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Local heights on Galois covers of the projective line

by

Robin de Jong (Leiden)

1. Introduction. Let K be a number field. Let X be a smooth projec-
tive curve of positive genus g defined over K, endowed with a Galois covering
map x : X → P1

K of degree N to the projective line over K. Assume that
x is totally ramified at some point o ∈ X(K). The basic example that we
have in mind is that of a hyperelliptic curve X endowed with a hyperelliptic
map. In this paper we introduce and study, for each place v of K, a local
height function

λv : X(Kv) \ {o} → R

associated to x, generalizing the well known Néron–Tate local height func-
tion on an elliptic curve over K. Here Kv denotes the completion of K at v,
and Kv an algebraic closure of Kv.

Fix a v-adic absolute value | · |v on Kv, and assume that a coordinate
function has been chosen on P1

K such that o maps to ∞ under x. Our local
height function will be obtained as an integral with a logarithmic integrand:

λv(p) =
1
N

�

Xv

log |x− x(p)|v µv,

where Xv is a canonical analytic space associated to X at v and µv a canon-
ical probability measure on Xv. To be precise, Xv will be the Berkovich
analytic space associated to X ⊗ K̂v if v is non-archimedean, and the com-
plex analytic space X(Kv) if v is archimedean. The measure µv will be the
canonical Arakelov measure on Xv, to be defined in Section 2 below.

Theorem A. The function λv : X(Kv) \ {o} → R is a local Weil height
with respect to the divisor o on X. The difference λv(p) − N−1 log |x(p)|v
tends to zero as p tends to o on X(Kv).
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For p ∈ X(K) \ {o} we will see that λv(p) vanishes for almost all v. Let
K be an algebraic closure of K, and let MK be the set of places of K. The
function hx : X(K) \ {o} → R defined via

hx(p) =
1

[K : Q]

∑
v∈MK

nvλv(p) =
1

[K : Q]
1
N

∑
v∈MK

nv
�

Xv

log |x− x(p)|v µv,

where the nv are suitable local factors, extends to a global Weil height with
respect to o on X(K). We note that [K : Q] times this height can be viewed
as a “Mahler measure” associated to the map x : X → P1

K .
It will be no surprise that hx relates directly to the Néron–Tate height

on the jacobian of X via the Abel–Jacobi map based at o (cf. Proposition
4.1). Because of this connection, and the explicit nature of our local heights,
the results in this paper may have an application to the actual calculation
of Néron–Tate heights of rational points on jacobians. One possible starting
point is the result in Theorem C below. Another possible starting point is
to try to develop a “formulaire”, à la Tate’s formulaire for elliptic curves (cf.
[Si2, Section VI.4]), for λv(p) based, if v is non-archimedean, on the type of
the reduction graph of X at v, and the specialization of p onto that graph.

The function λv is integrable against µv. This leads to a local invariant

(1.1)
�

Xv

λv µv =
1
N

�

Xv

�

Xv

log |x(p)− x(q)|v µv(p)µv(q)

associated to each v. This invariant vanishes for almost all v and hence the
global invariant:

(1.2)
∑
v∈MK

nv
�

Xv

λv µv =
1
N

∑
v∈MK

nv
�

Xv

�

Xv

log |x(p)− x(q)|v µv(p)µv(q)

is well-defined. One expects this invariant to be comparable with more “clas-
sical” invariants ofX, such as the (admissible) self-intersection of the relative
dualizing sheaf of X as studied in [Zh]. For x a hyperelliptic map we prove
that this is indeed the case:

Theorem B. Assume X is a hyperelliptic curve of genus g ≥ 2 and
assume that x : X → P1

K is a hyperelliptic map. Let (ω, ω)a be the admissible
self-intersection of the relative dualizing sheaf of X. Then∑
v∈MK

nv
�

Xv

λv µv=
1
2

∑
v∈MK

nv
�

Xv

�

Xv

log |x(p)−x(q)|v µv(p)µv(q)=
(ω, ω)a

4g(g − 1)
.

In fact we prove that in general the invariant (1.2) equals −(o, o)a, where
(o, o)a is the admissible self-intersection of the point o. For hyperelliptic
curves, or more generally curves such that (2g − 2)o is a canonical divisor,
this specializes to the formula in Theorem B. For hyperelliptic curves we are
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able to analyze the local invariants (1.1) in more detail and connect them
to a local invariant that we introduced in an earlier paper [dJ].

Our next result states that the local heights λv(p) for p ∈ X(K)\{o} can
be obtained by averaging, and taking a limit, over higher-order Weierstrass
points on X. More precisely, let Xn for n ≥ g be the divisor of Weierstrass
points of the line bundle OX(o)⊗n+g−1 on X (see Section 6 for definitions).
This Xn is an effective divisor of degree gn2, generalizing the divisor of
n-torsion points on (X, o) when (X, o) is an elliptic curve. We usually view
Xn as a Gal(K/K)-invariant multi-set in X(K).

Theorem C. Let p be a point in X(K) \ {o}. Assume that p is not in
Xn for at least one n ≥ g. Let v be a place of K. Then

1
gn2

∑
q∈Xn

x(q)6=x(p),∞

log |x(p)− x(q)|v →
�

Xv

log |x− x(p)|v µv

for some sequence of natural numbers n tending to infinity. In the sum on
the left hand side, the points in Xn are counted with multiplicity.

It is clear that there can be at most finitely many points p in X(K) such
that p ∈ Xn for all n ≥ g. In any case, apart from some “obvious” cases,
such points appear to be extremely rare [SV]. If p /∈ Xn for some n ≥ g then
p /∈ Xn for infinitely many n ≥ g. The sequence of these n can be taken as in
Theorem C. It seems likely that Theorem C holds without the assumption
that p should not be in every Xn, and that the limit can be taken over all
natural numbers.

A celebrated theorem of Mumford–Neeman [Ne] implies that, at least
if v is archimedean, the multi-sets Xn are weakly equidistributed with re-
spect to µv. As far as we know, the equidistribution of Weierstrass points
at non-archimedean v has not yet been proven. In some sense the theorem
of Mumford–Neeman “explains” Theorem C but it seems there is no direct
implication. For example, the condition that the point p should be algebraic
seems to be essential.

In the case that (X, o) is an elliptic curve, Theorem C occurs in an article
by Everest and Fhlathúin [EF]. A result similar in spirit to Theorem C but
in the context of dynamical systems on P1

K has been proven by Szpiro and
Tucker [ST]. They show that if ϕ : P1

K → P1
K is a non-constant rational map

of degree d > 1, and p ∈ P1(K) \ {∞} is a rational point, then
1
dn

∑
q∈Fixn
q 6=p,∞

log |x(p)− x(q)|v →
�

P1
v

log |x− x(p)|v µϕ,v

as n→∞. Here Fixn is the multi-set (divisor) of fixed points of the iterate
ϕn for all positive integers n, and µϕ,v is the local canonical measure on P1

v
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associated to ϕ by Call–Silverman [CS]. The results of Everest–ńı Fhlathúin
and Szpiro–Tucker were proved using diophantine approximation in some
form. We will prove Theorem C as a corollary of Faltings’s diophantine
approximation results on abelian varieties [Fa].

A possible application of Theorem C is a method to actually calculate, or
at least approximate, the canonical height of p by evaluating a sequence of
polynomials—the “division polynomials” associated to the Xn—at x(p). In
the case of elliptic curves, this method is discussed in [EW]. The next inter-
esting case would be the case of genus two (or more generally, hyperelliptic)
curves. The division polynomials associated to the Xn are then known to
satisfy some explicit recurrence relations that one could use [Ca]. The up-
shot of this method is that one does not need algebraic equations for the
jacobian of X. We have stated our result as Theorem 6.8 below.

Let us summarize the contents of this paper. In Section 2 we recall some
useful facts from potential theory on Berkovich spaces associated to curves,
mainly based on Thuillier’s thesis [Th]. This is the “right” context to make
sense of the integrals involved in defining λv in the non-archimedean setting.
We also connect the theory with Zhang’s theory of local admissible pairing
on a curve [Zh].

In Section 3 we extend the theory to the global setting and make the
connection, following a classical result of Hriljac–Faltings, with the Néron–
Tate height on the jacobian.

From Section 4 on we assume X is endowed with a Galois covering
map x : X → P1

K . We start by introducing λv and proving Theorem A. We
verify that for (X, o) an elliptic curve, the function λv coincides with Tate’s
classical Néron function. Finally we prove Theorem B.

We analyze the case of hyperelliptic curves more closely in Section 5.
Theorem C is proved in Section 6.

2. Potential theory on Berkovich analytic curves. Let X be a
geometrically connected smooth projective curve over a local field (k, | · |).
Let k be an algebraic closure of k, and let k̂ be the completion of k. The
absolute value | · | extends in a unique way to k̂. One has associated to X a
locally ringed space X = (|X|,OX), where the underlying topological space
|X| has the following properties: |X| is compact, metrizable, path-connected,
and contains X(k) with its topology induced from | · | naturally as a dense
subspace. If k is archimedean, we just take X(k) itself, with its structure of
complex analytic space; if k is non-archimedean we let X be the Berkovich
analytic space associated to X ⊗ k̂, as in [Be].

Our purpose in this section is to put a canonical probability measure µX

on |X|, and to discuss a few results from potential theory on X. Everything
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is standard for archimedean k; however for non-archimedean k the results
seem to be less known. We base our discussion on the thesis of Thuillier [Th],
in particular Chapter 3. For more background on Berkovich spaces we re-
fer to [Ba]. As an application of the formalism we present a formula (see
Proposition 2.2 below) for the integral

	
X log |f |µX where f is an arbitrary

non-zero rational function on X ⊗ k. This formula establishes a link with
Zhang’s theory of local admissible pairing [Zh].

We start by considering the natural exact sequence

0→ H→ A0 ddc

−−→ A1 → 0

of sheaves of R-vector spaces on X. HereH is the sheaf of harmonic functions
on X, A0 is the sheaf of smooth functions on X, A1 is the sheaf of smooth
forms on X, and ddc is the Laplace operator. The sheaf A0 is in fact a sheaf
of R-algebras and the sheaf A1 is naturally a sheaf of modules over A0.

We let A0(X) and A1(X) be the spaces of global sections of A0 and A1.
Further we put D0(X) = A1(X)∗ and D1(X) = A0(X)∗ for their R-linear
duals. We have a natural R-linear integration map

	
X : A1(X) → R and a

natural R-bilinear pairing A0(X) × A1(X) → R given by (ϕ, ω) 7→
	
X ϕω.

This pairing yields a natural commutative diagram

D0(X) // D1(X)

A0(X)

OO

ddc
// A1(X)

OO

where the upward arrows are injections, and the map D0(X) → D1(X) is
the dual of the map A0(X) ddc

−−→ A1(X), also to be denoted by ddc. The
kernel of ddc : D0(X) → D1(X) is a one-dimensional R-vector space, to be
identified with the set of constant functions on X. The elements of Dα(X)
are called (α, α)-currents; (1, 1)-currents can be viewed as measures on |X|.
The unit element of A0(X) gives, under the natural map A0(X)→ D1(X)∗,
a natural R-linear integration map

	
X : D1(X)→ R, extending

	
X on A1(X).

Associated to each non-zero rational function f on X ⊗ k we have a natural
(0, 0)-current log |f | ∈ D0(X). For each closed point p on X ⊗ k we have
a Dirac measure δp ∈ D1(X), and by linear extension we obtain a measure
δD ∈ D1(X) for each divisor D on X ⊗ k.

Proposition 2.1.

(i) (Poincaré–Lelong equation) Let f be a non-zero rational function
on X ⊗ k. Then

ddc log |f | − δdiv f = 0

in D1(X).



56 R. de Jong

(ii) (The Laplace operator is self-adjoint) We have�

X

ϕddc ψ =
�

X

ψ ddc ϕ

for all ϕ,ψ ∈ D0(X).
(iii) (Existence and uniqueness of Green’s functions) Let µ ∈ A1(X) be

a smooth measure with
	
X µ = 1, and let p ∈ X(k). Then there

exists a unique current gµ,p ∈ D0(X) such that

ddc gµ,p = µ− δp,
�

X

gµ,p µ = 0.

The symmetry relation gµ,p(q) = gµ,q(p) holds for all p 6= q ∈ X(k).

Proof. This is well known for archimedean k. For non-archimedean k we
find (i)–(iii) respectively in [Th, Propositions 3.3.15, 3.2.12 and 3.3.13].

Our next goal is to designate a canonical probability measure µX ∈
A1(X). We assume from now on that the genus g of X is positive. If k is
archimedean we let µX be the Arakelov probability measure on X(k). One
way of defining µX is as follows: let ι : X(k) → J(k) be an immersion of
X(k) into the complex torus J(k), where J = Pic0X is the jacobian of X.
Then µX = g−1ι∗ν, where ν is the unique translation-invariant (1, 1)-form
representing the first Chern class of the line bundle defining the canonical
principal polarization on J(k).

Now suppose that k is non-archimedean. Let R be the reduction graph
in the sense of Chinburg–Rumely [CR] of X. This is a metrized graph,
with a canonical surjective continuous specialization map sp: |X| → R. In
particular R is compact and path-connected. The map sp has a canonical
section i : R → |X|, and via i the reduction graph R is identified with the
minimal skeleton of X. The Laplace operator on X extends in a natural way
the Laplace operator on R.

Now in [Zh], Section 3 a canonical probability measure µR is constructed
on R, called the admissible measure. We will not recall its definition; let us
just say that it has properties analogous to the Arakelov measure in the
archimedean setting. For example, it gives rise to an adjunction formula.
We define the canonical Arakelov measure µX on |X| by putting µX = i∗µR.

Let gµX,p be the Green’s function based on µX from Proposition 2.1(iii).
We then obtain a canonical symmetric pairing ( , )a on X(k) by putting
(p, q)a = gµX,p(q) for p 6= q. This pairing coincides with the admissible pair-
ing constructed in [Zh, Section 4] using Green’s functions on R with respect
to µR and the specialization map. We refer to [He] where this connection is
made explicit.

We have the following proposition relating the integrals
	
X log |f |µX to

Zhang’s admissible pairing.
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Proposition 2.2. Let f be a non-zero rational function on X ⊗ k. As-
sume that a coordinate has been chosen on P1

k. Then�

X

log |f |µX = log |f |(r) + (div f, r)a.

Here r is an arbitrary point in X(k) outside the support of f .

Proof. By Proposition 2.1(i) we have

ddc log |f | = δdiv f .

By integrating against gµX,r we obtain�

X

gµX,r dd
c log |f | = gµX,r(div f) = (div f, r)a.

On the other hand, by Proposition 2.1(ii), (iii) we have�

X

gµX,r dd
c log |f | =

�

X

(log |f |) ddc gµX,r =
�

X

(log |f |)(µX − δr)

= − log |f |(r) +
�

X

log |f |µX.

The proposition follows.

In [Zh, Theorem 4.6(iii)] it is stated that with notation as in the above
proposition log |f |(r)+(div f, r)a is constant outside the support of f . Using
Thuillier’s thesis we are thus able to interpret this constant as a suitable
integral over X.

3. Connection with the Néron–Tate height on the jacobian. We
now apply the global admissible intersection theory as developed in [Zh,
Section 5]. Let K be a number field and let X be a smooth projective
curve of positive genus g over K. For each place v of K we denote by Kv

an algebraic closure of Kv. We endow each Kv with a (standard) absolute
value | · |v as follows. If v is archimedean, we take the euclidean norm on Kv.
If v is non-archimedean, we choose | · |v such that |π|v = e, where π is a
uniformizer of Kv. Let Xv be the analytic space associated to X ⊗ K̂v, and
µv be the canonical measure on Xv, as in Section 2.

Let MK be the set of places of K. For each place v ∈ MK , let nv be
the (standard) local factor defined as follows: if v is real, then nv = 1; if v
is complex, then nv = 2; if v is non-archimedean, then nv is the log of the
cardinality of the residue field at v. Note that we have a product formula∑

v∈MK
nv log |α|v = 0 for all α in K∗.

Let o ∈ X(K) be a point and J = Pic0 X be the jacobian of X. We
denote by h : J(K)→ R the Néron–Tate height associated to the canonical
principal polarization of J . Let f be a non-zero rational function on X and
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assume that a coordinate has been chosen on P1
K . It follows from Proposition

2.2 that the real number
	
Xv

log |f |v µv vanishes for almost all v.

Proposition 3.1. Let div f =
∑

qmq · q be the divisor of the non-zero
rational function f on X ⊗K. Then

[K : Q]
∑
q

mq h([q − o]) = g
∑
v∈MK

nv
�

Xv

log |f |v µv.

Proof. We follow the formalism and results of [Zh, Section 5]. First of all,
for any point q ∈ X(K) one has −2[K : Q]h([q− o]) = (q− o, q− o)a, where
now ( , )a denotes the global admissible pairing. This formula is essentially
due to Hriljac and Faltings. By the adjunction formula (see op. cit.) we next
have (q−o, q−o)a = −(ω+2 o, q)a−(ω, o)a, where ω denotes the admissible
relative dualizing sheaf of X. We obtain

−2[K : Q]
∑
q

mqh([q − o]) = −(ω + 2o, div f)a

= −
(
ω + 2o,

∑
v∈MK

nv

( �

Xv

log |f |v µv
)
·Xv

)
a

= −2g
∑
v∈MK

nv
�

Xv

log |f |v µv.

The proposition follows.

4. The local canonical height. Now assume that X is equipped with
a Galois covering map x : X → P1

K of degree N , and that it has a point
o ∈ X(K) for which x is totally ramified. Also assume that x(o) = ∞. Let
again v be a place of K. Take a point p ∈ X(Kv)\{o} and put f = x−x(p).
This is then a well-defined rational function on X ⊗Kv. We define λv(p) to
be the integral

λv(p) =
1
N

�

Xv

log |x− x(p)|v µv.

This will be our basic object of study from now on. Let p ∈ X(K) \ {o} and
as in Section 3 let h : J(K)→ R be the Néron–Tate height associated to the
canonical principal polarization of the jacobian J of X.

Proposition 4.1. The real number λv(p) vanishes for almost all v, and

[K : Q]h([p− o]) = g
∑
v∈MK

nvλv(p) =
g

N

∑
v∈MK

nv
�

Xv

log |x− x(p)|v µv.

Proof. This is a straightforward consequence of Proposition 3.1. Let
−No +

∑
qmqq be the divisor of f = x − x(p). The formula in Proposi-
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tion 3.1 specializes to the following:

[K : Q]
∑
q

mqh([q − o]) = gN
∑
v∈MK

nvλv(p).

As all the h([q − o]) where q runs through x−1(x(p)) are equal (use the
automorphism group of x : X → P1

K) we obtain the desired formula.

We find that the λv(p) sum up to essentially the Néron–Tate height of the
Abel–Jacobi image of p, with reference point o. It is instructive to compare
this result with the main result of [PST], which writes the global canonical
height associated to a morphism (dynamical system) ϕ : P1

K → P1
K as a sum

of local canonical heights given by logarithmic integrals à la λv.
For (X, o) an elliptic curve, the function λv coincides with Tate’s classical

Néron function (see for instance [Se, Section 6.5], the “first normalization”).

Proposition 4.2. Assume that (X, o) is an elliptic curve and that x :
X → P1

K is a hyperelliptic map. Let v be a place of K. Then λv is equal
to the unique Néron function with respect to o on (X, o) normalized so that
λv(p)− 1

2 log |x(p)|v → 0 as p→ o.

Proof. Let λ̃v : X(Kv)\{o} → R be the Néron function described in the
proposition. It satisfies the “quasi-parallelogram law” (cf. op. cit.)

λ̃v(p+ q) + λ̃v(p− q) = 2 λ̃v(p) + 2 λ̃v(q)− log |x(p)− x(q)|v
for all p, q ∈ X(Kv) \ {o} such that p 6= ±q. By fixing p and integrating
against µv(q) one finds, using the translation-invariance of µv and cancelling
three terms

λ̃v(p) =
1
2

�

Xv

log |x− x(p)|v µv.

This shows that λ̃v = λv.

The following theorem analyzes the properties of the local functions λv
in more detail. Let again v be any place of K.

Theorem 4.3. The function λv : X(Kv) − {o} → R extends naturally
and uniquely as a (0, 0)-current on Xv. It satisfies the ddc-equation

ddc λv = µv − δo.
As a consequence,

λv(p) = (p, o)a +
�

Xv

λv µv,

where ( , )a is the local admissible pairing on X(Kv). Furthermore,

λv(p)−
1
N

log |x(p)|v → 0
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as p → o on X(Kv). In particular λv defines a local Weil function with
respect to the divisor o on X.

Proof. Let G be the automorphism group of x : X → P1
K over K. Note

that div(x− x(p)) = −No+
∑

σ∈G σ(p). From Proposition 2.2 we obtain

(4.1) Nλv(p) = log |x(p)− x(r)|v +
∑
σ∈G

(σ(p)− o, r)a,

where r ∈ X(Kv) is an arbitrary point not in the support of x− x(p). Now
consider equation (4.1) with p as a variable and r fixed. Both (σ(p)− o, r)a
and log |x(p) − x(r)|v extend as (0, 0)-currents over Xv. Hence so does λv.
The extension is unique, as X(Kv) is dense in Xv. To prove the first formula
of the theorem, note that as ( , )a is canonical, it is invariant under G. We
can thus rewrite (4.1) as

Nλv(p) = log |x(p)− x(r)|v +
∑
σ∈G

(p− o, σ(r))a.

Taking ddc we have, by Proposition 2.1,

N ddc λv =
∑
σ∈G

(δσ(r) − δo) +
∑
σ∈G

(µv − δσ(r)).

It follows that ddc λv = µv − δo as required. As (p, o)a = gµv ,o(p) satisfies
the same ddc -equation, we obtain the second formula. To prove the last
formula, let p→ o in (4.1). Then the sum

∑
σ∈G(σ(p)− o, r)a converges to

zero.

Theorem 4.4. Let (o, o)a be the admissible self-intersection of the point
o on X. Then∑
v∈MK

nv
�

Xv

λv µv=
1
N

∑
v∈MK

nv
�

Xv

�

Xv

log |x(p)−x(q)|v µv(p)µv(q) = −(o, o)a.

Proof. Choose a p ∈ X(K) \ {o} arbitrarily. Let again G be the auto-
morphism group of x over K. Note that OX(div(x − x(p))) = OX(−No +∑

σ∈G σ(p)) is a trivial admissible line bundle at all places v of K. It fol-
lows that the global pairing (−No +

∑
σ∈G σ(p), r)a is independent of the

choice of r. We can choose r = o and we derive from equation (4.1) in global
admissible theory the relation

N
∑
v∈MK

nvλv(p) =
(
−No+

∑
σ∈G

σ(p), o
)
a

= N(p− o, o)a

and hence ∑
v∈MK

nvλv(p) = (p− o, o)a = (p, o)a − (o, o)a.
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By Theorem 4.3 we have, on the other hand,

(p, o)a =
∑
v∈MK

nv

(
λv(p)−

�

Xv

λv µv

)
.

The theorem follows.

Note that if g ≥ 1 and (2g − 2)o is a canonical divisor on X, then

((2g − 2)o− ω, (2g − 2)o− ω)a = 0, i.e., −(o, o)a =
(ω, ω)a

4g(g − 1)
.

In that case the formula in the Theorem becomes∑
v∈MK

nv
�

Xv

λv µv=
1
N

∑
v∈MK

nv
�

Xv

�

Xv

log |x(p)−x(q)|v µv(p)µv(q)=
(ω, ω)a

4g(g − 1)
.

The condition that (2g − 2)o is a canonical divisor is fulfilled when X is a
hyperelliptic curve, and more generally, when the coordinate ring of X \{o}
is generated by two elements. Such curves go by different names in the
literature: plane model curves, Cab-curves, Burchnall–Chaundy curves, . . . .

5. Hyperelliptic curves. The purpose of this section is to study the
local invariants

	
Xv
λv µv in more detail for hyperelliptic maps. In particular

we connect them with the local invariants χ(Xv) introduced in [dJ]. We
start with a rather remarkable formula that computes the special value of
λv at a hyperelliptic ramification point.

Let (X, o) be a hyperelliptic curve of genus g ≥ 2 over K given by an
equation y2 = f(x), where f(x) ∈ K[x] is monic and separable of degree
m = 2g + 1. Fix a place v of K, as well as an algebraic closure Kv of Kv.
Keep the v-adic absolute values on Kv and Kv as defined in Section 3.

Proposition 5.1. Let w ∈ X(Kv) \ {o} be a hyperelliptic ramification
point of X and let α = x(w) in Kv. Then

2λv(w) =
�

Xv

log |x− α|v µv =
1
2g

log |f ′(α)|v.

Proof. We use a result on the arithmetic of symmetric roots from [dJ].
Let α1, . . . , α2g+2 =∞ on P1(Kv) be the branch points of x. The symmetric
root of a triple (αi, αj , αk) of distinct branch points is then defined to be an
element

`ijk =
αi − αk
αj − αk

2g

√
−f
′(αj)
f ′(αi)

of K∗v. The actual choice of 2gth root will be immaterial in the discussion
below. If αj equals infinity, the formula is to be read as follows:

(5.1) `i∞k = (αi − αk) 2g
√
−f ′(αi)

−1
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(recall that f is monic). Now let w1, . . . , w2g+2 ∈ X(Kv) be the hyperelliptic
ramification points corresponding to α1, . . . , α2g+2. Theorem C of [dJ] then
states that if (wi, wj , wk) is a triple of distinct ramification points, we have

(5.2) (wi − wj , wk)a = −1
2

log |`ijk|v.

Here, as before ( , )a denotes Zhang’s local admissible pairing on X(Kv).
Applying Proposition 2.2 to the rational function x − αi, with αi a finite
branch point, we find�

Xv

log |x− αi|v µv = log |x(p)− αi|v + 2(wi − o, p)a

for any p 6= o, wi. Taking p = wk and applying (5.2) we find�

Xv

log |x− αi|v µv = log |αi − αk|v + 2(wi − o, wk)a

= log |αi − αk|v − log |`i∞k|v.
Hence, by (5.1),

2λv(wi) =
�

Xv

log |x− αi|v µv =
1
2g

log |f ′(αi)|v.

The proposition is proven.

The function λv depends on the choice of the monic equation f for the
pointed curve (X, o). Let ∆ = 24g∆(f) where ∆(f) is the discriminant of
f . We refer to [Lo] for properties of ∆. The discriminant ∆ generalizes the
usual definition ∆ = 24∆(f) in the case where (X, o) is an elliptic curve.
We renormalize λv by putting

λ̂v(p) = λv(p)−
1

4g(2g + 1)
log |∆|v.

Then λ̂v is independent of the choice of the monic equation f for (X, o),
as one checks by replacing x by u2x + t for u ∈ K∗, t ∈ K. We obtain the
familiar renormalization

λ̂v = λv −
1
12

log |∆|v

in the case where (X, o) is an elliptic curve (cf. [Se, Section 6.5], the “second
normalization”).

Let i be an index with 1 ≤ i ≤ 2g + 2. Then put

χ(Xv) = −2g
(

log |2|v +
∑
k 6=i

(wi, wk)a
)
.

It is proved in [dJ, Theorem B] that χ(Xv) is independent of the choice
of i, hence is an invariant of Xv. One can prove that χ(Xv) ≥ 0 for all v,
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and in fact χ(Xv) > 0 if v is archimedean. We have χ(Xv) = 0 if v is
non-archimedean and X has potentially good reduction at v. Let (ω, ω)a be
the admissible self-intersection of the relative dualizing sheaf of X. We have

(5.3) (ω, ω)a =
2g − 2
2g + 1

∑
v∈MK

nv χ(Xv),

where v runs over the places of K. The following result says that χ(Xv) is
essentially equal to

	
Xv
λ̂v µv.

Corollary 5.2. Let v be a place of K. Then

χ(Xv) = 2g(2g + 1)
�

Xv

λ̂v µv.

Proof. Let w1, . . . , w2g+1 be the ramification points of X distinct from o.
From Proposition 5.1 and the identity ∆(f) =

∏2g+1
i=1 f ′(αi) we obtain the

formula
2g+1∑
i=1

λ̂v(wi) = − log |2|v.

From Proposition 4.3 we deduce that

λ̂v(p) = (p, o)a +
�

Xv

λ̂v µv

for each p ∈ X(Kv) \ {o}. The corollary follows by combining these two
relations.

Note that the above result yields an alternative approach to Theorem B.
Namely we derive ∑

v∈MK

nv
�

Xv

λ̂v µv =
(ω, ω)a

4g(g − 1)

from (5.3) and Corollary 5.2, with the additional information that in this
local decomposition, all contributions on the left hand side are non-negative,
and are canonically associated to X. The equivalence of the above local
decomposition with the formula from Theorem B is clear by the product
formula.

It would be interesting to have explicit formulas for λ̂v(p), for genus two
curves say, à la the ones of Tate (see [Si2, Chapter VI]) in the context of
elliptic curves, given the type of the reduction graph Rv of X at v, and the
specialization of p on Rv, if v is non-archimedean. A natural case to start
would be the case where X is a Mumford curve at v. This occurs if the
branch points of X come in pairs of points closer to one another than to
the other branch points, where the distance is measured by rational affinoid
subsets of the projective line [Br].
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6. Proof of Theorem C. In this section we prove Theorem C. Let K
be a number field. We will make use of the following general diophantine
approximation result due to Faltings (see [Fa, Theorem II]):

Theorem 6.1. Let A be an abelian variety over K and let D be an
ample divisor on A. Let v be a place of K and let λD,v be a Néron function
on A(Kv) with respect to D. Let h be a height on A(K) associated to an
ample line bundle on A, and let κ ∈ R>0. Then there exist only finitely many
K-rational points z in A−D such that λD,v(z) > κ · h(z).

Again let X be a smooth projective curve of positive genus g defined
over K, let x : X → P1

K be a Galois covering map and assume that o is a
totally ramified point for x such that x(o) = ∞. Let J = Pic0X be the
jacobian of X, and let ι : X → J be the Abel–Jacobi embedding given by
p 7→ [p − o]. Then we have a natural theta divisor Θ on J represented by
the classes [q1 + · · · + qg−1 − (g − 1)o] for q1, . . . , qg−1 running through X.
We note that Θ is invariant under the automorphism group of x : X → P1

K
acting on J in its natural fashion.

For n ≥ g any integer we define Xn to be the divisor ι∗[n]∗Θ of X. This
is an effective K-divisor on X of degree gn2, as can be seen for example by
noting that Xn coincides with the divisor of Weierstrass points of the line
bundle OX(o)⊗n+g−1 as considered in [Ne]. The points in the support of Xn

are called the nth order Weierstrass points of (X, o). By our remark above,
Xn is invariant under the automorphism group of x : X → P1

K . We note
that Xg = W + go, where W =

∑
p∈X w(p) · p is the “classical” divisor of

Weierstrass points of X determined by the Weierstrass weights w(p) based
on the gap sequence at p.

For p ∈ X(K) we define

T (p) = {n ∈ Z≥g | p /∈ Xn} = {n ∈ Z≥g | n[p− o] /∈ Θ}.

For example, if g = 1 then Θ = {o} and T (p) is the set of positive integers
in the complement of a subgroup of Z.

Lemma 6.2. Let p ∈ X(K). If T (p) is not empty, then T (p) contains
infinitely many elements.

Proof. For p such that [p−o] is torsion in J the statement is immediate:
assume n0[p−o] /∈ Θ, then if k is the order of [p−o] we can take those n ≥ g
such that n ≡ n0 mod k. Assume therefore that [p − o] is not torsion in J .
We prove that infinitely many points of the form n[p − o] where n ∈ Z≥0

are not in Θ. Let Z+ be the Zariski closure of the set Z≥0 · [p − o] in J ,
and let Z be the Zariski closure in J of the subgroup Z · [p− o] of J . Then
Z is a closed algebraic subgroup of J , by Lemma 6.3 below, and using the
involution x 7→ −x on J one sees that actually Z+ = Z. Suppose that only
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finitely many of the n[p − o] with n ∈ Z≥0 are outside Θ. Then Z = Z+ is
the union of a finite positive number of isolated points and a closed subset
of Θ. It follows that Z has dimension zero, contradicting the assumption
that [p− o] is not torsion.

Lemma 6.3. Let G be an algebraic group variety over a field k and let
H be a subgroup of G. Then the Zariski closure of H in G is an algebraic
subgroup of G.

Proof. Let Z be the Zariski closure of H in G and for every h in H
denote by thZ the left translate of Z under h in G. As thZ is closed in G
and contains H we find that thZ contains Z and in fact thZ = Z. This
implies that H is contained in the stabiliser Stab(Z) of Z, which is a closed
algebraic subgroup of G. We conclude that Z is contained in Stab(Z) and
hence Z is itself an algebraic subgroup of G.

Note that T (p) can be empty for p 6= o: for example if x : X → P1
K is

totally ramified at p as well and N ≤ g. We refer to [SV] for a study of the
sets T (p) in a more general setting.

We have the following theorem.

Theorem 6.4. Let p ∈ X(K) \ {o} be a rational point. Assume that p
is not in Xn for at least one n ≥ g. Let v be a place of K. Then

1
gn2

∑
q∈Xn

x(q)6=∞

log |x(p)− x(q)|v →
�

Xv

log |x− x(p)|v µv

as n→∞ over the infinite set T (p). In the sum on the left hand side, points
are counted with multiplicity.

We note that Theorem 6.4 implies Theorem C. Indeed, if n ∈ T (p) then
x(q) 6= x(p) for all q ∈ Xn since Xn is invariant under the automorphism
group of x : X → P1

K over K, and this automorphism group acts transitively
on each fiber of x.

The proof of Theorem 6.4 is based on the existence of an identity (6.1)
below, between (generalized) functions on X(Kv). We obtain Theorem 6.4
by dividing by gn2 and letting n tend to infinity over T (p), using Faltings’s
result to see that limn→∞ λΘ,v(n[p− o])/gn2 = 0.

Let us make these ideas precise now.

Proposition 6.5. Let v be a place of K, and let λΘ,v be a Néron
function with respect to Θ on J(Kv). There exists a polynomial a(u) ∈
Kv[u] such that for all integers n with n ≥ g and for all p ∈ X(Kv) with
p /∈ Xn,
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(6.1) log |a(n)|v+
1
N

∑
q∈Xn

x(q) 6=∞

log |x(p)−x(q)|v = −λΘ,v(n[p−o])+gn2λv(p).

In the sum, points are counted with their multiplicity.

Proof. Fix an integer n ≥ g. First of all neglect the term log |a(n)|v
on the left hand side. Write `n,v(p) as shorthand for λΘ,v(n[p − o]). One
can view L = OJ(Θ) as an adelic line bundle on J by putting ‖1‖L,v(z) =
exp(−λΘ,v(z)), where 1 is the canonical global section of OJ(Θ). By pull-
back one obtains a structure of adelic line bundle on each Ln = OX(Xn) =
ι∗[n]∗OJ(Θ) given by ‖1‖Ln,v(p) = exp(−`n,v(p)) where now 1 is the canon-
ical global section of OX(Xn). By [Zh, Section 4.7] (see also [He, Section 4])
the resulting adelic metric is admissible; in particular `n,v(p) is equal to
the admissible pairing (p,Xn)a up to an additive constant. As a result `n,v
extends to D0(Xv), the space of (0, 0)-currents on Xv. As the other terms
in the equality to be proven do so as well, we try to prove the equality as
an identity in D0(Xv). By Proposition 2.1(iii) we are done once we prove
that both sides of the claimed equality have the same image under ddc,
and the difference of both sides tends to zero as p tends to o over X(Kv)
avoiding Xn.

From the observation that ‖1‖Ln,v(p) = exp(−`n,v(p)) defines an admis-
sible metric on Ln we obtain first of all

ddc `n,v = (degXn)µv − δXn = gn2µv − δXn .

We deduce from Proposition 4.3 that

ddc λv = µv − δo.
Finally by the Poincaré–Lelong equation of Proposition 2.1(i) we have

ddc
1
N

∑
q∈Xn

x(q)6=∞

log |x(p)− x(q)|v = δXn − gn2δo,

and hence the difference of both sides of (6.1) vanishes under ddc. Now we
consider the behavior of both left and right hand sides as p→ o avoiding Xn.
Let z1, . . . , zg be local coordinates around the origin on J(Kv), and let s ∈
Kv[[z1, . . . , zg]] be a local equation for Θ such that

λΘ,v(z) + log |s(z1, . . . , zg)|v → 0

as z → 0. Let t be a local equation for o on X(Kv) and write ι∗zj = ajt
mj (1+

O(t)) with aj ∈ Kv, mj ∈ Z>0. We have [n]∗zj ≡ nzj mod (z1, . . . , zg)2 and
it follows that there exists a polynomial a(u) ∈ Kv[u] and m ∈ Z>0 such
that

ι∗[n]∗s(z1, . . . , zg) = a(n)tm(1 +O(t))
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for all integers n ≥ g. Note that m is the multiplicity of o in Xn; it is
independent of n. We can assume without loss of generality that t−N = x.
We find:

λv(p)→ − log |t(p)|v,
λΘ,v(n[p− o]) + log |a(n)|v → −m log |t(p)|v,
1
N

∑
q∈Xn

x(q)6=∞

log |x(p)− x(q)|v → −(gn2 −m) log |t(p)|v

as p → o avoiding Xn. The proposition follows by combining these asymp-
totics.

Remark 6.6. Let (X, o) be an elliptic curve. We can choose λΘ,v to be λv
itself; then a(n) = n and the left hand side of (6.1) is equal to log |ψn(x(p))|v
with ψn ∈ K[x] the nth division polynomial of (X, o) with respect to x (cf.
[Si1, Exercise 3.7]). One finds the identity

log |ψn(x(p))|v = −λv(np) + n2λv(p),
which seems to be well known.

Remark 6.7. If (X, o) is a hyperelliptic curve and v is archimedean, one
finds in [Ôn, Theorem 8.3] a holomorphic analogue of (6.1), based on Klein’s
hyperelliptic sigma-function. It would be interesting to generalize the result
from [Ôn] to the case of more general (X, o).

Proof of Theorem 6.4. Let p ∈ X(K)\{o} be a point such that T (p) is in-
finite, and let v be a place ofK. By Proposition 6.5 we are done once we prove
that log |a(n)|v/n2 → 0 as n→∞ and λΘ,v(n[p−o])/n2 → 0 as n→∞ over
T (p). The first statement is immediate since a(n) is a polynomial in n. As
to the second statement, note that it follows immediately if [p−o] is torsion
since then the set of values λΘ,v(n[p− o]) as n ranges over T (p) is bounded.
Assume therefore that [p−o] is not torsion. Then the n[p−o] with n running
through T (p) form an infinite set of K-rational points of J −Θ. Since

λΘ,v(n[p− o])
n2

= h([p− o]) ·
λΘ,v(n[p− o])
h(n[p− o])

with h([p− o]) > 0, Faltings’s Theorem 6.1 can be applied to give

lim sup
n→∞
n∈T (p)

λΘ,v(n[p− o])
n2

≤ 0.

On the other hand λΘ,v is bounded from below so that

lim inf
n→∞
n∈T (p)

λΘ,v(n[p− o])
n2

≥ 0.

The result follows.
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We finish with an application of Theorem 6.4. Let (X, o) be a hyperel-
liptic curve over K of genus g ≥ 2 and let y2 = f(x) with f ∈ OK [x] monic
of degree 2g + 1 be an equation for (X, o) putting o at infinity. Here OK
denotes the ring of integers of K. In [Ca] polynomials ψn ∈ OK [x] are con-
structed with leading coefficient polynomially growing in n and with zero
divisor on X equal to Xn − m · o, where m is the multiplicity of o in Xn

(actually m = g(g+1)/2). The sequence (ψn)n is determined by a non-linear
recurrence relation.

Theorem 6.8. Assume that p = (x(p), y(p)) ∈ O2
K is an o-integral point

of X, with y(p) 6= 0. Let S be a finite set of places of K containing the places
of bad reduction for X as well as the infinite ones. Then

[K : Q]h([p− o]) = lim
n→∞
n∈T (p)

1
gn2

log
∏
v∈S
|ψn(x(p))|nv

v .

Proof. Let λ̂v be the renormalized version of λv introduced in Section 5.
By the product formula and Proposition 4.1 we can write

[K : Q]h([p− o]) =
∑
v∈MK

nv λ̂v(p).

By Theorem 4.3, for the local admissible pairing (p, o)a we have

λ̂v(p) = (p, o)a +
�

Xv

λ̂v µv.

By the results in Section 5 we have
	
Xv
λ̂v µv = 0 if v is a place of good

reduction. Further we have (p, o)a = 0 if v is a place of good reduction since
p is o-integral by assumption. We obtain

[K : Q]h([p− o]) =
∑
v∈S

nv λ̂v(p).

By assumption p is not a Weierstrass point of X. Hence according to The-
orem 6.4 we have

λ̂v(p) = − 1
4g(2g + 1)

log |∆|v + lim
n→∞
n∈T (p)

1
gn2

log |ψn(x(p))|v

for any place v of K. By combining these two formulas and interchanging
the limit and the (finite) sum we obtain the theorem, upon noting that∑

v∈S
nv log |∆|v = 0

by the product formula and the fact that log |∆|v = 0 if v /∈ S.

Theorem 6.8 generalizes the main result of [EW], which is the analogue
in the case of elliptic curves. For points p that are not necessarily o-integral
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one has to make sure that the set S contains the primes of K where p reduces
to o; then the same formula works.

The limit formula in Theorem 6.8 gives a method, in principle, of ap-
proximating to high precision Néron–Tate heights of points on X without
exhibiting a model for the jacobian of X. Here one uses the results of [Ca] to
compute recursively the sequence of division polynomials ψn. Note that in
order to have the formula in Theorem 6.8 work in practice one has to know
in advance that the gaps in the sequence T (p) are bounded independent
of p. Here is an argument that indicates that a gap between two consecutive
integers in T (p) should not be larger than g: a gap of length g + 1 would
give rise to an element in an intersection Θ ∩Θ[p−o] ∩ · · · ∩Θg[p−o] of g + 1
translates of Θ. These translates are distinct if p is not a Weierstrass point.
The intersection should be empty for dimension reasons.
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