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1. Introduction. In metric Diophantine approximation, the Khinchin–
Groshev theorem provides a measure-theoretic characterization of matrices
with prescribed approximation properties. In the present paper, we study
certain analogues of the theorem in function fields. We begin by recalling
some results in Diophantine approximation of complex numbers. In 1854,
Ch. Hermite [9] proved that for every z ∈ C \ Q(i), there exist infinitely
many (p, q) ∈ Z[i] such that ∣∣∣∣z − p

q

∣∣∣∣ ≤ 1√
2 |q|

.

This theme was developed by several authors including L. Ford, A. L.
Schmidt and others. W. J. LeVeque [15] proved a variation of Khinchin’s
theorem for Q(i), which was generalized by D. Sullivan [25]. Let d be a pos-
itive integer which is not a perfect square and let Od denote the ring of in-
tegers in Q(

√
−d). A function ψ : (0,∞)→ (0,∞) is called quasi-conformal

if there exists c > 0 such that

ψ(ht) ≤ cψ(t) for all h ∈ [1/2, 2] and t > 0.

Theorem 1.1 (Sullivan). Let ψ be a quasi-conformal function as above.
Then for almost every complex number z, there exist infinitely many p, q∈Od
so that ∣∣∣∣z − p

q

∣∣∣∣ ≤ ψ(|q|)
|q|2

and (p, q) = Od

if and only if
∞�

0

ψ(x)2

x
dx =∞.
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Above, (p, q) is the ideal generated by p and q. Further, H. Nakada [19]
obtained an asymptotic for the number of solutions. On the other hand,
the metric theory of Diophantine approximation over local fields of positive
characteristic has also seen several advances. B. de Mathan [17] proved an
analogue of Khinchin’s theorem in this setting. This was generalized by
S. Kristensen to systems of linear forms [13]. See also the related works [10],
[11], [5], [4]. We will obtain a version of the Khinchin–Groshev theorem for
imaginary quadratic extensions of function fields, which as a special case
includes an analogue of Sullivan’s result above in the function field setting.

1.1. Basic notation. Let F = Fs be a field of s elements, where of
course s is a prime power. Let A = F[T ] be the ring of polynomials over F
and let k = F(T ) be its field of fractions. Denote by | · | the absolute value
function on k generated by

|f(T )| = sdeg(f)

for f(T ) ∈ A. It is easy to see that this valuation is ultrametric. Let k∞ be
the completion of k with respect to this absolute value function. This gives
us the field of Laurent polynomials in T−1 over F. That is,

k∞ = F((T−1)) =
{ N∑
i=−∞

xiT
i : N ∈ Z, xi ∈ F

}
.

Let o = {x ∈ k∞ : |x| ≤ 1} and denote by p its unique prime ideal, i.e.
p = {x ∈ k∞ : |x| < 1}. For x ∈ k∞ denote by [x] the polynomial part of x,
and by {x} the tail of x, i.e.

[x] =
[ N∑
i=−∞

xiT
i
]

=

N∑
i=0

xiT
i ∈ A, {x} =

{ N∑
i=−∞

xiT
i
}

=

−1∑
i=−∞

xiT
i ∈ p.

For x ∈ k∞ define |〈x〉| to be the distance of x to A given by

|〈x〉| = min{|x− p| : p ∈ A}.

1.2. ψ-approximable matrices and quadratic extensions. Let ψ :
[1,∞) → (0,∞) be a non-increasing continuous function with ψ → 0. Let
f(T ) ∈ A be squarefree so that K = k(

√
f(T )) is a quadratic extension of

k. Depending on our choice of f(T ) it may or may not be true that
√
f(T )

∈ k∞. We are interested in the case when k∞(
√
f(T ))/k∞ is an extension

of degree 2. Let d be the degree of f(T ). It turns out that
√
f(T ) ∈ k∞

exactly when d is even and has square leading coefficient [20, Proposition
14.6]. Following E. Artin, we call K imaginary if this is not the case. We fix
such an f and set K∞ := k∞(

√
f(T )).

Let B ⊆ K be the integers over A, that is,

B = {x ∈ K : x is a root of some monic h(U) ∈ A[U ]}.
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It is not difficult (Lemma 2.1) to see that B = A[
√
f(T )] provided that

2 - s. The study of Diophantine approximation of Laurent series in K∞ by
ratios of polynomials in B is thus a function field analogue of Diophantine
approximation of complex numbers discussed earlier.

Let Mm×n(K∞) denote the set of m×n-matrices with real valued entries,
‖ · ‖ denote the L∞ norm and I be the ball {z ∈ Mm×n(K∞) : ‖z‖ ≤ 1}. We
denote by µ the Haar measure on Mm×n(K∞) normalized so that µ(I) = 1.
We say that z is ψ-approximable if there exist infinitely many q ∈ Bn and
p ∈ Bm such that

(1.1) ‖zq + p‖2m ≤ ψ(‖q‖2n).

Denote by Wm×n(ψ) the set of all ψ-approximable matrices in Mm×n(K∞).
Using the Borel–Cantelli lemma we will show (Proposition 2.8) that, pro-
vided 2 - s,

µ(Wm×n(ψ)) = 0 if

∞�

1

ψ(x) dx <∞.

We note that the condition 2 - s is almost certainly not needed for the
convergence case to hold although our proof uses this. The main result of
this paper is the converse and does not need any conditions:

Theorem 1.2. Wm×n(ψ) has full measure if

∞�

1

ψ(x) dx =∞.

Our proof uses the ergodic theory of group actions on homogeneous
spaces. We use a strategy due to D. Kleinbock and G. Margulis [12], imple-
mented in the positive characteristic setting by J. Athreya, A. Ghosh and
A. Prasad [1]. In §2 we record some facts about function fields and also
show the convergence case of Theorem 1.2. In §3, we discuss our main tool,
which is a “shrinking target” result from [1], and complete the proof of The-
orem 1.2. In fact, an asymptotic formula for the number of solutions also
follows from our method. Details, along with Hausdorff and multiplicative
versions of Theorem 1.2, will appear in the PhD thesis of the second named
author [21].

2. Preliminaries and the convergence case. In this section, we
record some preliminary lemmas and also prove the convergence case of
Theorem 1.2. We begin with some facts about quadratic function fields.

Lemma 2.1. If 2 - s then B = A[
√
f(T )].
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Proof. Let x ∈ A[
√
f(T )]. We can write x in the form x = a+ b

√
f(T )

for some a, b ∈ A. Then x is a root of the monic polynomial

U2 − 2aU + (a2 − b2f(T )) ∈ A[U ]

and so A[
√
f(T )] ⊆ B.

Conversely let x ∈ K be integral over A. Write x = (a+b
√
f(T ))/c with

a, b, c ∈ A not all sharing a common factor, which we can do since A = F[T ]
is a unique factorization domain. It is easy to check that x is a root of the
following quadratic in k[U ]:

U2 − 2a

c
U +

a2 − b2f(T )

c2
.

If x ∈ k then, as A = F[T ] is integrally closed in k, we have x ∈ A ⊂
A[
√
f(T )]. On the other hand, if x 6∈ k then the minimal monic polynomial

of x must divide the above quadratic, and have degree at least 2, and so is
equal to it. Thus c | 2a and c2 | a2 − b2f(T ). Now suppose d ∈ A is an irre-
ducible factor of c. If d | 2a then d | a as 2 is a unit. Hence d2 | a2− b2f(T )⇒
d2 | b2f(T ), and as f(T ) is squarefree, we have d | b. This contradicts a, b, c
sharing no common factor. Therefore c has no irreducible factors and so it
is a unit. We conclude that x ∈ A[

√
f(T )].

Lemma 2.2. Let f(T ) ∈ A be such that
√
f(T ) /∈ k∞. Then for all

x, y ∈ k,

|x+ y
√
f(T )|′ = max(|x|, |y| |f |1/2)

for any extension | · |′ of | · | to K.

Proof. Any extension | · |′ of | · | to K must restrict to | · | on k and satisfy
|
√
f |′ = |f |′1/2 = |f |1/2. The theory of valuations tells us that if | · |1, . . . , | · |d

are all extensions of | · | to K then

d∑
i=1

[Ki : k∞] = [K : k]

where Ki is the completion of K with respect to the valuation | · |i. Let K∞
be the completion of K with respect to | · |′. Then [K∞ : k∞] = 2 because√
f /∈ k∞ by assumption. Since [K : k] = 2 this means that there are no

more extensions of | · | to K. Since the map K → K sending
√
f to −

√
f is a

k-automorphism of K, we must have |x+ y
√
f |′ = |x− y

√
f |′ for all x, y ∈ k

or else we would generate another valuation lying over | · | for K.
Suppose there exist x, y ∈ k such that |x + y

√
f |′ < max(|x|′, |y

√
f |′).

Then by the ultrametric property we have |x|′ = |y
√
f |′. Since there is only

one valuation extension, we must have |x − y
√
f |′ < max(|x|′, |y

√
f |′) also.

But then

|(x+ y
√
f) + (x− y

√
f)|′ = |2x|′ = |x|′
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and

|(x+ y
√
f) + (x− y

√
f)|′ ≤ max(|x+ y

√
f)|′, |x− y

√
f |′) = |x+ y

√
(f)|′

< max(|x|′, |y
√
f |′) = |x|′,

a contradiction.

Since the extension | · |′ of | · | to K∞ is unique we will simply write | · |
in both cases.

2.1. Haar measures on k∞ and K∞. We discuss Haar measures on
local fields and their extensions in the context of the present paper. More
general constructions can be found in [24, 26].

Measuring balls in k∞. Let v > 0 and denote by Bk∞(v) the ball of
radius v centered at 0 in k∞, that is,

Bk∞(v) = {x ∈ k∞ : |x| < v}.
Let µk∞ be the Haar measure on k∞ normalized so that

µk∞(Bk∞(1)) = 1.

The range of possible values of | · | on k∞ is {sn : n ∈ Z}, so if we let
nv ∈ Z be the unique integer such that snv−1 < v ≤ snv , namely nv =
dlog(v)/log(s)e, then Bk∞(v) = Bk∞(snv). Thus it suffices to compute the
measure µk∞(Bk∞(v)) where v is of the form sn.

Lemma 2.3. For all m ∈ Z we have Bk∞(sm) = TmBk∞(1).

Proof. Let x ∈ Bk∞(sm), thus |x| < sm and so |T−mx| = |T−m| |x| =
s−m|x| < 1, and T−mx ∈ Bk∞(1). Therefore x = Tm(T−mx) ∈ TmBk∞(1).
Hence Bk∞(sm) ⊆ TmBk∞(1). Conversely, if x ∈ TmBk∞(1) then x = Tmy
for some y ∈ Bk∞(1) and so |x| = |Tm| |y| < sm, thus x ∈ Bk∞(sm). Hence
TmBk∞(1) ⊆ Bk∞(sm).

Lemma 2.4. Let m,n ∈ Z and n ≥ 0. Then

Bk∞(sm+n) =
⋃

f∈Fs[T ]
deg(f)<n

(Tmf +Bk∞(sm))

and the union is disjoint.

Proof. It is clear from the ultrametric property of | · | that the right-hand
side is included within the left, so let x ∈ Bk∞(sm+n). We have T−mx =
[T−mx] + {T−mx} where {T−mx} ∈ Bk∞(1), so T−mx ∈ [T−mx] +Bk∞(1).
Hence x ∈ Tm[T−mx] + TmBk∞(1) = Tm[T−mx] + Bk∞(sm) (Lemma 2.3).
Now deg([T−mx]) ≤ deg(T−mx) = deg(x)−m < n, and thus x is contained
in the right-hand side of the proposed equality.
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To prove that the union is disjoint, suppose that x ∈ Tmf + Bk∞(sm)
for some f ∈ Fs[T ] with deg(f) < n. Then T−mx ∈ f + Bk∞(1), and so
x ∈ (f + Bk∞(1)) ∩ ([T−mx] + Bk∞(1)), which implies by the ultrametric
property of | · | that f − [T−mx] ∈ Bk∞(1). Since Bk∞(1) ∩ Fs[T ] = {0}, we
deduce that f = [T−mx] is uniquely determined by x.

Lemma 2.5. For all n ∈ Z,

µk∞(Bk∞(sn)) = sn.

Proof. If n ≥ 0 then by Lemma 2.4 we have

Bk∞(sn) =
⋃

f∈Fs[T ]
deg(f)<n

(f +Bk∞(1)).

Since the union is disjoint and the Haar measure µk∞ is translation invariant,
it follows that

µk∞(Bk∞(sn)) = µk∞(Bk∞(1))#{f ∈ Fs[T ] : deg(f) < n} = sn.

If n < 0 then again by Lemma 2.4 we have

Bk∞(1) = Bk∞(sn−n) =
⋃

f∈Fs[T ]
deg(f)<−n

(Tnf +Bk∞(sn)),

from which it follows that

1 = µk∞(Bk∞(sn))#{f ∈ Fs[T ] : deg(f) < −n} = s−nµk∞(Bk∞(sn))

and again µk∞(Bk∞(sn)) = sn.

Since we have been working with powers of s, the following easy corollary
will be useful when we are working with a general v > 0.

Corollary 2.6. If v > 0 and n ∈ Z then

µk∞(Bk∞(snv)) = snµk∞(Bk∞(v)), v ≤ µk∞(Bk∞(v)) < sv.

Measuring balls in K∞. Let v > 0. We denote by BK∞(v) the ball of
radius v about 0 in K∞, that is,

BK∞(v) = {x ∈ K∞ : |x| < v}.

Let µK∞ be the Haar measure on K∞ normalized such that

µK∞(BK∞(1)) = 1.

We know that every element of K∞ is of the form x+y
√
f for some x, y ∈ k∞

and that |x+ y
√
f | = max(|x|, |y| |f |1/2) by Lemma 2.2, so

BK∞(v) = {x+ y
√
f : x, y ∈ k∞, |x| < v, |y| < v/|f |1/2}.
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Treating K∞ as the product k2∞, the product measure µk2∞ is a Haar measure
for K∞ so there exists some constant c > 0 such that

cµk2∞ = µK∞

and hence

µK∞(BK∞(v)) = cµk2∞(BK∞(v)) = cµk∞(Bk∞(v))µk∞(Bk∞(v/|f |1/2)).
The value c must be such that

cµk∞(Bk∞(1))µk∞(Bk∞(1/|f |1/2)) = cµk∞(Bk∞(1/|f |1/2)) = 1

thus c = sbdeg(f)/2c and

µK∞(BK∞(v)) = µk∞(Bk∞(v))µk∞(Bk∞(v/|f |1/2))sbdeg(f)/2c.
Corollary 2.6 then easily implies

Corollary 2.7. For all v > 0 and n ∈ Z:

(1) µK∞(BK∞(snv)) = s2nµK∞(BK∞(v)),
(2) µK∞(BK∞(sn)) = s2n,
(3) v2/s2 ≤ µK∞(BK∞(v)) < v2s2.

2.2. The convergence case. We now prove the convergence case of
Theorem 1.2. Firstly we note that Wm×n(ψ) is invariant under translation
by Mm×n(B). Indeed, if z ∈ Wm×n(ψ) and z′ ∈ Mm×n(B) then for each
q ∈ Bn and p ∈ Bm such that ‖zq + p‖2m ≤ ψ(‖q‖2n) we have

‖(z + z′)q + (p− z′q)‖2m = ‖zq + p‖2m ≤ ψ(‖q‖2n),

and so z+ z′ ∈Wm×n(ψ). Consider the additive subgroup P ⊂ K∞ defined
by

P = {x+ y
√
f : x, y ∈ k∞ and max(|x|, |y|) < 1}.

Clearly P is a fundamental domain for K∞/B. That is, for every x + y
√
f

∈ K∞ there is a unique z ∈ P and b ∈ B such that x + y
√
f = z + b.

In particular, b = [x] + [y]
√
f and z = {x} + {y}

√
f . So Mm×n(P ) is a

fundamental domain for Mm×n(K∞)/Mm×n(B).
Let P = Mm×n(P ). Since Wm×n(ψ) is invariant under translation by

Mm×n(B), this means that for any z ∈Mm×n(K∞),

µ(P ∩Wm×n(ψ)) = µ((P + z) ∩Wm×n(ψ)).

SinceMm×n(K∞) is the countable union of translations
⋃
z∈Mm×n(B) (z+P),

to prove that µ(Wm×n(ψ)) = 0 we only need to show that µ(P∩Wm×n(ψ))
= 0. We now fix some non-zero q ∈ Bn and consider the maps

Mm×n(K∞)
q−→ Km

∞
π−→ Pm

where q represents right multiplication by q, and π is the quotient map
Km
∞ → Pm given by reduction modulo Bm.
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Given a measurable B ⊆ Pm define

µ̃(B) = µ(P ∩ q−1π−1(B)).

We will show that µ̃ is translation invariant. Let y ∈ Pm and consider the set

q−1π−1(B + y). As q is non-zero the map Mm×n(K∞)
q−→ Km

∞ is surjective
so there exists some Y ∈ Mm×n(K∞) such that π(Y q) = y. It is easily
verified that q−1π−1(B) + Y = q−1π−1(B + y). Thus

µ̃(B + y) = µ(P ∩ (q−1π−1(B) + Y )).

Since µ is translation invariant, we see that

µ̃(B + y) = µ
(
(P − Y ) ∩ (q−1π−1(B))

)
.

The set q−1π−1(B) is invariant under translation by elements of Mm×n(B)
so we have

µ
(
P ∩ (q−1π−1(B))

)
= µ

(
(P − Y ) ∩ (q−1π−1(B))

)
and thus µ̃(B) = µ̃(B +y). It is also easy to see that µ̃ is a measure on Pm.
Up to multiplication by a positive constant, the only translation invariant
measure of Pm is a Haar measure. Therefore µ̃ is the Haar measure on Pm

and µ̃(Pm) = µ(P ∩ (q−1π−1(Pm))) = µ(P) = µK∞(P )mn. Thus we can
relate µ̃ to the Haar measure µKm

∞ by

µ̃(B) =
µK∞(P )mn

µK∞(P )m
µKm
∞(B).

Proposition 2.8. If
	∞
1 ψ(x) dx <∞ then

µ(Wm×n(ψ)) = 0.

Proof. Fix some non-zero q ∈ Bn. Let

Sq = {z ∈Mm×n(K∞) : ∃p ∈ Bm such that ‖qz + p‖2m < ψ(‖q‖2n)}.

Given some x ∈ Km
∞ and v > 0 the condition

∃p ∈ Bm such that ‖x+ p‖ < v

is equivalent to

∃p ∈ Bm such that x+ p ∈ BKm
∞(v)

where BKm
∞(v) denotes the open box of radius v about some 0 ∈ Km

∞ in the
sup-metric. This is again equivalent to

x ∈
⋃

p∈Bm

(BKm
∞(v) + p).

Now the pre-image π−1(y) of some y ∈ Pm is the coset {y+ b : b ∈ Bm}.
Also, given some z ∈ Km

∞ the point π(z) ∈ Pm is equivalent to z modulo Bm
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and so the cosets {z+ b : b ∈ Bm} and {π(z) + b : b ∈ Bm} are equal. Hence
{z + b : b ∈ Bm} = π−1{π(z)} and our condition is equivalent to

x ∈ π−1(π(BKm
∞(v))).

We deduce that the set Sq consists of elements z ∈ Mm×n(K∞) such that
zq ∈ π−1(π(BKm

∞(vq))) where vq = ψ(‖q‖2n)1/2m, and so

Sq = q−1π−1(π(BKm
∞(vq))).

Therefore we can compute the measure

µ(Sq ∩P) = µ(q−1π−1(π(BKm
∞(vq)) ∩P)

= µ̃(π(BKm
∞(vq))

= cµKm
∞(π(BKm

∞(vq))

where c = µK∞(P )m(n−1). Now suppose that vq ≤ 1. In this case BKm
∞(vq) ⊆

P and thus π(BKm
∞(vq)) = BKm

∞(vq), so

µ(Sq ∩P) = cµKm
∞(BKm

∞(vq)) = cµK∞(BK∞(vq))
m

< c(v2qs
2)m = cs2mψ(‖q‖2n).

Next let d > 0 and define

Sd =
⋃
q∈Bn

‖q‖=sd

Sq.

This union can only be non-empty for d ∈ 1
2N. If for some d ∈ 1

2N we have

vd = ψ(s2dn)1/2m ≤ 1, then any q ∈ B with ‖q‖ = sd satisfies vq ≤ 1 and
hence

µ(Sd ∩P) < #{q ∈ Bn : ‖q‖ = sd}cs2mψ(s2dn)

≤ s2(d+1)ncs2mψ(s2dn) = c′s2dnψ(s2dn),

where c′ = cs2n+2m. We know that z ∈Wm×n(ψ) if and only if

z ∈ limsup
d∈ 1

2
N

Sd.

There can only be finitely many d with vd > 1 as ψ is monotone non-
increasing to zero, thus the Borel–Cantelli lemma tells us that if∑

d∈ 1
2
N

s2dnψ(s2dn) =

∞∑
e=1

senψ(sen) <∞

then

µ(Wm×n(ψ) ∩P) = 0.

The convergence of the sum follows from the fact that ψ is non-increasing
and that

	∞
x=1 ψ(x) dx <∞.
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3. Shrinking targets

3.1. Background. In this section, we will prove the divergence coun-
terpart (1) of the Khinchin–Groshev theorem. We will use dynamics on a
certain homogeneous space. Let G = SLm+n(K∞), Γ = SLm+n(B) and de-
note G/Γ by Υ . Then, by a theorem of H. Behr [2] and G. Harder [8] (which
is a function field analogue of a theorem of Borel and Harish-Chandra), Γ is
a non-uniform lattice in G. In fact, Υ can be identified with the space of
full rank free B-modules of covolume 1 in Km+n

∞ , and it is straightforward
to see that the latter space is non-compact. The compact subsets of this
space can be described using a positive characteristic analogue of Mahler’s
compactness criterion, a proof of which, using a function field analogue of
the geometry of numbers due to K. Mahler [16], can be found in [7].

Before starting the proof, we provide a brief description of the results and
techniques of [1]. The main aim of that paper was to provide a function field
analogue of the Khinchin–Groshev theorem using homogeneous dynamics.
In fact, a general 0-1 law is proved for cuspidal excursions of multi-parameter
diagonal flows on G/Γ where G denotes the k-points of a semisimple, simply
connected linear algebraic group, k is a local field of positive characteristic,
and Γ is a non-uniform lattice in G. Another interesting corollary of such a
0-1 law is a function field analogue of Sullivan’s logarithm law for geodesic
excursions on quotients of Bruhat–Tits buildings. This provides analogues
in the setting of function fields of results of Kleinbock and Margulis [12].
For the rest of the paper, we revert to G = SLm+n(K∞), Γ = SLm+n(B)
and set µ to be the probability measure on Υ which descends from Haar
measure on G.

Given a matrix z ∈ Mm×n(K∞), we associate to it the module Λz ∈ Υ
defined by

Λz :=

(
Im z

0 In

)
Bm+n,

a typical vector of which looks like(
Im z

0 In

)(
p

q

)
=

(
zq + p

q

)
.

For t ∈ Z we define

(3.1) ft = diag(Tnt, . . . , Tnt︸ ︷︷ ︸
m times

, T−mt, . . . , T−mt︸ ︷︷ ︸
n times

),

(1) In fact the results in this section can be used to prove the convergence part as
well, but we feel that our earlier explicit calculation enhances the exposition of this paper.
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and on Υ , define the function

(3.2) ∆(Λ) := max
v∈Λ\{0}

logs
1

‖v‖
.

Note that ∆ takes values in the non-negative real numbers. Then we show
below that if there are infinitely many t > 0 such that

(3.3) ∆(ftΛz) ≥ r(t),
then z ∈Wm×n(ψ). Here r(t) is an explicitly constructed function (the Dani
function) which is closely related to ψ. By Mahler’s compactness criterion,
the sets {Λ ∈ Υ : ∆(ftΛ) ≥ r(t)} form a sequence of decreasing neighbour-
hoods of infinity, i.e. are complements of larger and larger compact sets as
t→∞. If the semiorbit {ftΛz : t > 0} meets these neighbourhoods infinitely
often, then the matrix z is ψ-approximable. This scenario has been widely
studied in dynamics and is known as the shrinking target property.

The process of associating Diophantine approximation to cusp excursions
in this particular instance has been christened the Dani correspondence by
Kleinbock and Margulis. The strategy of the proof is then to show that the
sets {Λ ∈ Υ : ∆(ftΛ) ≥ r(t)} are quasi-independent on average. The quan-
titative Borel–Cantelli lemma stated below then ensures that their lim sup
has full measure, which will prove the theorem. This strategy is again due to
Kleinbock and Margulis, who created an abstract setup incorporating these
ideas in the setting of real numbers. In [1], we formulated and proved an
analogue of their main theorem for general semisimple groups in positive
characteristic. This result will be our main tool and is stated below. The
quasi-independence in this setting is provided by the exponential decay of
matrix coefficients for semisimple groups in positive characteristic (Theorem
2.1 in [1]). For the purposes of the present paper, we simply need to prove an
analogue of the Dani correspondence stated above for quadratic extensions.
A direct application of Theorem 3.2 below then completes the argument.

3.2. 0-1 laws. Let B be a family of measurable subsets of Υ and let
F = {fn} denote a sequence of µ-preserving transformations of Υ . The
following terminology is taken from [12].

Definition 3.1 (Borel–Cantelli families).We say thatB is Borel–Cantelli
for F if for every sequence {An : n ∈ N} of sets from B,

µ({x ∈ Υ : fn(x) ∈ An for infinitely many n ∈ N})

=

{
0 if

∑∞
n=1 µ(An) <∞,

1 if
∑∞

n=1 µ(An) =∞.
For a function ∆ on Υ and an integer n ∈ N, denote by Φ∆ the tail distri-
bution function, defined by

(3.4) Φ∆(n) := µ({x ∈ Υ : ∆(x) ≥ sn}).
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We say that a function ∆ on Υ is smooth if there exists a compact open
subgroup U of G such that ∆ is U -invariant. For κ > 0, say that ∆ is κ-UDL
(an abbreviation for κ-ultra distance like) if it is smooth and

(3.5) Φ∆(n) � s−κn ∀n ∈ Z.

Finally, we say that ∆ is UDL if it is smooth and there exists κ > 0 such
that (3.5) holds.

A key example of a UDL function is the one in (3.2). This can be seen
using reduction theory on Υ , specifically a generalization of Siegel’s mean
value theorem due to M. Morishita [18] followed by a verbatim repetition
of Theorem 7.3 in [12]. See §4.2 in [1]. We are now ready for Theorem 1.6
from [1], which will be our main tool.

Theorem 3.2. Let F = {fn : n ∈ N} be a sequence of elements of G
satisfying

(3.6) sup
m∈N

∞∑
n=1

‖fnf−1m ‖−β <∞ ∀β > 0,

and let ∆ be a UDL function on Υ . Then

(3.7) B(∆) := {{x ∈ Υ : ∆(x) ≥ sn} : n ∈ Z}

is Borel–Cantelli for F.

For the convenience of the reader, we outline the main steps in the di-
vergence half of the proof of Theorem 3.2. Note that the converse of the
Borel–Cantelli lemma, i.e. the lemma used in the convergence case of the
Khinchin–Groshev theorem (Proposition 2.8) is clearly false without ad-
ditional conditions on the sets ensuring some form of weak independence
between the sets. A very general statement to this effect, i.e. positive mea-
sure of a lim sup set in the presence of quasi-independence on average, has
been abstracted from work by W. M. Schmidt by V. G. Sprindžuk. For a
sequence H = {hn} of functions on (Υ, µ), we define

(3.8) SH,N (x) :=
N∑
n=1

hn(x) and EH,N :=
�

Υ

SH,N dµ.

The following theorem can be found in [23].

Proposition 3.3. Let H = {hn : n ∈ N} be a sequence of functions on
(Υ, µ) satisfying the following two conditions:

(3.9)
�

Υ

hn dµ ≤ 1 for every n ∈ N,
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and there exists C > 0 such that

(3.10)

N∑
m,n=M

( �

Υ

hmhn dµ−
�

Υ

hm dµ
�

Υ

hn dµ
)
≤ C

N∑
n=M

�

Υ

hn dµ

for all N > M ≥ 1. Then for µ-almost every x ∈ Υ ,

(3.11) lim
N→∞

SH,N (x)

EH,N
= 1

whenever EH,∞ diverges.

Note that the above proposition in fact offers a quantitative form of
the Borel–Cantelli lemma. Let hn be the characteristic function of the set
{x ∈ Υ : ∆(x) ≥ sn}. To prove Theorem 3.2, one applies Lemma 3.3 to the
twisted sequence

HF := {f−1n hn : n ∈ N}.
To verify (3.10) in Proposition 3.3, one uses quantitative estimates for decay
of matrix coefficients. Denote by L2

0(Υ ) the subspace of L2(Υ ) orthogonal
to constant functions, and by ρ0 the regular representation of G on L2

0(Υ ).
The following is Theorem 2.1 from [1] for the special case of Υ .

Theorem 3.4. There exist constants a > 0 and b ∈ Z+ such that for
any g ∈ G and any smooth functions φ, ψ ∈ L2

0(Υ ),

(3.12) |〈ρ0(g)φ, ψ〉| ≤ a‖φ‖2‖ψ‖2‖g‖−1/b.
The constants depend on G, Γ and the choice of compact subgroup U in the
definition of the smooth vectors.

We now proceed to complete the proof of the Khinchin–Groshev theorem.
Recall that we have a sequence {ft} (as in (3.1)) which clearly satisfies (3.6),
a UDL function ∆ (as in (3.2)) on Υ and an associated family B(∆) of sets
(as in (3.7)). In order to complete the proof, we simply need to explain how
these sets are related to the Diophantine inequalities we wish to analyze. In
other words, all that remains is to prove a version of the Dani correspondence
for quadratic extensions of function fields. This is accomplished below. In
fact, we prove a result which is slightly more general than the Khinchin–
Groshev theorem.

For a vector v in Km+n
∞ we denote by v(m) the vector comprising its first

m coordinates and by v(n) the vector comprising the last n. Furthermore,
a module Λ ∈ Υ is called (ψ, n)-approximable if there exist infinitely many v
with arbitrarily large ‖v(n)‖ such that

(3.13) ‖v(m)‖2m ≤ ψ(‖v(n)‖2n).

We will show:
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Theorem 3.5. Almost every latticeΛ in Υ is (ψ, n)-approximable provided

(3.14)

∞�

1

ψ(x) dx

diverges.

Theorem 1.2 follows from the above using a simple Fubini type argument
(cf. [12, 8.7] and [3, 2.1]) which we will not repeat. To deduce Theorem 3.5
from Theorem 3.2 we note that ft satisfies (3.6) and, as mentioned above,
∆ is a UDL function. The final link is provided by a function field version
of the Dani correspondence. First we record a version of Lemma 8.3 in [12]
suitable for our needs.

Lemma 3.6. Fix m,n ∈ N, u > 1 and x0 > 0, and let ψ : [x0,∞) →
(0,∞) be non-increasing and continuous. Then there exists a pair of contin-
uous functions λ, L : [t0,∞)→ R, where

t0 =
logu x0
n(m+ n)

− logu ψ(x0)

m(m+ n)
,

such that

(3.15)
λ(t) is strictly increasing to ∞,
L(t) is non-decreasing (to ∞ if ψ → 0),

and

(3.16)
ψ(uλ(t)) = u−L(t),

L(t) = mt(m+ n)− m

n
λ(t) ∀t ≥ t0.

Define the Dani function r(t) : [t0,∞)→ R by r(t) = L(t)−λ(t)
m+n . Then

(3.17)

∞�

x0

ψ(x) dx <∞ ⇔
∞�

t0

s−(m+n)r(t) dt <∞.

Proof. For a fixed t ∈ R consider the functions

L1(λ) = Lt1(λ) = mt(m+ n)− m

n
λ and L2(λ) = − logu ψ(uλ).

The first function L1 is a decreasing line of gradient −m/n, and the second
L2 is a continuous non-decreasing function. Due to the definition of ψ, L2

is only defined for λ ≥ logu x0. Notice that if we have functions L and λ as
desired in the lemma, then

L1(λ(t)) = L2(λ(t)) = L(t).

That is, (λ(t), L(t)) is a point of intersection of L1 and L2. Now L1 and L2

have at most one point of intersection, so if there is one we define (λ(t), L(t))
to be that point. There is an intersection if

L1(logu x0) ≥ L2(logu x0),
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that is,

mt(m+ n)− m

n
logu x0 ≥ − logu ψ(ulogu x0),

mt(m+ n) ≥ m

n
logu x0 − logu ψ(x0),

t ≥ logu x0
n(m+ n)

− logu ψ(x0)

m(m+ n)
= t0.

Thus we have defined (λ(t), L(t)) for all t ≥ t0. Note that we have forced
the equalities (3.16); now we must check that the other conditions hold.

The unique value of t such that Lt1 intersects a given point (x, y) is
t = x

n(m+n) + y
m(m+n) . Now let t0 ≤ t < t′. If λ(t′) ≤ λ(t) then

L(t′) = L2(λ(t′)) ≤ L2(λ(t)) = L(t).

Since Lt
′
1 intersects (λ(t′), L(t′)) we have

t′ =
λ(t′)

n(m+ n)
+

L(t′)

m(m+ n)
≤ λ(t)

n(m+ n)
+

L(t)

m(m+ n)
= t.

This is a contradiction. Thus λ(t′) > λ(t).
Now let T ≥ logu(x0) and

t =
T

n(m+ n)
+

L2(T )

m(m+ n)

so that Lt1 intersects the point (T, L2(T )) and so λ(t) = T . We see that λ is
strictly increasing and takes arbitrarily large values, and thus λ→∞. From
L(t) = − logu ψ(uλ(t)) we immediately deduce that L is non-decreasing and
L→∞ if ψ → 0. Finally, (3.17) follows from a simple change of coordinates
just as in [12].

Note that

L(t) = mnt+mr(t) and λ(t) = mnt− nr(t).
To complete the proof of the theorem we now only need:

Proposition 3.7. Fix m,n ∈ Z, let u = s1/2 and let ψ : [x0,∞) →
(0,∞) be as above. Let Λ ∈ Υ . Define r : [t0,∞) → R using Lemma 3.6
using the values 2m and 2n for m and n. If there exist arbitrarily large
t ∈ N such that

∆(ftΛ) ≥ r(t)
then Λ is (ψ, n)-approximable.

Proof. Assume that there exists some v ∈ Λ such that − logu ‖ftv‖ ≥
r(t). This is the same as

− logu |Tnt|‖v(m)‖ ≥ r(t) and − logu |T−mt|‖v(n)‖ ≥ r(t).
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Rearranging we get{
‖v(m)‖2m ≤ u−2mr(t)s−2mnt = u−2mr(t)−4mnt = u−L(t),

‖v(n)‖2n ≤ s2mntu−2nr(t) = u4mnt−2nr(t) = uλ(t).

Now if v(m) = 0 for some v ∈ Λ then for all integer multiples w of v
we have w satisfying 0 = ‖w(m)‖2m ≤ ψ(‖w(n)‖2n). So we ignore this case.
From the above we have

‖v(m)‖2m ≤ u−L(t) = ψ(uλ(t)).

By decreasing monotonicity of ψ we have ψ(uλ(t)) ≤ ψ(‖vn‖2n) and thus

‖v(m)‖2m ≤ ψ(‖vn‖2n).

As v(m) 6= 0 and the above inequalities hold for arbitrarily large t, the fact
that ‖v(m)‖m ≤ s−L(t) (here L(t) → ∞ if ψ → 0) gets arbitrarily small
implies that ‖v(n)‖ gets arbitrarily large, and thus we are done.
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