2 and Theorem 1.1 to estimate (5.8).

Recall that pδ1 ≤ (1 + α)j ≤ pδ/2. Hence N/(1 + α)j > p3/4+δ/2. By
inequality (4.3) (with v = 1),∑

η1(x)2 ≤ N
(
p2, G,

N

(1 + α)j

)
≤ pε

(
N

(1 + α)j

)2{(1 + α)j

N
p1/4 + p−1

}
≤
(

N

(1 + α)j

)2

p−1/2−δ/3.

Since Theorem 1.1 as formulated cannot be applied for the very short
range T = (1+α)j+1, to estimate

∑
η2(y)2 we include a separate argument.

Clearly, ∑
η2(y)2 = |{(l1, l2) ∈ Pj × Pj : l1 ∈ l2G}|(5.9)

≤ |Pj |max
l
|Pj ∩ lG|.

Take r ∈ Z+ such that T r < p2 ≤ T r+1. Then the map πp2 : Z → Z/p2Z
when restricted to the r-fold product set P rj ⊂ Z will be one-to-one. In
particular,

p− 1 = |G| ≥ 1
r!
|Pj ∩ lG|r,

which implies

|Pj ∩ lG| < rp1/r < rT (r+1)/2r <
1
δ1
T 2/3.

Hence (5.9) is bounded by

(5.10) c(1 + α)2j log p p−δ1/3 < (1 + α)2jp−δ1/4,

from the choice of δ1.
From Theorem 1.4, we have∣∣∣ ∑

l∈Pj , m∈Ωj

χ(qp(l) + qp(m))
∣∣∣ < Np−δδ1/24 < Ne−cδ(log p)ε .

The theorem follows from (5.7) and (5.10).
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