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A generalization of a theorem of Erdős–Rényi
to m-fold sums and differences
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Kathryn E. Hare and Shuntaro Yamagishi (Waterloo)

1. Introduction. Given a set S ⊆ N, we define RmS (n) to be the number
of representations of the form n = s1 + · · · + sm, where si ∈ S and s1 ≤
· · · ≤ sm. We say that the set S is of type Bm(g) if

RmS (n) ≤ g

for all n. In [10], Vu gives a brief history of the topic, which we paraphrase
here. In 1932, Sidon, in connection with his work in Fourier analysis, in-
vestigated power series of type

∑∞
i=1 z

ai when (
∑∞

i=1 z
ai)m has bounded

coefficients [9]. This leads to the study of sets of type Bm(g). One classical
question in this area is the following (see [7]):

“Let S be a set of type Bm(g). How fast can S(n) grow, where S(n) is
the number of elements of S not exceeding n?”

In [3], Erdős and Rényi gave an answer to this question for m = 2. This
result was discussed in great detail in the monograph of Halberstam and
Roth [5].

Theorem 1.1 (Erdős–Rényi). For any ε > 0, there exists g = g(ε) and
a set S ⊆ N of type B2(g) such that

S(n) > n1/2−ε

for sufficiently large n.

The result is best possible up to the ε term in the exponent. Erdős–Rényi
used a probabilistic argument, and their proof was presented in [5] in a more
rigorous and carefully written form. This theorem can be generalized from
2-fold sums to the following theorem for arbitrary m-fold sums, as was noted
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in [4] and [5] (without proof), and also by Vu who also observed that it can
be deduced as a consequence of a more general result proven in [10].

Theorem 1.2. For any positive integer m ≥ 2 and any ε > 0, there
exists g = g(ε,m) and a set S ⊆ N of type Bm(g) such that

S(n) > n1/m−ε

for sufficiently large n.

Given a set E(ω) ⊆ N we define r
(m)
N (ω) to be the number of ways

to represent N ∈ Z as a combination of sums and differences of m distinct
elements of E(ω). In this paper, we prove the existence of a “thick” set E(ω)

and a positive constant K such that r
(m)
N (ω) < K for all N ∈ Z. Hence, our

theorem is a (partial) generalization of Theorem 1.2. The caveat here is that

with r
(m)
N (ω) we do not allow repeated elements in the representation, for

otherwise every infinite set will admit integers N with r
(m)
N (ω) =∞. (Take

N = 0 when m is even, for instance.)
Our main result is the following:

Theorem 1.3. For any positive integer m ≥ 2 and ε > 0, there exists
K = K(ε,m) and a set E(ω) ⊆ N such that

r
(m)
N (ω) < K

for all N ∈ Z, and

card(E(ω) ∩ {1, . . . , n})� n1/m−ε

for sufficiently large n.

We will also prove analogous results for
⊕∞

0 Z(q),
⊕∞

0 Z(qn) for {qn}
increasing integers, and Z(q∞) where q is prime. Here Z(m) denotes the
cyclic group of order m ∈ N and Z(q∞) is the group of all qnth roots of
unity. The notation

⊕∞
0 means the countable direct sum.

In Section 4, we give an application of our results to harmonic analysis.
A subset E of a discrete abelian group with dual group X is called a Λ(q)
set (for some q > 2) if whenever f ∈ L2(X) and the Fourier transform of
f is non-zero only on E, then f ∈ Lq(X). A completely bounded Λ(q) set is
defined in a similar spirit, but is more complicated and we refer the reader
to Section 4 for the definition. We prove that for any integer m ≥ 2 and
ε > 0, every infinite discrete abelian group contains a set that is completely
bounded Λ(2m), but not Λ(2m+ ε).

We use Vinogradov’s well-known notation � and �.

2. Preliminaries. Let G be any one of Z,
⊕∞

0 Z(q) where q ∈ N,
Z(q∞) where q is prime, or

⊕∞
0 Z(qn) where {qn} are strictly increasing odd

integers. (The case when not all qn are odd requires a notational adaptation
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that we will leave for the reader.) We define G′ to be N if G = Z and
G′ = G \ {0} otherwise.

If ψ ∈
⊕∞

0 Z(q), then ψ = (ψi)
∞
i=0, where each ψi is in Z(q) and all but

finitely many ψi are zero. Given ψ = (ψi)
∞
i=0, we call the maximum i such

that ψi 6= 0 the degree of ψ (written degψ). We also let deg 0 = −∞. By
choosing the representative 0 ≤ ψi < q for each i, we can identify ψ 6= 0
with the natural number ψ0 +ψ1q+ · · ·+ψdq

d, where d = degψ. This gives
a one-to-one correspondence between

⊕∞
0 Z(q) and N ∪ {0}. Notice there

are qd+1 − qd elements of degree d for each d ≥ 0.

If ψ ∈ Z(q∞) and ψ 6= 0, then ψ is the argument of a primitive qM th
root of unity for a unique choice of M ; in other words, ψ = j/qM where
j ∈ {1, . . . , qM − 1} and q - j. We let degψ = M − 1 and deg 0 = −∞.
Again, for each d ≥ 0, there are qd+1 − qd elements of degree d. We can
identify Z(q∞) with N ∪ {0} by assigning 0 to 0, and elements of degree d
to {qd, qd + 1, . . . , qd+1 − 1} for each d ≥ 0 in the natural way.

In the case that G =
⊕∞

0 Z(qn) where qn are strictly increasing odd
integers we choose representatives from {−(qn − 1)/2, . . . , (qn − 1)/2} for
each Z(qn). We define the degree of ψ = (ψi)

∞
i=0 in the same manner as

for
⊕∞

0 Z(q). We will identify the 2q0 · · · qd−1 characters ψ = (ψi) which
have degree d and dth coordinate ψd = ±r, r ∈ N, with the integers in the
interval [(2r−1)q0 · · · qd−1, (2r+1)q0 · · · qd−1) (where, if d = 0, we understand
q0 · · · qd−1 = 1). Hence, the characters of degree d are assigned to integers
in {q0 · · · qd−1, . . . , q0 · · · qd − 1}.

Thus, for any of the four choices of G above, we have G′ = {χn}∞n=1 where
χn is the non-zero element of G uniquely associated with the integer n.

Given real numbers αn with 0 < αn < 1, we let Yn, n = 1, 2, . . . ,
be independent Bernoulli random variables defined on a probability space
(Ω,M,P ), with P (Yn = 1) = αn and P (Yn = 0) = 1 − αn. For each of the
groups G we define random subsets

E(ω) = E(ω,G) = {χn ∈ G′ : Yn(ω) = 1}.

Throughout the paper we will be specifying a positive number s and putting

(2.1) αn = n−s when G = Z,
∞⊕
0

Z(q) or Z(q∞)

and

(2.2) αn =

{
n−s if q0 · · · qd−1 < n ≤ (2b qd8mc+ 1)q0 · · · qd−1 and qd > 8m,

0 else

when G =
⊕∞

0 Z(qn).

Note we have αn ≤ n−s for all n in the last case as well.
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Let m ≥ 2 be a positive integer. For t ∈ {0, 1, . . . ,m}, we define

r
(m)
N,t (ω) := card

{
(a1, . . . , am) : χai ∈ E(ω),

t∑
i=1

χai −
m∑

i=t+1

χai = χN ,

a1 < · · · < at, at+1 < · · · < am, ai 6= aj for i 6= j
}
.

For clarification, we note that when t = 0 and t = m, we mean to consider
the expressions −

∑m
i=1 χai = χN and

∑m
i=1 χai = χN , respectively, with

a1 < · · · < am. We also define

(2.3) r
(m)
N (ω) :=

m∑
t=0

r
(m)
N,t (ω).

Lastly, we recall a fact about elementary symmetric functions that will be
useful later.

Lemma 1. Let {yk}k>0 be a sequence of non-negative numbers. For each
d ∈ N, we write

σd =
∑

k1<···<kd

yk1 · · · ykd ;

in other words, σd is the dth elementary symmetric function of the yk. Then

σd ≤ σd1/d!.

Proof. See [5, p. 147, Lem. 13].

3. m-fold sums and differences. Our main result, Theorem 1.3, fol-
lows fairly easily from Theorem 3.3 below. This will be proven by induction,
with the base case taken care of in Corollary 3.2 (following Proposition 3.1).
Unless we specify otherwise in the statement of the results, in this section
G can be considered to be any one of Z,

⊕∞
0 Z(q), Z(q∞) or

⊕∞
0 Z(qn).

We begin with some observations utilized in the proof of the next lemma:
Suppose χn =

∑m
i=1 εiχni , where εi = ±1, ni are distinct and all αni 6= 0.

When G = Z, we have max1≤i≤m |ni| ≥ |n|/m.

When G =
⊕∞

0 Z(q), Z(q∞) (resp.
⊕∞

0 Z(qn)) and degχn = d, then
qd ≤ n ≤ qd+1 (resp. q0 · · · qd−1 ≤ n ≤ q0 · · · qd). Since deg(χa ± χb) ≤
max{degχa,degχb}, it follows that max1≤i≤m degχni ≥ degχn.

When G =
⊕∞

0 Z(qn) and χn = (χn,j)
∞
j=1 with degree d ≥ 0, then

n ≤ (2|χn,d|+ 1)q0 · · · qd−1.
If max1≤i≤m degχni = degχn (which can occur only if qd > 8m as we are
assuming all αni are non-zero), then the modulus of the dth coordinate
of χni is at least b|χn,d|/mc for some χni of maximal degree. This is be-
cause addition in the dth coordinate on the terms where αni 6= 0 is the
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same as in Z (recall (2.2)). Thus (whether max1≤i≤m degχni > degχn or
max1≤i≤m degχni = degχn) there must be some i such that

ni ≥ (2b|χn,d|/mc − 1)q0 · · · qd−1 ≥
|χn,d|
m

q0 · · · qd−1.

Lemma 2. Given m ≥ 2, we let s = (m− 1)/m+ θ where 0 < θ < 1/m,
and let αn be as in (2.1) and (2.2). Fix ε1, . . . , εm ∈ {±1}. Then

(3.1)
∑

(n1,...,nm)∈Nm∑m
i=1 εiχni=χn

αn1 · · ·αnm ≤
{
Cm if n = 0,

Cm/|n|mθ if n 6= 0,

where Cm is a positive constant dependent only on G, m and s.

Proof. We only give the proof for G =
⊕∞

0 Z(q) and
⊕∞

0 Z(qn) as the
other cases can be obtained by similar calculations. We use the fact that∑

n≤A n
−s � A1−s in both these cases.

Case G =
⊕∞

0 Z(q). If n 6= 0, let t0 ≥ 0 be such that n ∈ [qt0 , qt0+1). If
n = 0, we let t0 = 0. In either case, we have max1≤i≤m degχni ≥ t0 for any
choice of (n1, . . . , nm) in the summand of (3.1). Therefore, we can simplify
and bound the sum (3.1) as follows:

(3.2)
∑

(n1,...,nm)∈Nm∑m
i=1 εiχni=χn

αn1 · · ·αnm ≤
∞∑
t=t0

∑
∑m

i=1 εiχni=χn

maxni∈[qt,qt+1)

αn1 · · ·αnm

≤
∞∑
t=t0

1

qts

∑
ni<q

t+1

1≤i<m

αn1 · · ·αnm−1 ≤
∞∑
t=t0

1

qts

( ∑
n<qt+1

αn

)m−1
.

As αn ≤ n−s we deduce that∑
(n1,...,nm)∈Nm∑m

i=1 εiχni=χn

αn1 · · ·αnm ≤ Cmq−t0mθ,

which is equivalent to the inequality we desired to show.

Case G =
⊕∞

0 Z(qn). Since αn1 · · ·αnm 6= 0 if and only if all αnj 6= 0,
the comments preceding the statement of the lemma imply that if degχn =
d ≥ 0 (the case n = 0 will be left for the reader), then we may rewrite the
sum as ∑

(n1,...,nm)∈Nm∑m
i=1 εiχni=χn

αn1 · · ·αnm =

∞∑
k=0

∑
∑m

i=1 εiχni=χn

maxni∈[2k,2k+1)q0···qd−1|χn,d|/m

αn1 · · ·αnm
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≤
∞∑
k=0

(2kq0 · · · qd|χn,d|/m)−s
( ∑
j≤2k+1q0···qd−1|χn,d|/m

αj

)m−1
�

∞∑
k=0

(2kq0 · · · qd−1|χn,d|/m)−s(2k+1q0 · · · qd−1|χn,d|/m)(1−s)(m−1)

�
∞∑
k=0

(2kq0 · · · qd−1|χn,d|/m)−θm.

The final expression is comparable to n−θm.

We will first study r
(m)
N (ω) with m = 2.

Proposition 3.1. Let s = 1/2 + θ where 0 < θ < 1/2. Then, for any
ε > 0, there exists K = K(G, s) such that∑

N

P ({ω ∈ Ω : r
(2)
N (ω) ≥ K}) < ε.

Proof. By definition, we have

(3.3) r
(2)
N (ω) = card{(a, b) : χa, χb ∈ E(ω),

±(χa + χb) = χN , a < b, or χa − χb = χN , a 6= b}.
If χa′ + χb′ = χN and χa′ + χc′ = χN , then b′ = c′, and similarly if we
consider subtraction. Thus, given any χa′ there are at most four ways in
which χa′ could appear as one of χa or χb in the three equations consid-

ered in (3.3). Hence, if r
(2)
N (ω) ≥ K, then there exist at least bK/4c pairs

(ai, bi), 1 ≤ i ≤ bK/4c, counted in (3.3), such that every element of the
set {ai, bj}1≤i,j≤bK/4c is distinct. By the pigeon-hole principle, one of the
three equations considered in (3.3) must be satisfied by at least one third of
these bK/4c pairs. Without loss of generality, we suppose it is the equation
χa + χb = χN with a < b, as the other two cases can be treated in a similar
manner. Let L = bK/12c. By independence, we have

(3.4) P ({ω ∈ Ω : r
(2)
N (ω) ≥ K})
≤ P ({ω ∈ Ω : there exist L pairs (ai, bi)

such that χai , χbi ∈ E(ω), χai + χbi = χN ,

ai < bi, and ai, bj all distinct})

≤
∑
S(L)

L∏
i=1

P ({ω ∈ Ωm : χai , χbi ∈ E(ω)}),

where S(L) is the collection of all L distinct pairs, (ai, bi), 1 ≤ i ≤ L, such
that χai + χbi = χN and ai < bi.
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Since the last inequality of (3.4) gives us an Lth elementary symmetric
function, we can bound it by Lemmas 1 and 2:

P ({ω ∈ Ω : r
(2)
N (ω) ≥ K}) ≤ 1

L!

(∑
S(1)

αaαb

)L
≤

{
1
L!C

L if N = 0,
1
L!C

L/|N |2θL if N 6= 0,

for some positive constant C. As θ > 0, we obtain

(3.5)

∞∑
N=−∞

P (r
(2)
N (ω) ≥ K) ≤ 2

∞∑
N=2

1

L!
CL

1

|N |2θL
+ 3

1

L!
CL < ε,

for L large enough. Notice that if G =
⊕∞

0 Z(q) or Z(q∞) or
⊕∞

0 Z(qn),
then we only need to take the sum on the left side of (3.5) from N = 0
to ∞.

Corollary 3.2. Let s = 1/2 + θ and 0 < θ < 1/2. Given any ε > 0,

there exist K = K(G, s) and Ω2 ⊆ Ω such that P (Ω2) ≥ 1 − ε and r
(2)
N (ω)

< K for all N and all ω ∈ Ω2.

Proof. By Proposition 3.1, we can find K with
∑

N P (r
(2)
N (ω) ≥ K) < ε.

Let Ω2 = {ω ∈ Ω : r
(2)
N (ω) < K for all N}. Then

P (Ωc
2) = P ({ω ∈ Ω : there exists N such that r

(2)
N (ω) ≥ K})

≤
∑
N

P (r
(2)
N (ω) ≥ K) < ε.

We complete the induction argument in the following proof. The argu-
ment is similar to the base case, but slightly more involved due to the larger
value of m. We will then prove the required density property of the subsets
in Corollary 3.6.

Theorem 3.3. Let m ≥ 2 be a positive integer. If s = (m− 1)/m+θ for
0 < θ < 1/m, then for all ε > 0 there exist Km = Km(G, ε, s) and Ωm ⊆ Ω
such that P (Ωm) ≥ 1− ε and r

(m)
N (ω) < Km for all N and all ω ∈ Ωm.

Proof. We proceed by induction. Corollary 3.2 gives us the base case.
Suppose the statement holds for m0 < m. Fix ε > 0. We may rewrite s
as s = (m0 − 1)/m0 + θ′ with 0 < θ′ < 1/m0. Thus, by the inductive
hypothesis there exist Km0 and Ωm0 such that P (Ωm0) ≥ 1− ε/(2(m0 + 2))

and r
(m0)
N (ω) < Km0 for all N and for all ω ∈ Ωm0 .

Let ω ∈ Ωm0 and fix t ∈ {0, 1, . . . ,m0 + 1} and an integer N . Suppose
for each i = 1, . . . ,K that

(3.6) χ
a
(i)
1

+ · · ·+ χ
a
(i)
t
− (χ

a
(i)
t+1

+ · · ·+ χ
a
(i)
m0+1

) = χN ,

with

(3.7) a
(i)
1 < · · · < a

(i)
t , a

(i)
t+1 < · · · < a

(i)
m0+1 and a(i)u 6= a

(i)
u′ if u 6= u′.
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Assume there exist some i1, . . . , ir and s1, . . . , sr such that a
(i1)
s1 = a

(ij)
sj for

all j ∈ {1, . . . , r}. Then, for each j ∈ {1, . . . , r}, we have

(3.8) χ
a
(ij)

1

+ · · ·+ χ
a
(ij)

t

− (χ
a
(ij)

t+1

+ · · ·+ χ
a
(ij)

m0+1

)+εjχ
a
(ij)
sj

= χN+εjχa(i1)s1

,

where εj is −1 if sj ≤ t and +1 if sj > t, making the left hand side of (3.8)
into a combination of m0 terms. This gives us a total of r representations for
χN +χ

a
(i1)
s1

and χN −χa(i1)s1

as a combination of m0 terms. By the inductive

hypothesis, we have r ≤ 2Km0 . Therefore, it follows that each (m0+1)-tuple

(a
(i)
1 , . . . , a

(i)
m0+1), 1 ≤ i ≤ K, has at most 2(m0+1)Km0 other (m0+1)-tuples

which it may possibly share an entry with. Hence, by reordering if necessary,

there exists a subset of L =
⌊

K
2(m0+1)Km0

⌋
(m0 + 1)-tuples (a

(l)
1 , . . . , a

(l)
m0+1),

1 ≤ l ≤ L, which satisfy (3.6) and (3.7), and the additional condition that

the elements of the set {a(l)j }1≤j≤m0+1, 1≤l≤L are distinct.
From the discussion above, and by independence, we have

(3.9) P ({ω ∈ Ωm0 : r
(m0+1)
N,t (ω) ≥ K})

≤ P
(
{ω ∈ Ωm0 : there exist L (m0 + 1)-tuples (a

(l)
1 , . . . , a

(l)
m0+1),

1 ≤ l ≤ L, such that

t∑
s=1

χ
a
(l)
s
−

m0+1∑
s=t+1

χ
a
(l)
s

= χN ,

all a
(l)
j are distinct, and χ

a
(l)
j

∈ E(ω)}
)

≤
∑
S(L)

L∏
l=1

P ({ω ∈ Ωm0 : χ
a
(l)
j

∈ E(ω), 1 ≤ j ≤ m0 + 1}),

where S(L) is the collection of all L distinct (m0+1)-tuples (a
(l)
1 , . . . , a

(l)
m0+1),

1 ≤ l ≤ L, such that
t∑

s=1

χ
a
(l)
s
−

m0+1∑
s=t+1

χ
a
(l)
s

= χN ,

and a
(l)
i 6= a

(l)
j if i 6= j.

Since the last inequality of (3.9) gives us an Lth elementary symmetric
function, we can bound it by Lemmas 1 and 2:

P (ω ∈ Ωm0 : r
(m0+1)
N,t (ω) ≥ K}) ≤ 1

L!

(∑
S(1)

αa1 . . . αam0+1

)L
≤
{

1
L!C

L
m0+1 if N = 0,

1
L!(Cm0+1/|N |(m0+1)θ)L if N 6= 0,

for some positive constant Cm0+1.
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For each t ∈ {0, 1, . . . ,m0 + 1}, let Ω̃t = {ω ∈ Ωm0 : r
(m0+1)
N,t (ω) < K for

all N}. We can then follow the arguments of Proposition 3.1 and Corollary
3.2 and deduce the existence of K such that for any t ∈ {0, 1, . . . ,m0 + 1},

(3.10) P (Ω̃c
t ) ≤ P ({ω ∈ Ωm0 : there exists N such that r

(m0+1)
N,t (ω) ≥ K})

+ P (Ω/Ωm0)

≤
∑
N

P ({ω ∈ Ωm0 : r
(m0+1)
N,t (ω) ≥ K}) +

ε

2(m0 + 2)
<

ε

m0+2
.

If we let

Km0+1 = (m0 + 2)K and Ωm0+1 =

m0+1⋂
t=0

Ω̃t,

the result follows by (2.3).

Corollary 3.4. Let m ≥ 2 be a positive integer. If s = (m− 1)/m+ θ
for 0 < θ < 1/m, then for a.e. ω,

sup
N
r
(m)
N (ω) <∞.

Proof. This follows easily from Theorem 3.3.

To prove Theorem 1.3 we make use of the following variant of the Strong
law of large numbers (cf. [5, p. 140, Thm. 11]). We denote by Exp(Y ) the
expectation of the random variable Y .

Theorem 3.5. Let {Yi} be simple, independent random variables and

SN =
∑N

i=1 Yi. Assume Exp(Yi) > 0, limN→∞ SN =∞ and∑
i

VarYi
(Exp(Si))2

<∞.

Then SN/Exp(SN )→ 1 as N →∞ a.e.

Corollary 3.6. Let m ≥ 2 be a positive integer. Given any ε > 0, there
exists Km = Km(G, ε) and a set E(ω) ⊆ G′ such that

r
(m)
N (ω) < Km

for all N , and there is a constant c = c(G,m, ε) such that

(3.11) card({χ1, . . . , χn} ∩ E(ω)) ≥ cn1/m−ε

for all n when G = Z,
⊕∞

0 Z(q) or Z(q∞), and for infinitely many n when
G =

⊕∞
0 Z(qj).

Proof. Let s = (m− 1)/m + ε. The result follows easily from Theorem
3.5 when G = Z,

⊕∞
0 Z(q) or Z(q∞).
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In the case that G =
⊕∞

0 Z(qn), let {ji} be the indices such that αji 6= 0.

Put Zi = Yji and SN =
∑N

i=1 Zi. Then VarZi ≤ Exp(Yji) ≤ j−si and

Exp(SN ) = Exp(
∑jN

i=1 Yi). If we suppose jN ∈ [q0 · · · qd, q0 · · · qd+1) (which

implies jN ≤
(
2
⌊ qd+1

8m

⌋
+ 1
)
q0 · · · qd), then

(3.12) Exp(SN ) =
∑

j<q0···qd

αj +

jN∑
j=q0···qd

αj .

Provided d is suitably large, the first sum is at least

q0···qd−1∑
j=q0···qd−1

αj ≥
q0···qd/8m−1∑
j=q0···qd−1+1

j−s � (q0 · · · qd/4m)1−s − (q0 · · · qd−1)1−s

� (q0 · · · qd)1−s.

If q0 · · · qd < j ≤ jN , then we must also have αj = j−s. Hence the second

sum in (3.12) is equal to
∑jN

j=q0···qd+1 j
−s and that is comparable to j1−sN −

(q0 · · · qd)1−s. Putting these together shows that Exp(SN )� j1−sN .

One can also easily check that∑
j≤q0···qd

αj � j1−sN ,

so that Exp(SN ) is comparable to j1−sN . Thus Theorem 3.5 can again be
applied to deduce that for a.e. ω,

SN (ω) = card(E(ω) ∩ {χ1, . . . , χjN })� j1−sN .

In particular, for large d,

card
(
E(ω) ∩

d∏
n=0

Z(qn)
)

= card(E(ω) ∩ {χ1, . . . , χ(2bqd/8mc+1)q0···qd−1
})

� ((2bqd/8mc+ 1)q0 · · · qd−1)1−s � (q0 · · · qd)1−s.

4. Application to the existence of thin sets in harmonic analysis.
In this section, G will denote any discrete abelian group with compact dual
group X. The groups Z,

⊕∞
0 Z(q),

⊕∞
0 Z(qn), and Z(q∞) are examples of

such discrete groups. The symbol f̂ denotes the Fourier transform of the
integrable function f defined on X. A subset E of G is said to be a Λ(p)
set for p > 2 if there is a constant Cp such that ‖f‖p ≤ Cp‖f‖2 whenever

f is an E-trigonometric polynomial, meaning f̂ is non-zero only on E. As
Lp(X) ⊆ Lq(X) if p ≥ q, it follows that if E is Λ(p), then it is Λ(q) for all
q ≤ p.
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This notion was introduced for subsets of Z by Rudin [8], who proved
many important facts about Λ(p) sets. In particular, he showed that if E ⊆ Z
is Λ(p), then for all integers a, d,

(4.1) card(E ∩ {a+ d, . . . , a+Nd})� N2/p.

He also showed that if for some integer m ≥ 2,

(4.2) sup
n∈Z

(card{(n1, . . . , nm) ∈ Em : n = n1 + · · ·+ nm}) <∞,

then E is Λ(2m). Rudin used these properties to construct examples of sub-
sets of Z which were Λ(2m) for a specified integer m ≥ 2, but not Λ(2m+ε)
for any ε > 0. Hajela [4] extended Rudin’s properties and constructions to
various other discrete abelian groups, although only achieving the existence
of “exact” Λ(2m) sets for m < q when G =

⊕∞
0 Z(q) for q prime, and for

m = 2 when G = Z(q∞). Later, Bourgain [1] completely settled this problem
by using sophisticated probabilistic methods to prove the existence of exact
sets Λ(p) for all p > 2 and all infinite, discrete abelian groups G.

Using Pisier’s operator space complex interpolation, Harcharras [6] intro-
duced the notion of completely bounded Λ(p) sets: Let p > 2. A set E ⊆ G
is called completely bounded Λ(p) (cbΛ(p) for short) if there is a constant
Cp such that

‖f‖Lp(X,Sp) ≤ Cp max
[∥∥∥(∑

γ∈E
f̂(γ)∗f̂(γ)

)1/2∥∥∥
Sp

,
∥∥∥(∑

γ∈E
f̂(γ)f̂(γ)∗

)1/2∥∥∥
Sp

]
for all Sp-valued, E-trigonometric polynomials defined on X. Here Sp de-
notes the Schatten p-class with ‖T‖Sp = (tr |T |p)1/p and

‖f‖Lp(X,Sp) =
( �
X

‖f(x)‖pSp
dx
)1/p

.

Harcharras showed that completely bounded Λ(p) sets are always Λ(p), but
not conversely. She also improved upon Rudin’s condition (4.2) by estab-
lishing that E ⊆ G is cbΛ(2m) for integer m ≥ 2 if

(4.3)

sup
χ∈G

(
card

{
(χ1, . . . , χm) ∈ Em : χ =

m∑
j=1

(−1)jχj with χj distinct
})

<∞.

We remark that this condition was new even for Λ(2m) sets. Harcharras
used this property to construct examples of subsets of Z that were cbΛ(2m)
but not Λ(2m+ ε) for any ε > 0.

Here we will generalize upon this result by using (4.3) to show that
every infinite, discrete abelian group G admits a set that is cbΛ(2m), but
not Λ(2m + ε) for any given ε > 0. This will use the work of the previous
part of the paper, as well as the following known generalization of (4.1).
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Lemma 3 ([2]). If E ⊆ G is a Λ(p) set for some p > 2, then there is a
constant C such that card(E ∩ Y ) ≤ CN2/p whenever Y ⊆ G is either an
arithmetic progression or a finite subgroup of cardinality N .

Fix an integer m ≥ 2 and ε > 0. We will first consider G = Z, Z(q∞),⊕∞
0 Z(q) or

⊕∞
0 Z(qn), where the qn are strictly increasing odd primes. We

denote the elements of G′ by {χn}∞n=1, as described in the previous section,
and let E(ω) be the random sets defined previously, with s = (m−1)/m+θ
where θ > 0 is chosen so that 1− s > 2/(2m+ ε).

Proposition 4.1. For a.e. ω, E(ω) is cbΛ(2m) but not Λ(2m+ ε).

Proof. In the notation of (2.3), Haracharras’ condition could be ex-
pressed as

E(ω) is cbΛ(2m) if sup
N
r
(m)
N (ω) <∞

and we have already seen that supN r
(m)
N (ω) is finite for a.e. ω by Corollary

3.4. Also, Corollary 3.6 shows that for a.e. ω,

card(E(ω) ∩ {χ1, . . . , χN})� N1−s

when G = Z, Z(q∞) or
⊕∞

0 Z(q), and

card(E(ω) ∩ {χ1, . . . , χq0···qN })� (q0 · · · qN )1−s

for sufficiently large N when G =
⊕∞

0 Z(qn).

If G = Z, then {χ1, . . . , χN} is an arithmetic progression of length N . If
G = Z(q∞) or

⊕∞
0 Z(q), then {χ1, . . . , χqN−1} is a subset of a subgroup of

cardinality qN , and similarly for G =
⊕∞

0 Z(qn), but with qN replaced by
q0 · · · qN . In all cases, the choice of s together with Lemma 3 implies that
E(ω) is not Λ(2m+ ε) for a.e. ω.

Theorem 4.2. Let m ≥ 2 be an integer and ε > 0. Every infinite discrete
abelian group G contains a set E that is cbΛ(2m) but not Λ(2m+ ε).

Proof. As observed in [2], any such group G contains a subgroup iso-
morphic to one of Z, Z(q∞),

⊕∞
0 Z(q) for q prime, or

⊕∞
0 Z(qn), where the

qn are strictly increasing odd primes.

Observe that if G0 is a subgroup of G and f is an Sp-valued G0-poly-
nomial, then f is constant on the cosets of G⊥0 , the annihilator of G0. The
same is true for ‖f‖S2m , for any integer m. It follows from this that if E ⊆ G0

is a cbΛ(2m) set, then E viewed as a subset of G is also cbΛ(2m), and that
E ⊆ G0 is a Λ(2m + ε) set if and only if E viewed as a subset of G is
Λ(2m+ ε).

Hence it suffices to prove the theorem for the four subgroups listed above,
and this was done in the previous proposition.
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