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On canonical subfield preserving polynomials

by

Giacomo Micheli and Davide Schipani (Zürich)

1. Introduction. Let q be a prime power and m a natural number. In
[1] the structure of the group consisting of permutation polynomials [3] of
Fqm having coefficients in the base field Fq was made explicit. We start by
observing that, if f is a permutation of Fqm with coefficients in Fq then

f(Fq) = Fq and ∀d, s |m f(Fqd \ Fqs) = Fqd \ Fqs .

Indeed for any integer s ≥ 1, since f has coefficients in Fq, and Fqs is a field,
we have f(Fqs) ⊆ Fqs . As f is also a bijection, this is in fact an equality.
The property above then follows directly (see also [1, Lemma 2]).

It is now natural to ask which polynomials f , having coefficients in Fq,
have the property that

(1.1) f(Fq) ⊆ Fq and ∀d, s |m f(Fqd \ Fqs) ⊆ Fqd \ Fqs .

Let us denote by Tmq the set of such polynomials. We remark that this is
a monoid under composition, and its invertible elements (Tmq )∗ form the
group of permutation polynomials with coefficients in Fq, mentioned above.

In this paper we give the explicit semigroup structure of Tmq , obtaining
the main result of [1] (i.e. the group structure mentioned above) as a corol-
lary. The explicit semigroup structure will allow us to compute the proba-
bility that a polynomial chosen uniformly at random having coefficients in
Fq satisfies condition (1.1). This will imply the following remarkable results:

• Given p prime, for q relatively large, the density of T pq is approximately
zero.
• Given q, for p a relatively large prime, the density of T pq is approxi-

mately one.
• For q = p a large prime the density of T pp is approximately 1/e.
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Indeed, Theorem 5.3 shows how the asymptotic density intrinsically depends
on the ratio between p and q (to be compared with the trivial density in
Theorem 5.1 and Corollary 5.2).

2. Preliminary definitions

Definition 2.1. We say f : Fqm → Fqm is subfield preserving if

(2.1) f(Fq) ⊆ Fq and ∀d, s |m f(Fqd \ Fqs) ⊆ Fqd \ Fqs .
Moreover, we will say f is q-canonical if its polynomial representation has
coefficients in Fq (or simply canonical when q is understood).

Remark 2.2. One of the reasons why we use the term canonical to
address the property of having coefficients in a subfield is that, under this
property, the induced map f̃ of f(x) is always well defined no matter what
irreducible polynomial we choose for the representation of the finite field
extension Fqm .

Denote by LFqm the set of all subfield preserving polynomials.

Remark 2.3. If we drop the condition on the coefficients, the semigroup
structure becomes straightforward:

LFqm ∼=
ą

k|m
M[kπ(k)]

with π(k) being the number of monic irreducible polynomials of degree k
over Fq and M[n] being the set of all maps from {1, . . . , n} to itself.

Remark 2.4. Clearly not all subfield preserving polynomials are canon-
ical, which can also be checked by a cardinality count using the results later
in the paper.

We will need the following lemma, whose proof can be easily adapted
from [1] and [2].

Lemma 2.5. Let f : Fqm → Fqm be a map. Then f ∈ Fq[x] if and only if
f ◦ ϕq = ϕq ◦ f where ϕq(x) = xq.

Indeed, the set of functions we are looking at is Tmq = LFqm ∩ Cϕq where
Cϕq := {f : Fqm → Fqm | f ◦ ϕq = ϕq ◦ f}.

3. Combinatorial underpinning. Let S be a finite set and ψ : S → S
a bijection. For any T ⊆ S, let

Kψ(T ) := {f : T → T | ∀x ∈ T f ◦ ψ(x) = ψ ◦ f(x)}.
For any partition P of S into sets Pk, let

MS(P) := {f : S → S | ∀k f(Pk) ⊆ Pk}.
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When P = {S} is the trivial partition, we will denote MS({S}) = MS , the
monoid of maps from S to itself.

For any bijection φ : S → S, define φk for any k as the composition of
the cycles of φ of length k, and set φk = (∅) if φ has no such cycles. Let
W = {1, . . . , |S|}. Then φ =

∏
k∈W,φk 6=(∅) φk. If supp(φk) denotes the set of

elements moved by φk, then φ induces a partition Pφ on S =
⋃
k∈W Sk, with

Sk = supp(φk) for k ≥ 2, and S1 being the set of fixed points of φ.

Lemma 3.1.

MS(Pφ) ∩ Kφ(S) ∼=
ą

k∈W,φk 6=(∅)
Kφk(Sk).

Proof. Clearly any f ∈ Kφk(Sk) can be extended to S as the identity
and the extension f̄ belongs to Kφ(S) ∩MS(Pφ). Indeed we have a natural
injection

ą

k∈W,φk 6=(∅)
Kφk(Sk) ↪→MS(Pφ) ∩ Kφ(S).

This is also a surjection: in fact, let f ∈MS(Pφ) ∩ Kφ(S) and define

fk(x) :=

{
f(x) if x ∈ Sk,
x otherwise.

Since MS(Pφ) ∩ Kφ(S) ⊆MS(Pφ), then fk(Sk) ⊆ Sk, which implies

fk
∣∣
Sk
∈ Kφk(Sk).

As the Sk form a partition, the composition of all the fk coincides with f .

Now, for n, k ∈ N let Ukn be a set with kn elements and ψ a bijection
of Ukn having n cycles of length k. Let us label the elements of Ukn in the
following way: let aij be the jth element of the ith cycle, with i ∈ {1, . . . , n}
and j ∈ {1, . . . , k}.

Let [h] denote {1, . . . , h} for a natural number h. We say λ : [h]→ [h] is
a cyclic shift of [h] if λ(j + `) = λ(j) + ` modulo h for any j, ` ∈ [h].

Let γ1, . . . , γn be cyclic shifts of [k] and σ : [n] → [n] a map. We then
define fγσ : Ukn → Ukn as follows:

fγσ (aij) := aσ(i)γi(j).

Theorem 3.2. g ∈ Kψ(Ukn) iff there exists γ := (γ1, . . . , γn), γi cyclic
shifts of [k], and a map σ : [n]→ [n] such that g = fγσ .

Proof. Suppose first g ∈ Kψ(Ukn). Then

g(aij) = g(ψj−1(ai1)) = ψj−1(g(ai1)).

Define σ(i) := [g(ai1)]1 and γi(j) := [g(aij)]2, where the subscripts [x]1 and
[x]2 refer to the indices i, j of x ∈ Ukn in the representation aij above.
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Observe that for all i ∈ [n], γi is a cyclic shift: indeed, modulo k,

γi(j + `) = [g(ai j+`)]2 = [g(ψ`(aij))]2 = [ψ`(g(aij))]2

= [g(aij)]2 + ` = γi(j) + `.

Moreover,

g(aij) = g(ψj−1(ai1)) = ψj−1(g(ai1)) = ψj−1(aσ(i)γi(1))

= aσ(i)γi(1)+j−1 = aσ(i)γi(j) = fγσ (aij).

Let us now prove the other implication:

ψ(fγσ (aij)) = ψ(aσ(i)γi(j)) = aσ(i) γi(j)+1

= aσ(i)γi(j+1) = fγσ (ai j+1) = fγσ (ψ(aij))

for all i ∈ [n] and j ∈ [k].

3.1. Semidirect product of monoids. We now recall the definition
of semidirect product of monoids

Definition 3.3. Let M,N be monoids and let Γ : M → End(N) with
m 7→ Γm be an antihomomorphism of monoids (i.e. Γm1m2 = Γm2 ◦ Γm1).
We define M nΓ N as the monoid having support M ×N and operation ∗
defined by the formula

(m1, n1) ∗ (m2, n2) = (m1m2, Γm2(n1)n2).

Remark 3.4. It is straightforward to verify that ∗ is associative.

We will now prove an easy lemma that will be useful in Section 4. For
any monoid H let us denote by H∗ the group of invertible elements of H.

Lemma 3.5. Let M nG be a semidirect product of monoids where G is
a group. Then

(M nG)∗ = M∗ nG.

Proof. The inclusion (M n G)∗ ⊆ M∗ n G is trivial, since if (m, g) ∈
(M nG)∗ then there exists (m′, g′) such that

(m, g) ∗ (m′, g′) = (e1, e2),

so mm′ = e1, the identity element of M . To prove the converse inclusion,
let (m, g) ∈M∗ nG. Then its inverse is (m−1, Γm−1(g−1)).

We are now ready to prove the main proposition of this section as a
corollary of Theorem 3.2.

We first observe that the set of cyclic shifts of [k] is clearly isomorphic
to Ck, the cyclic group of order k, and each cyclic shift is determined by its
action on 1.

Corollary 3.6.
Kψ(Ukn) ∼= M[n] nΓ C

n
k
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where Γ is defined by

Γ (σ)(γ) := Γσ(γ) := γσ := (γσ(1), . . . , γσ(n)) for any γ ∈ Cnk .

Proof. First observe that

Γµ(γσ(1), . . . , γσ(n)) = (γσ(µ(1)), . . . , γσ(µ(i)), . . . , γσ(µ(n)))

for any σ, µ ∈ M[n]. This can be easily seen by denoting γσ(i) =: gi. There-
fore, Γ is an antihomomorphism, as desired:

Γ (σµ)(γ) = γσµ = (γσ(µ(1)), . . . , γσ(µ(i)), . . . , γσ(µ(n)))

= Γµ(γσ(1), . . . , γσ(n)) = Γµ ◦ Γσ(γ).

Let

∆ : M[n] n Cnk → Kψ(Ukn), (σ, γ) 7→ fγσ .

Then ∆ is clearly a bijection by Theorem 3.2. It is also an automorphism
since

∆((σ, γ) ∗ (σ, γ))(ai,j) = ∆(σσ, γσγ)(ai,j) = f
γσγ
σσ (ai,j)

= aσσ(i),γσ(i)γi(j) = fγσ (aσ(i),γi(j)) = fγσ ◦ f
γ
σ (ai,j) = (∆(σ, γ) ◦∆(σ, γ))(ai,j)

for all i ∈ [n] and j ∈ [k].

4. Semigroup structure of Tmq . Consider now Tmq and notice that,
since MFqm (Pϕq) = LFqm and Kϕq(Fqm) = Cϕq , we have

(4.1) Tmq = LFqm ∩ Cϕq = MFqm (Pϕq) ∩ Kϕq(Fqm).

Indeed, the condition

f(Sk) ⊆ Sk
for each Sk in the partition induced by ϕq is equivalent to the subfield
preserving requirement (2.1), since

S1 = Fq and Sk =
⋂

a|k, a6=k

(Fqk \ Fqa) for k ≥ 2.

Any element α in a cycle of length d is associated to the irreducible poly-
nomial

∏d−1
i=0 (x − αqi) ∈ Fq[x], so there is a bijection between the cycles of

ϕq of length d and the monic irreducible polynomials of degree d over Fq,
whose cardinality is

π(d) =
1

d

∑
j|d

µ(d/j)qj

with µ being the Möbius function. Now, write

ϕq =
∏
k|m

φk
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as above with φ = ϕq and label the elements of the finite field as follows:

a
(k)
i,j is the jth element in the ith k-cycle.

Example 4.1. Let F22 =F2[α]/(α2+α+1), consisting of {0, 1, α, α+ 1}.
Indeed,

ϕq = φ1φ2 = (0)(1)(α, α+ 1)

and then a
(1)
1,1 = 0, a

(1)
2,1 = 1, a

(2)
1,1 = α and a

(2)
1,2 = α+ 1.

Theorem 4.2.

(4.2) Tmq
∼=

ą

k|m
M[π(k)] n C

π(k)
k .

Proof. This follows from Lemma 3.1 and Corollary 3.6 using the parti-
tion induced by the Frobenius morphism. Indeed, using (4.1) and Lemma
3.1 we get

Tmq
∼=

ą

k∈W,φk 6=(∅)
Kφk(Sk).

Using now Corollary 3.6 we get

Tmq
∼=

ą

k|m
M[π(k)] n C

π(k)
k .

More explicitly, the action of t ∈
Ś

k|mM[π(k)] nC
π(k)
k on an element a

(k)
i,j ∈

Sk ⊆ Fqm is given by

t(a
(k)
i,j ) = (σ(k), γ(k))(a

(k)
i,j ) = fγ

(k)

σ(k) (a
(k)
i,j ) = a

(k)

σ(k)(i),γ
(k)
i (j)

,

where γ(k) and σ(k) are the components indexed by k.

Corollary 4.3.

(Tmq )∗ ∼=
ą

k|m
Sπ(k) n C

π(k)
k ,

where Sπ(k) is the permutation group of π(k) elements.

Proof. Observe that trivially

(Tmq )∗ ∼=
ą

k|m
(M[π(k)] n C

π(k)
k )∗.

Applying now Lemma 3.5 yields

(Tmq )∗ ∼=
ą

k|m
(M[π(k)] n C

π(k)
k )∗ ∼=

ą

k|m
Sπ(k) n C

π(k)
k .

Corollary 4.4.

|Tmq | =
∏
k|m

kπ(k)π(k)π(k), |(Tmq )∗| =
∏
k|m

kπ(k)π(k)!
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Remark 4.5. Corollary 4.3 corresponds to [1, Theorem 2], and Corollary
4.4 generalizes the corollary of [1, Theorem 2].

Remark 4.6. Let us observe that a simpler decomposition of (Tmq )∗, as
a direct product of two monoids, can be seen as follows:

• First notice that any permutation polynomial over Fq can be extended
to a permutation polynomial over Fqm with coefficients in Fq by simply
defining it as the identity function on Fqm \ Fq and Lagrange interpo-
lation over the whole field. The resulting permutation polynomial over
Fqm has coefficients in Fq, since it commutes with ϕq, which is easily
checked by looking at the base field and the rest separately.
• (Tmq )∗ then has a normal subgroup isomorphic to Sq consisting of

{s ∈ (Tmq )∗ | s is the identity on Fqm \ Fq}.

• Let

Hm
q := {h ∈ (Tmq )∗ |h is the identity on Fq}.

Then Hm
q is also normal in (Tmq )∗.

• We have Sq × Hm
q = (Tmq )∗. Indeed, note first that Hm

q ∩ Sq = 1.
Now given f ∈ (Tmq )∗ we have to prove that it can be written as a
composition of an element of Hm

q and an element of Sq. Let s2 ∈ Sq
be such that s2 restricted to Fq is f . Let s1 ∈ Sq be such that s1
restricted to Fq is the inverse permutation of the restriction of f to Fq.
In other words, f ◦ s1 restricted to Fq is the identity. Observe then
that since f ◦ s1 also has coefficients in Fq, it lives in Hm

q . Verify that
s2 ◦f ◦s1 = f . Thus we have written f as a composition of an element
of Sq and an element of Hm

q .

5. Asymptotic density of Tmq . Let us first compute the asymptotic
density of the group of permutation polynomials described in [1] inside the
whole group of permutation polynomials, and inside the monoid of the poly-
nomial functions having coefficients in the subfield Fq. We will restrict to
the case Fqp , p prime.

Theorem 5.1. Consider an element of Fq[x]/(xq
p−x) chosen uniformly

at random. The probability that this is a permutation polynomial tends to 0
as p and/or q tends to ∞.

Proof. Given Corollary 4.4, we need to consider

L := lim
p∨q→∞

q!(p)
qp−q
p
( qp−q

p

)
!

qqp
.
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By Stirling approximation this is

L = lim
p∨q→∞

q!(p)
qp−q
p
( qp−q

pe

) qp−q
p

√
2π q

p−q
p

qqp
.

Now notice that

lim
p∨q→∞

(
qp − q
qp

) qp−q
p

= lim
p∨q→∞

(
1− 1

qp−1

)qp−1· q−q
2−p
p

.

By the continuity of the exponential function, this can be written as

lim
p∨q→∞

e
q−q2−p

p
ln
(
1− 1

qp−1

)qp−1

= e
− limp∨q→∞

q
p

so that

L = lim
p∨q→∞

q!(qp)
qp−q
p e

− q
p

√
2π q

p−q
p

qqpe
qp−q
p

= lim
p∨q→∞

q!e
− q
p

√
2π q

p−q
p

qqe
qp−q
p

= 0,

as one can easily see by exploring the cases q → ∞ with Stirling and q
fixed.

By observing that qp! > qq
p

eventually for large p and/or q, we also have
the following:

Corollary 5.2. Consider a permutation of the set Fqm chosen uni-
formly at random. The probability that its associated permutation polynomial
has coefficients in the subfield Fq tends to 0 as p and/or q tends to ∞.

We are now interested in an asymptotic estimate for the density of T pq in
Fq[x]/(xq

p − x) for p a prime number. We will show in fact that the monoid
of canonical subfield preserving polynomials has nontrivial density inside the
monoid of polynomial functions having coefficients in Fq. Given Corollary
4.4, the probability that an element of Fq[x]/(xq

p − x) chosen uniformly at
random is subfield preserving is

|T pq |
qqp

=
qq(qp − q)

qp−q
p

qqp
.

Theorem 5.3. Consider an element of Fq[x]/(xq
p−x) chosen uniformly

at random. The probability that it is subfield preserving tends to e
− limp∨q→∞

q
p

as p and/or q tends to ∞.

Proof. We need to consider

` := lim
p∨q→∞

qq(qp − q)
qp−q
p

qqp
.
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With similar arguments to those in Theorem 5.1, this transforms to

` = lim
p∨q→∞

qq(qp)
qp−q
p

qqp
e
− q
p = e

− limp∨q→∞
q
p .

Corollary 5.4.

• limp→∞ |T pq |/qq
p

= 1 if q is fixed.
• limq→∞ |T pq |/qq

p
= 0 if p is fixed.

Corollary 5.5. Let q = p. Then

lim
p→∞

|T pp |
ppp

= 1/e.

Remark 5.6. Clearly all the limits above are computed for p and q
running over the natural numbers, but they hold in particular for the sub-
sequences of increasing primes p and possible orders of finite fields q.

6. Example. Let us consider the structure of T 2
2 as an example. Let α

be a root of x2 + x+ 1 = 0, so that F22 = F2[α]/(α2 + α + 1). It is easy to
check that for each polynomial f ∈ L with

L := {0, 1, x2 + x, x2 + x+ 1, x3, x3 + 1, x3 + x2 + x, x3 + x2 + x+ 1}
we have f(α) ∈ F2. We know that T 2

2 contains eight polynomials, so that

T 2
2 =

F2[x]

(x4 − x)
\ L

= {x, x+ 1, x2, x2 + 1, x3 + x2 + 1, x3 + x, x3 + x2, x3 + x+ 1}.
The structure is C2 ×M2.

Indeed, C2
1 oM2 = M2 and consists of

{x, x2 + 1, x3 + x2, x3 + x+ 1},
that is, those functions which fix F4 \ F2 and act as M2 on F2.

Also C2 oM1 = C2 and consists of

{x, x2},
that is, those functions which fix F2 and act as C2 on F4\F2. This is also H2

2 .
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