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1. Introduction. Given q, a power of a prime p, denote by F the finite
field GF(q) of order q, and by E its extension GF(qn) of degree n. A primitive
element of E is a generator of the cyclic group E∗. Additively, too, the
extension E is cyclic when viewed as an FG-module, G being the Galois
group of E over F . The classical form of this result, the normal basis theorem,
is stated as follows:

Theorem 1.1 (Normal Basis Theorem). There exists an element α ∈ E
(an additive generator) whose conjugates {α, αq, . . . , αqn−1} form a basis of
E over F .

Such an element α is a free (or normal) element of E over F , and a
basis of this kind is a normal basis over F . The key existence result linking
additive and multiplicative structure is the primitive normal basis theorem:

Theorem 1.2 (Primitive Normal Basis Theorem). For every prime power
q and n ∈ N, there exists α ∈ E simultaneously primitive and free over F .
Equivalently, there exists a primitive normal basis of E over F all of whose
members are primitive and free.

Existence of such a basis for every extension was first proved by Lenstra
and Schoof [7], completing work by Carlitz [1], [2], and Davenport [6].
A computer-free proof of this result was produced by Cohen and Huczyn-
ska [5]. The key to the transition to the more theoretical and less computa-
tional approach realised in [5] was the introduction of sieving techniques (cf.
Section 4 below). The question arises as to whether a yet stronger existence
theorem concerning primitive and free elements can be proved uncondition-
ally (or with very few exceptions) by means of such techniques. In this paper,
we consider the following natural problem, first suggested to us by Robin J.
Chapman (Exeter) (to whom we are grateful).
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Problem 1.3 (PFF problem). Given a finite extension E/F of Galois
fields, does there exist a primitive element α of E, free over F , such that its
reciprocal α−1 ∈ E is also primitive and free over F? If so, then the pair
(q, n) corresponding to E/F is called a PFF pair.

Observe that, for α ∈ E, α is a primitive element of E if and only if α−1

is primitive; hence the four conditions in Problem 1.3 effectively reduce to
three (α primitive and f ree, α−1 f ree).

In this paper, we solve this problem completely: the answer is in the
affirmative except for a small number of listed exceptions. We obtain the
following strengthening of the primitive normal basis theorem.

Theorem 1.4 (Strong Primitive Normal Basis Theorem). For every
prime power q and n ∈ N, there exists a primitive element α of E, free
over F , such that its reciprocal α−1 ∈ E is also primitive and free over F
unless the pair (q, n) is one of

(2, 3), (2, 4), (3, 4), (4, 3), (5, 4).

Towards Theorem 1.4, Tian and Qi [9] have given a proof for the case
n ≥ 32 (when there are no exceptions). They use an elaboration of the
method of Lenstra and Schoof [7] but do not employ any of the sieving
techniques that are a feature of the present article and appear to be nec-
essary for completion, particularly for small values of n. Moreover, because
of the demanding nature of the PFF condition, fields of smallest cardinal-
ity require individual treatment. Our consideration of the general problem
therefore takes place in the setting where q ≥ 5 (even here, special care is
needed for q = 5 and 7), and we deal with the case 2 ≤ q ≤ 4 in Section 7
“Very small fields”. In what follows, all non-trivial computation is performed
using MAPLE (Version 10). Aside from the five genuine exceptions listed
in Theorem 1.4, there are 35 pairs (q, n) (with q ≤ 13, n ≤ 16) for which
verification is by direct construction of a PFF polynomial; otherwise, the
proof is purely theoretical.

2. Reductions. In this section, we formulate the basic theory and per-
form some reductions to the problem. As much as possible, we aim to make
this account self-contained.

We begin by extending the notions of primitivity and freeness. Let
w ∈ E∗. Then w is a primitive element of E if and only if w has multi-
plicative order qn − 1, i.e., w = vd (w ∈ E) implies (d, qn − 1) = 1. We
extend this concept as follows: for any divisor m of qn − 1, we say that
w ∈ E∗ is m-free if w = vd (where v ∈ E and d |m) implies d = 1. Thus
w ∈ E∗ is m-free if and only if w is an lth power for no prime l dividing m.
It follows that w is m-free if and only if it is m0-free, where m0 is the radical
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of m, i.e., the product of its distinct prime factors. In the context of the
PFF problem, observe that w is m-free if and only if w−1 is m-free since, if
w−1 = vk for some k |m and v ∈ E∗, then w = (v−1)k and v−1 ∈ E∗.

For w ∈ E, the F -order of w is defined to be the monic divisor g (over F )
of xn − 1 of minimal degree such that gσ(w) = 0 (gσ is the polynomial
obtained from g by replacing each xi with xq

i
). Clearly, w is free if and only

if the F -order of w is xn − 1. If w ∈ E has F -order g, then w = hσ(v) for
some v ∈ E, where h = (xn − 1)/g. Let M be an F -divisor of xn − 1. If
w = hσ(v) (where v ∈ E and h is an F -divisor of M) implies h = 1 we
say that w is M -free in E. Again, M may be replaced by its radical. An
important instance of this occurs when n is divisible by the characteristic p,
say n = pbn∗ (where p - n∗), in which event w is xn − 1-free if and only if
it is xn

∗ − 1-free. (The expansion of n = pbn∗, as above, will be assumed
throughout.)

We remark that, in the following, most arguments concerning divisors
of a given integer divisor of qn − 1, or polynomial divisors of a given fac-
tor of xn − 1, depend only on the appropriate radicals so that the divisors
may be assumed to be square-free. To avoid awkward qualifications to these
arguments, the reader is requested throughout to interpret all relevant state-
ments accordingly.

We make the following observation.

Lemma 2.1. Let xd−w be an F -divisor of xn− 1 (w ∈ F ∗, d |n). Then,
for α ∈ E∗,

(xd − w)σ(α) = 0 ⇔ (xd − w−1)σ(α−1) = 0.

In particular, if w ∈ E∗ has F -order x+ 1 or x− 1, then so does w−1.

If n = 2 and w ∈ E∗ is primitive, then neither w nor w−1 can have
F -order x± 1 and so both are free over F . Henceforth, we assume n ≥ 3.

Lemma 2.2. Let n (≥ 5) be prime. Suppose that q is such that p - n and
q (mod n) is a multiplicative generator of the cyclic group (Z/nZ)∗. Then
(q, n) is a PFF pair.

Proof. Under the given circumstances, (n, qi−1) is 1 for i=1, . . . , n−2,
and n for i = n− 1; so xn − 1 factorises into irreducibles over F as (x− 1) ·
(xn−1 + xn−2 + · · ·+ x+ 1). By Theorem 1.1 of [4], there exists a primitive
element w ∈ E such that its trace over F , T (w), is not 0, and similarly,
T (w−1) 6= 0, i.e. neither w nor w−1 has F -order xn−1 + xn−2 + · · ·+ x+ 1.
Since w is primitive, neither w nor w−1 can have F -order x− 1.

Observe that Lemma 2.2 applies to φ(n−1) of the n possible congruence
classes for values of q. The next result demonstrates the application of the
lemma to some small values of n.
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Lemma 2.3. For the following values of q and n, the pair (q, n) is a PFF
pair:

(i) n = 5; q ≡ 2 or 3 (mod 5).
(ii) n = 7; q ≡ 3 or 5 (mod 7).

(iii) n = 11; q ≡ 2, 6, 7 or 8 (mod 11).

For any m | qn− 1, and g, h |xn− 1, denote by N(m, g, h) the number of
non-zero elements w ∈ E such that w is m-free and g-free, and w−1 is h-free
(note that w−1 is automatically m-free). As a consequence of the earlier
discussion, we may replace m, g or h by their radicals at any time. To solve
the PFF problem it would suffice to show that N(qn − 1, xn − 1, xn − 1) is
positive for every pair (q, n); however, it is useful to refine this requirement.

For a given pair (q, n), define Q := Q(q, n) to be (the radical of)

qn − 1
(q − 1) gcd(n, q − 1)

.

As in [7] and [4], we now demonstrate that qn − 1 may be replaced by Q,
i.e. it suffices to show that N(Q, xn − 1, xn − 1) is positive. The following
lemma, analogous to Lemma 2.1 of [5], makes this relationship explicit.

Lemma 2.4. For any pair (q, n),

N(Q, xn − 1, xn − 1) =
R

φ(R)
N(qn − 1, xn − 1, xn − 1),

where φ denotes Euler’s function, and R is the greatest divisor of qn − 1
coprime to Q.

Proof. Let Q∗ := (qn − 1)/R. Then Q∗ is the greatest divisor of qn − 1
whose prime factors are those of Q. Moreover, Q |Q∗, R | (q − 1)(n, q − 1) |
(q− 1)2, and (R,Q∗) = 1. In particular, if γ (∈ E∗) is an Rth root of unity,
then c := γq−1 ∈ F ∗, and γq

i
= ciγ for every i. It follows that, if α ∈ E

and γ is any Rth root of unity, then α is xn − 1-free if and only if γα is
xn − 1-free. Indeed, for any k, with 0 ≤ k < n,

k∑
i=0

ai(γα)q
i

= 0 ⇔
k∑
i=0

aic
iαq

i
= 0, a0, . . . , ak, c ∈ F.

Now, any element α ∈ E∗ can be expressed uniquely as the product of a
Q∗th root of unity α0 and an Rth root of unity (in E∗). By the above, if α
is Q-free and both α and α−1 are xn − 1-free, then γα0 is also Q-free with
γα0 and its inverse both xn − 1-free, for any Rth root of unity γ. If in fact
α is primitive, then α = γα0 for some primitive Rth root of unity, γ.

The following result will prove useful.
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Lemma 2.5.

(i) Assume n = 4 and q ≡ 3 (mod 4). Then N(Q, x4 − 1, x4 − 1) =
N(Q, x2 − 1, x2 − 1).

(ii) Assume n = 3 and q ≡ 2 (mod 3). Then N(Q, x3 − 1, x3 − 1) =
N(Q, x− 1, x− 1).

Proof. Take the case with n = 4, so that x2 + 1 is irreducible over F .
Suppose that α is Q-free and x2 − 1-free and α−1 is x2 − 1-free, but α is
not x4 − 1-free. Then α = βq

2
+ β, and hence αq

2
= α, i.e., αq

2−1 = 1. This
implies that α = γq

2+1, an evident contradiction (because α is Q-free). The
same argument ensures that α−1 is also x4 − 1-free. The “n = 3” case is
exactly analogous.

3. An expression for N(m, g, h). In this section, we employ character
sums to obtain expressions, and thence estimates, for the number of ele-
ments of the desired type. We suppose throughout thatm |Q and g, h |xn−1,
where, if desired, these can be assumed to be square-free. We begin by estab-
lishing characteristic functions for those subsets of E comprising elements
that are m-free, g-free or h-free.

I. The set of w ∈ E∗ that are m-free. Let Ê∗ (∼= E∗) denote the group
of multiplicative characters of E∗. For any d |Q, we write ηd for a typical
character in Ê∗ of order d. Thus η1 is the trivial character. Notice that, since
d | q

n−1
q−1 , the restriction of ηd to F ∗ is the trivial character ν1 of F̂ ∗.
We employ the following notation for weighted sums (cf. [5]). For m |Q,

set �

d|m

ηd :=
∑
d|m

µ(d)
φ(d)

∑
(d)

ηd,

where φ and µ denote the functions of Euler and Möbius respectively and
the inner sum runs through all φ(d) characters of order d. (Note that only
square-free divisors d have any influence.) Then, according to a formula
developed from one of Vinogradov, the characteristic function for the subset
of m-free elements of E∗ is

(3.1) θ(m)
�

d|m

ηd(w), w ∈ E∗,

where

θ(m) :=
φ(m)
m

=
∏

l|m, l prime

(1− l−1).

(In Vinogradov’s original formula characterising primitive roots of a prime p,
(3.1) holds with m = p− 1.)
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II. The set of w ∈ E that are g-free or h-free over F . Let λ be the
canonical additive character of F . Thus, for x ∈ F ,

λ(x) = exp(2πiTF,Fp(x)/p),

where p is the characteristic of F and TF,Fp denotes the trace function from
F to Fp.

Now let χ be the canonical additive character on E; it is simply the lift of
λ to E, i.e., χ(w) = λ(T (w)), w ∈ E. For any (monic) F -divisor D of xn−1,
a typical character χD of F -order D is one such that χD ◦Dσ is the trivial
character in E, and D is minimal (in terms of degree) with this property. For
any δ ∈ E, let χδ be the character defined by χδ(w) = χ(δw), w ∈ E. Define
the subset∆D of E as the set of δ for which χδ has F -orderD. So we may also
write χδD for χD, where δD ∈ ∆D; moreover {χδD : δD ∈ ∆D} is the set of all
characters of order D. Note that ∆D is invariant under multiplication by F ∗,
and that, if D = 1, then δ1 = 0 and χD = χ0, the trivial character. There
are Φ(D) characters χD, where Φ is the Euler function on F [x] (Φ is mul-
tiplicative and is given by the formula Φ(D) = |D|

∏
P |D(1− |P |−1), where

the product is over all monic irreducible F -divisors of D and |D| = qdeg(D)).
In analogy to I, for g |xn − 1, define

�

D|g

χδD :=
∑
D|g

µ(D)
Φ(D)

∑
δD

χδD ,

where µ is the Möbius function on F [x] and the inner sum runs through all
Φ(D) elements δD of ∆D (only square-free D matter). With the notation
Θ(g) = Φ(g)/|g|, the characteristic function of the set of g-free elements of
E correspondingly takes the form

Θ(g)
�

D|g

χδD(w), w ∈ E.

Using these characteristic functions, we derive an expression for
N(m, g, h) in terms of Kloosterman and Gauss sums on E and F . For any
α, β ∈ E and any multiplicative character η ∈ Ê∗, we define the generalised
Kloosterman sum K(α, β; η) (= Kq,n(α, β; η)) by

K(α, β; η) =
∑
ζ∈E∗

χ(αζ + βζ−1)η(ζ).

In particular, we write K(α, β) for K(α, β; η1), the (standard) Kloosterman
sum.

For any η ∈ Ê∗, we define the Gauss sum G(η) (= Gn,q(η)) over E by

G(η) :=
∑
w∈E∗

χ(w)η(w).

It is clear that some Kloosterman sums will reduce to Gauss sums.
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In what follows, we will use the following properties of Kloosterman and
Gauss sums. For further details, the reader is referred to [4] or a reference
book such as [8].

Lemma 3.1. Let η be a multiplicative character of E. Then

K(0, 0; η) =
{
qn − 1 if η = η1,
0 otherwise.

Further, if either η 6= η1 or α, β ∈ E are not both zero, then

|K(α, β; η)| ≤ 2qn/2.

Lemma 3.2.

(i) If α ( 6= 0), β ∈ E, then

K(α, β; η) = η̄(α)K(1, αβ; η).

(ii) If β 6= 0, then K(0, β; η) = η(β)G(η̄).
(iii) If α 6= 0, then K(α, 0; η) = η̄(α)G(η).

Lemma 3.3.

(i) G(η1) = −1.
(ii) If η 6= η1, then |G(η)| = qn/2.

Proposition 3.4. Assume that m is a divisor of Q, and g, h are divisors
of xn − 1. Then

N(m, g, h) = θ(m)Θ(g)Θ(h)
�

d|m

�

D1|g

�

D2|h

K(δD1 , δD2 ; ηd).

Proof. Using the characteristic functions derived above, we have

(3.2) N(m, g, h)

=
∑
w∈E∗

(
θ(m)

�

d|m

ηd(w)
)(
Θ(g)

�

D1|g

χδD1
(w)
)(
Θ(h)

�

D2|h

χδD2
(w−1)

)
.

Thus

N(m, g, h) = θ(m)Θ(g)Θ(h)
�

d|m

�

D1|g

�

D2|h

∑
w∈E∗

χ(δD1w + δD2w
−1)ηd(w),

and the result follows from the definition of the generalised Kloosterman
sum.

From this, we obtain the following expression.

Proposition 3.5. Assume that m and g are divisors of Q and xn − 1
respectively. Then
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(3.3) N(m, g, h)

= θ(m)Θ(g)Θ(h)
(
qn + ε+

�

d|m
d6=1

�

D1|g
D1 6=1

η̄d(δD1)G(ηd) +
�

d|m
d6=1

�

D2|h
D2 6=1

ηd(δD2)G(η̄d)

+
�

D1|g
D1 6=1

�

D2|h
D2 6=1

K(δD1 , δD2) +
�

d|m
d6=1

�

D1|g
D1 6=1

�

D2|h
D2 6=1

K(δD1 , δD2 ; ηd)
)
,

where

ε =


−1 if g = h = 1,
+1 if g 6= 1 and h 6= 1,
0 otherwise.

Proof. We combine the formulation of Proposition 3.4 with the results
of Lemmas 3.1–3.3. If d = 1, then the Kloosterman sum takes the value
qn − 1 when D1 = D2 = 1, η1(δD2)G(η̄1) = −1 when D1 = 1 and D2 6= 1,
and η̄1(δD1)G(η1) = −1 when D2 = 1 and D1 6= 1. If d 6= 1, then we obtain
a contribution of 0 when D1 = D2 = 1, η̄d(δD1)G(ηd) when D1 6= 1 and
D2 = 1, and ηd(δD2)G(η̄d) when D1 = 1 and D2 6= 1. Note that the ε term
in the statement of the result arises from the situation when d = 1, Di = 1
and Dj 6= 1 (where {i, j} = {1, 2}); for example in the “D1 = 1” case
we have

	
D2|h,D2 6=1(−1) = −

∑
D2|h,D2 6=1 µ(D1), which takes value 0 when

h = 1 and 1 when h 6= 1.

From Proposition 3.5 and the size of the Kloosterman and Gauss sums,
we immediately derive a lower bound for N(m, g, h). Write W (m) = 2ω(m)

for the number of square-free divisors of m, where ω counts the number of
distinct primes in m, and similarly define W (g).

Corollary 3.6. Under the conditions and with the notation of Propo-
sition 3.5,

N(m, g, h) ≥ θ(m)Θ(g)Θ(h)(qn + ε

− qn/2[2W (m)W (g)W (h)− (W (m) + 1)(W (g) +W (h)) + 2]).

In the case when g = h, this inequality takes the form

(3.4) N(m, g, g)

≥ θ(m)Θ(g)2(qn + εg − 2qn/2(W (m)W (g)− 1)(W (g)− 1)),

where

εg =
{−1 if g = 1,

+1 if g 6= 1.
In particular,

(3.5) N(m, g, h) ≥ θ(m)Θ(g)Θ(h)qn/2(qn/2 − 2W (m)W (g)W (h)).



The strong primitive normal basis theorem 307

Proof. The bounds of Lemmas 3.1 and 3.2 yield for the sum of the “in-
tegrals” in the identity (3.3) the absolute bound

2(W (m)− 1)(W (g)− 1)(W (h)− 1)
+ 2(W (g)− 1)(W (h)− 1) + (W (m)− 1)(W (g) +W (h)− 2).

Rearrangement gives the result.

The following simple bound for W (m), the number of square-free divisors
of m ∈ N, will be useful in what follows. The proof is immediate using
multiplicativity.

Lemma 3.7. For any positive integer m,

(3.6) W (m) ≤ cmm1/4,

where cm = 2s/(p1 . . . ps)1/4, and p1, . . . , ps are the distinct primes less than
16 which divide m. In particular, for all m ∈ N, cm < 4.9, and for all odd
m, cm < 2.9.

In what follows, we recall the notation n∗ defined by n = pbn∗, p - n∗.

Proposition 3.8. Let q be a prime power and let n (≥ 3) ∈ N with
n∗ ≤ 4. Suppose, in addition, q ≡ 2 (mod 3) if n∗ = 3, and q ≡ 3 (mod 4) if
n∗ = 4. The pairs (q, n) = (2, 3), (2, 4) and (3, 4) are not PFF. Otherwise,
(q, n) is a PFF pair.

Proof. We have Q(q, n) < qn/gcd(n, q − 1), where, under the given con-
ditions,

gcd(n, q − 1) =
{

1 if n∗ = 1 or 3,
2 if n∗ = 2 or 4.

Moreover, N(Q, xn − 1, xn − 1) = N(Q, g(x), g(x)), where g factorises into
F -irreducibles as

g(x) =


x− 1 if n∗ = 1 or n∗ = n = 3,
(x− 1)(x+ 1) if n∗ = 2 or n∗ = n = 4,
(x− 1)(x2 + x+ 1) if n∗ = 3 < n,
(x− 1)(x+ 1)(x2 + 1) if n∗ = 4 < n,

using Lemma 2.5 when n = 3 or 4. It follows from Corollary 3.6 and Lemma
3.7 that N := N(Q, xn − 1, xn − 1) is positive whenever

(3.7) qn/2 > 2(W (Q)W (g)− 1)(W (g)− 1)− εgq−n/2,

and hence whenever

(3.8) (qn(q − 1))1/4 > AcQ,
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where

A =


4 if n∗ = 1 or n∗ = n = 3,
211/4 · 3 if n∗ = 2 or n∗ = n = 4,
24 if n∗ = 3 < n,
215/4 · 7 if n∗ = 4 < n.

We now consider when (3.8) holds for each of the values of A, using an
appropriate bound for cQ. We use notation like (q0+, n0+) to signify any
pair (q, n) with q ≥ q0, n ≥ n0.

• Assume A = 4. Then (3.8) holds with cQ < 4.9 for (3+, 11+), (4+, 8+),
(5+, 7+), (7+, 6+), (8+, 5+), (13+, 4+), (23+, 3+); with cQ < 2.9 for
(2, 15+); and with cQ < 3.2 for (3, 9) (when 3 - Q). For n∗ = 1, direct
application of inequality (3.7) establishes the result for (5, 5), (8, 4), (4, 4)
(for this, (3.7) reduces to 16 > 14) and (9, 3), leaving only the pairs (2, 4),
(2, 8) and (3, 3). When q = 2, one of the sole reciprocal pair of primitive
quartics has zero trace so there does not exist a PFF polynomial. Otherwise,
a PFF polynomial for the case (2, 8) is given in Section 7.3; one for (3, 3)
is in Section 7.2. For the case n = n∗ = 3, inequality (3.7) establishes the
result for (17, 3), (11, 3), (8, 3) and (5, 3). When q = 2 one of the pair of
primitive cubics has zero trace so there does not exist a PFF polynomial.

• Assume A = 211/4 · 3. Then (3.8) holds with cQ < 4.9 for (3+, 17+),
(4+, 13+), (5+, 11+), (6+, 10+), (7+, 9+), (8+, 8+), (11+, 7+), (14+, 6+),
(22+, 5+), (40+, 4+); and with cQ < 3.2 for (3, 15+). For the case n∗ = 2,
direct application of inequality (3.7) establishes the result for (5, 10) and
(9, 6), leaving only the pair (3, 6): a PFF polynomial for this case is given
in Section 7.2. When n∗ = n = 4, inequality (3.7) establishes the result for
(31, 4), (27, 4) and (23, 4) (for which W (Q) ≤ 16) and (19, 4) (W (Q) ≤ 8).
This leaves the pairs (11, 4) and (7, 4), (3, 4). When q = 3, there are four
primitive quartics with non-zero traces, namely f(±x) where f(x) = x4 +
x3 + x2 − x− 1, together with their reciprocals. None is a PFF polynomial.
On the other hand, direct verification yields PFF polynomials as follows:

(q, n) PFF polynomial

(11, 4) x4 + x3 − 5x+ 2

(7, 4) x4 + x3 − x2 − x− 2

• Assume A = 24. Then (3.8) holds with cQ < 4.9 for (16+, 6+) and
(5+, 12+), and with cQ < 2.9 for (2, 25+). Inequality (3.7) establishes the
result for (8, 6): for q = 2, degrees 6, 12 and 24 are treated in Section 7.3.

• Assume A = 215/4 · 7. Then (3.8) holds with cQ < 4.9 for (7+, 12+),
(4+, 20+) and (3+, 22+). This leaves the pair (3, 12), which is treated in
Section 7.2.
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4. The sieve. In this section, we introduce our key tool: a sieve with
both additive and multiplicative components. For a given pair (q, n), let
m |Q, f |xn − 1 and g | yn − 1. Let m1, . . . ,mr be factors of m, for some
r ≥ 1, and let f1, . . . , fr and g1, . . . , gr be factors of f and g respectively.
We call {(m1, f1, g1), . . . , (mr, fr, gr)} a set of complementary divisor triples
of (m, f, g) with common divisor triple (m0, f0, g0) if the primes in
lcm{m1, . . . ,mr} are precisely those in m, the irreducibles in lcm{f1, . . . , fr}
are precisely those in f , the irreducibles in lcm{g1, . . . , gr} are precisely
those in g and, for any distinct pair (i, j), the primes and irreducibles in
gcd(mi,mj), gcd(fi, fj) and gcd(gi, gj) are precisely those in m0, f0 and
g0 respectively. Observe that the value of N(m, f, g) depends only on the
primes and irreducibles present in m, f and g. The following result extends
Theorem 3.1 of [3].

Proposition 4.1 (Sieving inequality). For divisors m of Q, f of xn−1
and g of yn−1, let {(m1, f1, g1), . . . , (mr, fr, gr)} be a set of complementary
divisor triples of (m, f, g) with common divisor triple (m0, f0, g0). Then

(4.1) N(m, f, g) ≥
r∑
i=1

N(mi, fi, gi)− (r − 1)N(m0, f0, g0).

Proof. When r = 1, the result is trivial. For r = 2, denote by Sm,f,g the
set of elements w ∈ E∗ such that w is m-free and f -free and w−1 is g-free.
Then Sm1,f1,g1 ∪ Sm2,f2,g2 ⊆ Sm0,f0,g0 , while Sm1,f1,g1 ∩ Sm2,f2,g2 = Sm,f,g,
and the inequality holds by consideration of cardinalities. For r ≥ 2, use
induction on r.

We observe that, in Proposition 4.1, mfg can be regarded as a formal
product whose “atoms” are either prime factors of Q or irreducible factors of
xn−1 or yn−1. Write k for (the radical of) mfg and k0 for (that of) m0f0g0;
we shall refer to k0 as the core of k. Also write N(k) for N(m, f, g) (so that,
in a natural sense, W (k) = W (m)W (f)W (g)). Consider an application of
the sieve in which, for each i = 1, . . . , r, mifigi runs through the values
of k0pi as pi runs through atoms of k not in k0. We shall call this a (k0, r)
decomposition of k. Given a (k0, r) decomposition, define δ = 1−

∑r
i=1 1/|pi|

with |p| = p when p is a prime (integer) and |p| = qdeg p when p is an
irreducible polynomial, and set ∆ = (r − 1)/δ + 2. As we shall see, it is
crucial that δ is positive for the (k0, r) decomposition selected. In particular,
when r = 1 (the non-sieving situation), then (4.1) is a trivial equality,
W (k) = 2W (k0) and ∆ = 2.

Proposition 4.2. In the above notation, for a given pair (q, n), let k
denote the formal product mfg, where m |Q, f |xn−1 and g | yn−1. Suppose
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that

(4.2) q > (2W (k))2/n.

Then N(k) is positive.
More generally, for a (k0, r) decomposition as described above, suppose

that δ is positive and

(4.3) q > (2W (k0)∆)2/n.

Then N(k) is positive.

Proof. The non-sieving criterion (4.2) follows immediately from (3.5) of
Corollary 3.6.

For (4.3), define Θ(k) = θ(m)Θ(f)Θ(g) and write (4.1) in the form

N(k) ≥ δN(k0) +
r∑
i=1

(
N(k0pi)−

(
1− 1
|pi|

)
N(k0)

)

= δΘ(k0)
(
qn − 1 +

∑
d|k0
d6=1

U(d)
)

+Θ(k0)
r∑
i=1

(
1− 1
|pi|

) ∑
d|k0pi

d-k0

Ui(d),

where the sums over d are over “square-free” formal factors of the formal
products k0 and k0pi and, by the estimates of Lemmas 3.1 and 3.3 (as
already used in Corollary 3.6), each of the expressions U(d) and Ui(d) does
not exceed 2qn/2 in absolute value. Granted that δ > 0, it follows that N(k)
is positive whenever

δqn/2 > 2δW (k0) + 2
r∑
i=1

(W (k0pi)−W (k0))
(

1− 1
|pi|

)
.

The result follows since W (k0pi)−W (k0) = W (k0) and
r∑
i=1

(
1− 1
|pi|

)
= r − 1 + δ.

In applying (4.3) to the PFF problem, k is taken to be Q(xn−1)(yn−1);
in fact, by the discussion in Section 2 we may take k = Q(xn

∗ − 1)(yn
∗ − 1).

Generally, we take g0(x) = f0(x), although if necessary, a more general set
of “complementary divisor triples” or the full form of Corollary 3.6 can be
used.

We illustrate the direct use of the sieve in dealing with the case when
n∗ = q − 1.

Proposition 4.3. Let q (≥ 4) be a prime power and n (≥ 3) ∈ N.
Suppose n∗ = q − 1 > 2. The pairs (q, n) = (5, 4) and (4, 3) are not PFF.
Otherwise, (q, n) is a PFF pair.
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Proof. We use a (k0, r) decomposition of k = Q(xn
∗ − 1)(yn

∗ − 1). Here
Q = (qn − 1)/(q − 1)2 and all polynomial atoms are linear. Take f0(x) =
g0(x) and suppose that (xn

∗ − 1)/f0(x) is chosen to be a product of t (say)
linear polynomial atoms.

As a first step, we use the additive sieve (alone). To ensure that δ is
positive, of necessity 2t < q. Specifically, for q odd (whence n∗ even) take
t = n∗/2. Then δ = 1 − n∗/q = 1/q and ∆ = (n∗ − 1)/δ + 2 = n∗2 + 1.
Moreover, W (f0) = W (g0) = 2n

∗/2. Thus (4.3) becomes

(4.4) qn/2 > 2n
∗+1(n∗2 + 1)W (Q).

Otherwise, for q even (whence n∗ odd) take t = (n∗−1)/2. Then δ = 2/q
and

∆ =
n∗ − 2
δ

+ 2 =
(n∗ − 2)(n∗ + 1)

2
+ 2 =

n∗2 − n∗ + 2
2

<
n∗2 + 1

2
.

Now, W (f0) = W (g0) = 2(n∗+1)/2. Accordingly, (4.4) remains a valid suffi-
cient condition.

By Lemma 3.7, W (Q) < cQq
n/4/
√
q − 1. Hence we obtain the sufficient

condition

(4.5) qn/4 >
cQ2q((q − 1)2 + 1)√

q − 1
.

First assume that n = n∗. Then inequality (4.5) is satisfied whenever
n = q−1 ≥ 37. Therefore we can suppose q ≤ 37. Next, since q = n+1 ≤ 37,
factorising yields ω(Q) ≤ 15 (with equality only when q = 37). With this
bound for ω(Q), (4.4) is satisfied for q ≥ 23. Further, with the exact values
ω(Q), (4.4) is also satisfied for q = 19 (ω(Q) = 8) and q = 17 (ω(Q) = 6).

Next, suppose q = 16 so that Q = 7 ·11 ·13 ·31 ·41 ·61 ·151 ·331 ·1321 and
ω(Q) = 9. Introduce a non-trivial multiplicative component to the sieve by
taking m0 = 7 · 11 · 13. This time select t = 6. Then r = 6 + 12 = 18 and

δ = 1− 1
31 −

1
41 −

1
61 −

1
151 −

1
331 −

1
1321 −

12
16 > 0.1665 . . . ,

∆ = 104.06 . . . and W (k0) = W (m0)W (g)2 = 23 · 218 = 221. Hence

(2W (k0)∆)2/n < 14.2 < q.

Direct verification deals with five of the seven remaining cases (7 ≤ q
≤ 13): see table below. On the other hand, when q = 5, given a root α of
any of the 32 primitive quartics over F = GF(5) for which the coefficients
of x3 and x are both non-zero, either α or 1/α is not free over F . Hence
(5, 4) is not a PFF pair. Similarly, when q = 4, none of the 12 primitive
cubics is a PFF polynomial.
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(q, n) PFF polynomial Polynomial for u

(13, 12) x12 + x11 − 3x+ 2

(11, 10) x10 + x9 − 2x+ 2

(9, 8) x8 − (u − 1)x7 − x6 − x5 − (u + 1)x4 + (u − 1)x3 + (u + 1)x2 − x − u u2 − u− 1

(8, 7) x7 + x6 + (u + 1)x5 + (u2 + 1)x4 + (u2 + u + 1)x3 + u2x2 + ux + u2 + u u3 + u+ 1

(7, 6) x6 + x5 + x2 − x+ 3

When n > n∗, condition (4.5) is satisfied for q > 11 with n ≥ 2n∗, for
q > 7 with n ≥ 3n∗, for q > 4 with n ≥ 5n∗, and for q = 4 (whence cQ = 2.9)
with n ≥ 8n∗ = 24. The only pairs not covered are (8, 14), (4, 12) and (4, 6).
For (8, 14) direct substitution in condition (4.4) yields the result. For (4, 12),
use (4.3) with multiplicative sieving alone. Specifically, Q = 5 ·7 ·13 ·17 ·241.
Take the core to be (x3 − 1)(y3 − 1) and let all the r = 5 primes in Q be
sieving primes. Then δ > 0.5172 and (2W (k0)∆)2/n < 3.29 < 4. Finally, a
PFF polynomial of degree 6 is given in Section 7.1.

4.1. Key strategy: applying the sieve in the general case. In
this section, we derive an inequality which provides a sufficient condition
for a pair (q, n) to be a PFF pair in the general case, by considering a
specific factorisation of xn

∗ − 1 followed by a “core-atom” application of
the sieve. The universal value of this strategy can be judged from the fact
that, in what follows, only a single case, namely (2, 21), arose for which
another factorisation succeeded where the key strategy failed. While the
sieve has both an additive and a multiplicative component, we note that
it is often possible to obtain our desired result by using the additive part
alone; correspondingly, we state two versions of our main inequality. The
multiplicative part of the sieve is a useful tool in dealing with cases where
the value of q is small.

Denote by s the positive integer ordn∗ q, i.e., n∗ | qs − 1 with s minimal;
then every irreducible factor of xn

∗ − 1 over F has degree dividing s. Write
xn

∗ − 1 as g(x)G(x), where G is the product
∏r
i=1Gi of the (r, say) irre-

ducible factors (G1, . . . , Gr, say) of degree s, and g is the product of those
with degree less than s (with g = 1 if s = 1). Let m := deg g. Note that
r = (n∗ −m)/s. For the next result suppose that the set of ω(Q) distinct
prime divisors of Q is partitioned into a set of t “sieving” primes {l1, . . . , lt}
and a set of u primes whose product is the multiplicative core m0. Thus
t+u = ω(Q); in particular u = ω(Q) when there is no multiplicative sieving.

Proposition 4.4. Assume the notation defined above. Then N(Q, xn−1,
yn − 1) > 0 whenever

(4.6) qn/2 > 21−tW (Q)W (g)2
(

qs(2(n∗ −m) + s(t− 1))
sqs(1−

∑t
i=1 1/li)− 2(n∗ −m)

+ 2
)
,

provided the displayed denominator in the right side of (4.6) is positive.
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In the case of additive sieving only, we have the sufficient condition

(4.7) qn/2 > 2W (Q)W (g)2
(
qs(2(n∗ −m)− s)
sqs − 2(n∗ −m)

+ 2
)
,

provided the denominator in (4.7) is positive.

Note. Since n∗ | qs−1 the denominator in (4.7) is always positive unless
s = 1 and n∗ = n = q − 1 (which case is covered by Proposition 4.3).

Proof of Proposition 4.4. Take 2r + t complementary divisors with core
k0 = m0g(x)g(y), namely {k0Gi(x) : i = 1, . . . , r}, {k0Gi(y) : i = 1, . . . , r}
and {k0li : i = 1, . . . , t}.

Then N(Q, xn − 1, yn − 1) is positive, by (4.3), if

qn/2 > 2W (m0)W (g)2
(

2r + t− 1
1−

∑t
i=1 1/li −

∑2r
i=1 1/qs

+ 2
)
,

i.e., if

qn/2 > 2 · 2uW (g)2
(

2rs+ s(t− 1)
s(1−

∑t
i=1 1/li)− 2rs/qs

+ 2
)
,

i.e., since rs = n∗ −m, if (4.6) holds.

We conclude this section with some remarks which deal with the re-
lationship of the case in which n∗ < n = pbn∗ with the (more demand-
ing) one in which n∗ = n. The condition (4.7) may be written in the
form qn/2/W (Q) > H(n∗), say, where the quantity H(n∗) depends only
on n∗. Suppose that we are in a situation where it may be assumed that
W (Q) < κqεn for positive constants κ, ε with ε ≤ 1/4. For example, for any
pair (q, n), W (Q) ≤ cQQ

1/4 <
cQ

(q−1)1/4 q
n/4 < 4.9qn/4, by Lemma 3.7. Then

(4.7) is satisfied whenever the stronger condition

(4.8) q > (κH(n∗))2/(n(1−2ε)) = (κH(n∗)2/(n
∗(1−2ε)))1/p

b

holds. The main burden of the proof of Theorem 1.4 is to divide the pairs
(q, n) into infinite classes and show, theoretically using the additive sieve
alone, that such a condition holds for all but relatively few pairs. Of course,
if n∗ < n, then b ≥ 1 and it turns out that often (4.8) is satisfied for all
relevant pairs without much need for further investigation. Sometimes even
taking b = 1 is sufficient for all cases.

5. Some special cases. First we treat some special cases, where the
values of q and n are related, or when n is of a distinguished type (e.g.,
prime).

Proposition 5.1. Let q (≥ 5) be a prime power and let n (≥ 3) ∈ N.
Suppose that n∗ (> 2) divides q − 1 but n∗ 6= q − 1. Then (q, n) is a PFF
pair.
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Proof. Here we have G(x) = xn
∗−1, g(x) = 1 and, since (n, q−1) = n∗,

we have Q = (qn − 1)/(n∗(q − 1)). Moreover s = 1 and m = 0. Note that
here 3 ≤ n∗ ≤ (q − 1)/2; if n∗ < (q − 1)/2, then n∗ ≤ (q − 1)/3.

Inequality (4.7) yields the sufficient condition

(5.1) qn/2 > 2W (Q)
(

2n∗(q − 2) + q

q − 2n∗

)
.

Using the basic bound W (Q) < cQq
(n−1)/4/(n∗(1− 1/q))1/4 we obtain the

sufficient condition

(5.2) q >

(
2cQ

2n∗(q − 2) + 2
q − 2n∗

)4/(n+1)( 1
n∗(1− 1/q)

)1/(n+1)

=: T1,

say. Clearly, T1 → ∞ as n∗ approaches q/2. We shall show that an appro-
priate upper bound T2 for T1 decreases in the range 3 ≤ n∗ ≤ (q − 1)/3.

Since q− 2n∗ ≥ 1 and n∗(1− 1/q) > 1, to begin to analyse (5.2), we can
replace it by the weaker sufficient condition

(5.3) q > (2cQq(2n∗ + 1))4/(n+1) =: T2,

say.
We first consider the case when n = n∗. We begin by assuming that

n ≥ 10: thus q ≥ 23. Taking natural logarithms, we get

log T2 =
4

n+ 1
(log(2cQq) + log(2n+ 1)).

For fixed q, differentiating with respect to n we obtain
d

dn
log T2 = − 4

(n+ 1)2

(
log(2cQq(2n+ 1))−

(
1 +

1
2n+ 1

))
,

which is negative since log(4n+ 2) > 1 + 1/(2n+ 1) for all n ≥ 1. So, in the
range 10 ≤ n ≤ (q − 1)/2, the maximal value of T2 is attained at n = 10: it
is certainly less than q for q ≥ 23.

Now assume 3 ≤ n ≤ 9. Since q − 2n ≥ q − 18, we can replace (5.2) by

q >

(
2cQq(2n∗ + 1)

q − 18

)4/(n+1)

=: T3,

say. Taking logarithms and differentiating, we find that T3 is a decreasing
function if

log
14cQq
q − 18

>
8
7
,

which holds for q > 18 (since log 14 > 8/7). The maximum value of T3

occurs when n = 3; it is less than q for q > 14cQ + 18, i.e., q > 86. This
establishes the result except when q < 87 and 3 ≤ n ≤ min(9, (q − 1)/2).

Using (5.1), with the cQ bound, we find from a computational check
that the result holds for all remaining (q, n) except (19, 9), (17, 8), (19, 6),
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(13, 6), (16, 5), (11, 5) and appropriate values of (q, 4), q ≤ 29 (5 values), and
(q, 3), q ≤ 49 (9 values). For all remaining values, ω(Q) ≤ 4; taking exact
values deals (via (5.1)) with all pairs except (7, 3), (16, 3), (9, 4), (13, 4),
(11, 5), (13, 6). Invoking the multiplicative part of the sieve also, i.e., using
inequality (4.6), yields the result for (13, 6) (Q = 7 · 61 · 157, m0 = 7) and
(16, 3) (Q = 7 · 13, m0 = 7). Direct verification establishes the other four
cases (see table below).

(q, n) PFF polynomial Polynomial for u

(13, 4) x4 + x3 − x− 2

(11, 5) x5 + x4 + 3x− 2

(9, 4) x4 − x3 + x2 + x− u+ 1 u2 − u− 1

(7, 3) x3 + x2 + 2x− 3

Now suppose n > n∗, and replace n+ 1 by 2n∗+ 1 in (5.3) to obtain the
sufficient condition

(5.4) q > (2cQq(2n∗ + 1))4/(2n
∗+1) =: T4,

say. We begin by assuming that n∗ ≥ 5 and q > 13. Taking logarithms and
differentiating, we get

d

dn∗
log T4 =

8
(2n∗ + 1)2

(1− log(2cQq(2n∗ + 1))),

clearly negative. So, in the range 5 ≤ n∗ ≤ (q − 1)/2, the maximum value
of T4 is attained at n∗ = 5, and this is less than q for q > 13. When
n∗ = (q − 1)/2, we note that n ≥ 3n∗; using this in condition (5.4), we find
the result holds for q ≥ 9 (and so in every case).

Finally we consider 3 ≤ n∗ ≤ 4. Since n∗ ≤ 4, we can use a final sufficient
criterion, namely

q >

(
2cQq(2n∗ + 1)

q − 8

)4/(n+1)

=: T5,

say. Again by differentiation, we can check that T5 is a decreasing function
when q > 8. The maximum value of T5 occurs when n∗ = 3. Indeed, T5 < q
in the following circumstances:

• q ≤ 17 (using cQ < 4.9 except as noted),
• q = 16, n∗ = 3 (using cQ < 2.9),
• q = 13, n∗ = 3, 4 (using n ≥ 13n∗),
• q = 9, n∗ = 4 (using cQ < 3.2, n ≥ 3n∗).

In the last remaining case when q = 7 and n∗ = 3, since n ≥ 7n∗ it
follows that T2 < q.
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The following simple lemma improves Lemma 3.7 under the stated con-
ditions.

Lemma 5.2. Let n ≥ 5 be prime, and let h ∈ N be square-free with each
prime divisor of h congruent to 1 modulo 2n. Then

W (h) < h1/4,

except when n = 5 and h = 11.

Proposition 5.3. Let q (≥ 5) be a prime power and let n ∈ N. Suppose
n∗ (≥ 5) does not divide q − 1 and either n∗ is prime or n∗ = q + 1 with q
even. Then (q, n) is a PFF pair.

Proof. In this case, xn
∗ − 1 factors as (x− 1)G(x) where G is a product

of (n∗ − 1)/s factors of degree s. We have s ≥ 2 (s = 2 if n∗ = q+1), m = 1,
(n, q − 1) = 1 and Q = (qn − 1)/(q − 1) odd.

By inequality (4.7) of Proposition 4.4, we have the sufficient condition
(for N(Q, xn − 1, yn − 1) > 0)

(5.5) qn/2 − 8W (Q)
(

2(n∗ − 1)
s− 2(n∗ − 1)/qs

+ 1
)
> 0;

this certainly holds if

∆ = ∆(q, n, s) := (qn(q − 1))1/4 − 8cQ

(
2(n∗ − 1)

s− 2(n∗ − 1)/qs
+ 1
)
> 0.

Concentrating on the “worst-case scenario” when n = n∗, we require

(5.6) ∆(q, n∗, s) = (qn
∗
(q − 1))1/4 − 8cQ

(
2(n∗ − 1)

s− 2(n∗ − 1)/qs
+ 1
)
> 0.

In (5.6) we can take cQ < 2.9 since Q is odd. In fact, when q and n are odd
and n is an odd prime, Lemma 5.2 applies and we can take cQ = 1.

Evidently, ∆(q, n∗, s) is an increasing function of q (with n∗, s fixed)
and of s (with q, n∗ fixed). It is also increasing with respect to n∗ with
some qualification as regards small values of q, s. In fact, with cQ = 1, by
differentiation, for given odd q and s = 2, ∆ is an increasing function of n∗ in
the range (q, n∗) = (5+, 9+), (7+, 6+), (9+, 5+). For even q (take cQ = 2.9),
the corresponding pairs are (8+, 6+), (16+, 5+). For s = 3, the pairs need
to be (5+, 6+), (7+, 5+), q odd; (8+, 7+), (16+, 5+), q even. For s ≥ 4, any
pair (5+, 5+) (q odd) or (8+, 6+) is in a region of increasing ∆. Within the
above framework, it suffices to establish the result for smallest q and n. It
also suffices to take least s, i.e., s = 2.

In the general case, by computation, the result holds for (25+, 5+),
(16+, 7+), (9+, 9+), (7+, 11+) and (5+, 17+), in each case within the range
of increasing ∆.
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Suppose first that n = n∗. For the pairs (q, n) not covered by the above
list, a number are simply excluded by Lemma 2.3. For all but two remain-
ing pairs, ∆(q, n, s) is quickly calculated to be positive; specifically, when
(q, n, s) = (19, 5, 2), (13, 7, 2), (11, 7, 3), (9, 7, 3), (5, 11, 5), (5, 13, 4). The final
two pairs are (9, 5) and (8, 9); in each case s = 2. For these, W (Q) = 4 and
the sufficient condition (5.5) holds.

Finally, suppose n > n∗. In the definition of ∆ and in condition (5.6),
replace in the first term qn

∗
(q− 1) by q3n

∗
(q− 1) (q odd) and by q2n

∗
(q− 1)

(q even). Also, set cQ = 1 or 2.9 according as q is odd or even. Then, easily,
∆(5, n∗, 2) and ∆(8, n∗, 2) are increasing and positive in the respective cases.
This completes the proof.

Proposition 5.4. Let q (≥ 5) be an odd prime power and let n ∈ N.
Suppose n∗ = 2l ≥ 6, where either l is a prime not dividing q − 1 or l =
1
2(q + 1) with q ≡ 3 (mod 4). Then (q, n) is a PFF pair.

Proof. When l is prime then 2 ≤ s | l − 1 (since qs ≡ 1 (mod l)),
whence n∗ − 2 = 2(l − 1) is divisible by s. The same conclusion holds
when l = 1

2(q + 1), in which case s = 2. Indeed, in both cases, xn
∗ − 1

factors into two linear factors and (n∗ − 2)/s factors of degree s. (Note that
(n∗, q−1) = 2.) Let γs = 1 if s is even, or 2 if s is odd: thus, since n∗ divides
γs(qs − 1)/(q − 1), we have n∗ < γsq

s/(q − 1). Apply Proposition 4.4 with
m = 2. By inequality (4.7), we have the sufficient condition

(5.7) qn/2 − 64W (Q)
(

n∗ − 2
s− 2(n∗ − 2)/qs

+ 1
)
> 0,

which, as before, is certainly implied by

∆(q, n, s) := (qn(q − 1))1/4 − 64
21/4

cQ

(
n∗ − 2

s− 2γs/(q − 1)
+ 1
)
> 0.

Concentrating on the “worst-case scenario” when n = n∗, we require

(5.8) ∆(q, n∗, s) > 0.

As in Proposition 5.3, it suffices to establish the result for smallest q and n.
We take s = 2, γs = 2 and cQ < 4.9.

By computation, the result holds for (47+, 6+), (23+, 8+), (16+, 10+),
(11+, 12+), (9+, 14+), (7+, 16+) and (5+, 21+). We may now assume that
q ≤ 43.

Suppose first that n = n∗. Note that, for n ≥ 14, the only case which
remains is (5, 14). When n = 6, we find that W (Q) ≤ 25 for all q < 47
with q 6≡ 1 (mod 6). Using this, (5.7) gives the result for q ≥ 19. Indeed, for
q < 19, all except q = 11 have W (Q) ≤ 24, which gives the result for q = 17.
This leaves just q ≤ 13 when n = 6; in fact, only (5, 6) (Q = 2 ·32 ·7 ·19 ·37)
and (11, 6) (Q = 32 ·7 ·31). Using both the additive and multiplicative power
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of the sieve, i.e., using inequality (4.6), gives the sufficient condition

qn/2 > 21−t16W (Q)
(

n∗ + t− 3
(1−

∑
1/li)− (n∗ − 2)/q2

+ 2
)
.

With t = 3, this yields the result for q = 11 (l1 = 7, l2 = 19 and l3 = 37).
This leaves just q = 5. When n = 8, using the additive-only estimate with
W (Q) = 23 and γs = 1 gives the result for (7, 8). When n = 10, all valid
q < 16 have W (Q) = 24; using this value in the additive-only inequality
yields the result for all q ≥ 7. Finally, using W (Q) ≤ 25 deals with (5, 14).
Direct verification deals with the remaining case: the pair (5, 6) has PFF
polynomial x6 + x5 + x3 + x2 − x− 2. When n > n∗, taking 3n∗ in place of
n∗ in the first term of condition (5.8) yields the result for all pairs.

6. Larger fields and degrees. It is necessary to deal individually
with fields of smallest cardinality, namely 2, 3 and 4, and their treatment is
deferred to Section 7. Here we suppose q ≥ 5. Even so, it turns out that F5

and F7 require closer attention. From what has been accomplished so far we
may also assume that n∗ ≥ 8.

We make the following definitions. For g as defined in Section 4.1, ω =
ω(q, n) = ω(q, n∗) is the number of distinct irreducible factors of g (so
W (g) = 2ω), and ρ = ρ(q, n) = ρ(q, n∗) = ω(q, n)/n∗. As in Section 4.1,
s denotes the degree of the irreducible factors of G. We can suppose that
s ≥ 2. Also set n1 := gcd(n, q − 1).

Lemma 6.1 ([5]). Assume that n > 4 with p - n and q > 4. Then the
following hold:

(i) If n = 2n1 with q odd, then s = 2 and ρ = 1/2.
(ii) If n = 4n1 with q ≡ 1 (mod 4), then s = 4 and ρ = 3/8.

(iii) If n = 6n1 with q ≡ 1 (mod 6), then s = 6 and ρ = 13/36.
(iv) Otherwise, ρ ≤ 1/3.

Because the bounds of Lemma 6.1 (taken from [5]) are insufficient for our
purposes when q = 5 or 7, there is some difficulty for these field cardinali-
ties. We overcome the obstacle by a numerical result related to Lemma 3.7;
bounds of similar type (such as Lemma 7.5) will occur in Section 7.

Lemma 6.2. Suppose ω(h) ≥ 49. Then

W (h) < h1/6.

Proof. By calculation the result holds when ω(h) = 49, since then h is
at least the product of the first 49 primes. The result follows since the 50th
prime is 229 > 26.

Write the radical of Q as m0p1 . . . pt, where m0 is the core and p1, . . . , pt
are the (multiplicative) sieving primes. When t = 0 there is no multiplicative
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sieving. Set u := ω(m0); thus, often u = ω(Q). In this context, the basic
form of (4.6) in Proposition 4.4 takes the shape (6.1) with (6.2) or (6.3)
below (because n∗ −m ≤ (1− ρ)n∗).

Proposition 6.3. Suppose that

(6.1) q > R(n),

where

(6.2) R(n) = R(n; q) =
{

22ρn∗+u+1

( 2(1−ρ)n∗
s + t− 1

δ − 2(1−ρ)n∗
sqs

+ 2
)}2/n

and δ = 1−
∑t

i=1 1/pi (with δ = 1 when t = 0). Then (q, n) is a PFF pair.
In particular, when additive sieving alone is being used (i.e., t = 0), then

R(n) takes the form

(6.3) R(n) = R(n; q) =
{

22ρn∗+u+1

( 2(1−ρ)n∗
s − 1

1− 2(1−ρ)n∗
sqs

+ 2
)}2/n

.

Note also that R(n; q) depends on q (as well as n). Inasmuch as it is ob-
viously a decreasing function of q (for fixed values of the other parameters),
we shall apply it either when q has a specified value or when q ≥ q0 with q0
specified. In what follows we shall, for convenience of calculation, use alter-
native weaker (i.e., larger) forms of R(n) (to be denoted by R1(n), R2(n),
etc): it will be sufficient to show that (6.1) holds for the relevant form.

We divide the discussion into two categories broadly according to wheth-
er ρ > 1/3 or ρ ≤ 1/3 as described in Lemma 6.1.

Proposition 6.4. Suppose q ≥ 5 and n∗ ≥ 8 with n∗ - q − 1. Suppose
also that ρ(q, n) > 1/3. Then (q, n) is a PFF pair.

Proof. The circumstances where ρ > 1/3 are delineated in Lemma 6.1.
Suppose first that n = n∗ and put n = dn1, where d = 2, 4 or 6. Then Q =
d(qn − 1)/(n(q − 1)) and n∗ = n < qd. By means of the simple bound (3.6)
for W (Q) and without multiplicative sieving, we obtain (as an alternative
to R(n))

(6.4) R1(n) :=
{
c22ρn+1

(
d

n(q0 − 1)

)1/4( 2(1−ρ)n
s − 1

1− 2d(1−ρ)
sqs−1

0

+ 2
)}4/n

(with c < 4.9 and q ≥ q0) for use in (6.1).
Because n1/n decreases as n increases, it is seen (with a little effort) that

R1(n) decreases as n ≥ 8 increases under the given conditions.
From Lemma 6.1, suppose first that ρ = 1/2 (with s = 2 and d = 2).

Then R1(8; 59) < 57. Hence (q, n) is a PFF pair whenever q ≥ 59. Indeed,
R1(12; 43) < 41.6, and R1(16; 37) < 34.7, etc., thus reducing further the list
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of possible exceptional pairs. Since n < 2q, it can thus be quickly checked
(using R1 for R in (6.1)) that the only pairs not shown to be PFF pairs are
(5, 8), (7, 12), (9, 16), (11, 20), (13, 8), (13, 24), (17, 32), (19, 12), (19, 36),
(25, 16), (29, 8), (31, 12), (37, 8), (53, 8).

These 14 pairs were then tested using (6.3), with u calculated by fac-
torising Q. This was successful except for (5, 8), (7, 12), (9, 16), (13, 8). The
final stage for these pairs was to sieve multiplicatively, also. Thus, for (9, 16),
Q = 2 · 5 · 17 · 41 · 193 · 21523361, the largest four primes being the sieving
ones. With u = 2 this yields R(16) < 7.4 and hence a PFF pair. Similarly,
for (13, 8), Q = 2 · 5 · 7 · 17 · 14281, and, again with four sieving primes, this
yields R(8) < 11 and another PFF pair. This process fails, however, for the
two pairs (5, 8) and (7, 12). For these we give an explicit PFF polynomial as
follows: for (7, 12), a PFF polynomial is x12 + x11− 3x− 2; for (5, 8), one is
x8 + x7 − x2 − x− 2.

Next, suppose from Lemma 6.1 that ρ = 3/8 (with s = 4 and d = 4).
This implies that n ≥ 16. We calculate R1(16; 19) < 17 and R1(13; 13) < 13.
This excludes only the pairs (5, 16), (9, 32) and (13, 16). In all these cases,
ω(Q) ≤ 7. Using this in (6.3) with u = 7, we see that (13, 16) and (9, 32)
are (comfortably) PFF pairs. For (5, 16), use multiplicative sieving. Here
Q = 22 · 3 · 13 · 17 · 313 · 11489 and we take u = 2, t = 4 to yield δ = 0.8610
and R(16; 5) < 5.

Lastly, when n∗ = n, suppose from Lemma 6.1 that ρ = 13/36 (with
s = 6 and d = 6). This implies that n ≥ 36 and R1(36; 11) < 10.9. This
does leave the pair (7, 36) but an application of (6.3) with u = 11 yields
R(36; 7) < 5.

Finally, all pairs (q, n) with n∗ < n can be shown to be PFF pairs by
using the principle of (4.8) with b = 1. Thus, instead of (6.4) a sufficient
condition to guarantee a PFF pair is

q > R2(n; q) :=
{
c22ρn∗+1

(
d

n(q − 1)

)1/4( 2(1−ρ)n∗
s − 1

1− 2d(1−ρ)
sqs−1

+ 2
)}4/pn∗

.

For example, take ρ = 1/2 with n∗ as in Lemma 6.1(i). Then q is odd (p ≥ 3)
and R2(n; q) ≤ R2(8; 9) < 5. The other cases are similar.

For the remainder of this section we assume ρ ≤ 1/3. Consider the
function R(n; q) defined by (6.3). In the situation to which it applies, s and
ρ are determined by q and n. Nevertheless it is useful sometimes to consider
R(n; q) (and similar expressions) as functions of n, q, s and ρ, more loosely
related. (For instance, since s ≥ 2 is the least integer for which n∗ divides
qs − 1, we have n∗ < qs and s ≤ φ(n∗) < n∗.) It is important to ensure
that sqs > 2(1−ρ)n∗ so that the right side of (6.3) is a well-defined positive
quantity. It is a consequence of the next lemma that, for given n, q, s with
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2 ≤ s < n∗ and 8 ≤ n∗ < qs (indeed n∗ < q2/2 when s = 2), R(n∗; q) is an
increasing function of ρ for 0 ≤ ρ ≤ 1/3.

Lemma 6.5. For fixed positive integers n, q, s with 2 ≤ s < n and 8 ≤
n < qs (indeed with n < q2/2 when s = 2), set

τ(ρ) = 22ρn
2(1−ρ)n

s − 1

1− 2(1−ρ)n
sqs

.

Then τ(ρ) is an increasing function for 0 ≤ ρ ≤ 1/3.

Proof. Differentiate to obtain

(6.5) τ ′(ρ) = K · [(log 2)(2(1− ρ)n− s)(sqs − 2(1− ρ)n)− s(qs − 1)],

where K = 2nqs22ρn/(sqs − 2(1− ρ)n)2 is a positive function (of all the
variables).

If s = 2 then, since 0 ≤ ρ ≤ 1/3 and 8 ≤ n < q2/2,

τ ′(ρ)/K ≥ (log 2)
(

4n
3
−2
)

(2q2−q2) − 2q2 = q2
((

4n
3
−2
)

log 2−2
)
> 0.

If 3 ≤ s < n/2, then, by (6.5), for 0 ≤ ρ ≤ 1/3,

τ ′(ρ)/K ≥ n(log 2)
(

4
3
− 1

2

)
(s− 2)qs − sqs

= qs
(
s

(
5n
6

log 2− 1
)
− 5n

3
log 2

)
≥ qs

(
3
(

5n
6

log 2− 1
)
− 5n

3
log 2

)
= qs

(
5n
6

log 2− 3
)
> 0,

since n ≥ 8.
Finally, if n/2 ≤ s ≤ n (< qs), then, again by (6.5), and since qs ≥ n+ 1

(qs being an integer),

τ ′(ρ)/K ≥ n

3
(sqs − 4s) log 2− sqs = s

{(
n

3
log 2− 1

)
qs − 4n

3
log 2

}
≥ s
[
(n+ 1)

(
n

3
log 2− 1

)
− 4n

3
log 2

]
=
ns

3

[
(n− 3) log 2− 3

(
1 +

1
n

)]
> 0,

again since n ≥ 8.

In practice, when n = n∗ it is convenient to employ a larger “starter”
function R̄(n; q),

(6.6) (R(n; q) <) R̄(n) = R̄(n; q) := {2(2/3)n+u+1(2n− 1)}2/n,
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derived from R(n) by taking ρ = 1/3, and then using the facts that n < qs

and s ≥ 2. In the result which follows we employ suitable modifications of
these ideas.

Proposition 6.6. Suppose q ≥ 5 and n∗ ≥ 8 with n∗ - q − 1. Suppose
also that ρ(q, n) ≤ 1/3. Then (q, n) is a PFF pair.

Proof. We concentrate on the case when n = n∗ in the theoretical dis-
cussion. But recall (4.8) with b ≥ 1 for the relevant modification in the
(computationally less demanding) case n∗ < n and observe that Lemma 6.5
(with n = n∗) is then also applicable. For an example of how to proceed
when n∗ < n, see Case I below.

Case O: n∗ = q2 − 1. In this situation, the argument about R(n)
increasing with ρ (to be used elsewhere) fails. Here ρ = 1/(q + 1) and
R(n) = R(q2 − 1) (see (6.3)), using W (Q) < q(q

2−1)/4 (by Lemma 3.7), has
the form

R(q2 − 1) = (c22q−1(q3 − q2 − q + 2))4/(q
2−1).

With c = 4.9, it is quickly seen that R(q2− 1) decreases and is less than 5.2
for q ≥ 6. This leaves only the pair (5, 24), discussion of which is incorporated
with the figures for the most delicate cases in Case II below. Aside from this,
in what follows we assume (as we may) n∗ < q2/2 when s = 2.

Case I: q ≥ 8. Since the conditions of Lemma 6.5 with n = n∗ are
satisfied, replace ρ by 1/3 and use Lemma 3.7 in (6.1) and (6.3). It therefore
suffices that q > R3(n), where

(6.7) R3(n) = R3(n; q, s) =
{
c2(2/3)n∗+1 1

(q − 1)1/4

( 4n∗

3s − 1
1− 4n∗

3sqs

+ 2
)}4/n

,

where c < 4.9. Here a suitable starter form, derived from (6.7) by using
s ≥ 2 and n∗ < qs, is

(6.8) R̄3(n) = R̄3(n; q) =
{
c2(2/3)n∗+1 (2n∗ − 1)

(q − 1)1/4

}4/n

.

To eliminate at the outset the case in which n∗ < n, suppose this holds
so that n ≥ 2n∗. Then, in accordance with (4.8), the exponent of the right
side of (6.8) may be replaced by 2/n∗ to yield a function which evidently
increases as n∗ or q decreases and whose numerical value when n∗ = q = 8
and c = 4.9 is less than 7.1. It follows that R̄3(n) < q and (q, n) is a PFF
pair.

From now on suppose n∗ = n. Again R̄3(n; q) increases as n or q de-
creases. With c = 4.9, we have R̄3(8; 49) < 47.5. Hence the result holds for
q ≥ 49.
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We treat prime powers q ≤ 47 first by R̄3(n), to establish the result for
(potentially) large values of n and s, and then by R3(n) for more critical
values of n, with s (close to) 2. Indeed, to begin, suppose 37 ≤ q ≤ 47. Take
c = 4.9. Since R̄3(10; 37) < 36 the result holds for this range of q, provided
n ≥ 10. But also R3(8; 37, 2) < 32.1. Hence the result holds unconditionally.

Finally suppose 8 ≤ q ≤ 32. Since R̄3(130; 8) < 8 it can be assumed 8 ≤
n < 130. Excluding pairs covered by previous results (such as Propositions
5.1, 5.3 and 5.4) there are 124 pairs left. For these, evaluate R3(n; q, s)
using the relevant precise value of s. Many of them are such that R3(8) < q:
these yield PFF pairs. For the remaining 64 pairs evaluate R(n) given by
(6.3) using the exact values of u = ω(Q) and s but with ρ = 1/3. In each
case R(n) < q so that (q, n) is a PFF pair. Some of the smaller cases are
summarised as follows. Take q = 11. Then, with c = 4.45, we have R(8) <
9.6 and R(15) < 10.7 (with (s = 2, u = 4) in each case). Take q = 9 (so
that n ≥ 20). Then indeed, with c = 3.2, R(20) < 5.5 (with u = 6). Take
q = 8 so that n ≥ 15. Then, with c = 2.9, R(15) < 5.6 (with u = 5). Thus
Case I has been completed simply by additive sieving with ρ = 1/3.

Case II: q = 5 or 7. Take n = n∗. (The modifications when n∗ < n
are similar to the treatment of (6.8) but more immediate because we can
assume p ≥ 5 in (4.8).)

The argument follows broadly the same pattern as Case I, except that,
because 28/3 > 6.34, the expression R3(n) is useless when q = 5 and ineffec-
tive when q = 7. We therefore proceed as follows. Suppose n > q2 so that
s ≥ 3. Suppose first that also ω(Q) ≥ 49. By Lemma 6.2 and the fact that
n/2− n/6 = n/3, we obtain as an alternative to (6.7) the equation

(6.9) R4(n) = R4(n; q, s) =
{

2(2/3)n+1 1
(q − 1)1/6

( 4n
3s − 1

1− 4n
3sqs

+ 2
)}3/n

.

Here the starter form, derived from (6.9) using s ≥ 3 and n < qs, is

(6.10) R̄4(n) = R̄4(n; q) =
{

2(2/3)n+1 (4n+ 1)
5(q − 1)1/6

}3/n

.

Now R̄4(58; 5) < 4.998 and R̄4(16; 7) < 6.98. Summarising, whenever ω(Q)
≥ 49, we have shown that necessarily n ≤ 57 (q = 5) and n ≤ 15 (q = 7).
But, easily, if n ≤ 57 (say), then ω(Q) < 49.

Hence we may suppose that ω(Q) ≤ 48. Since s ≥ 3 the appropriate
starter form for R(n) itself (in place of (6.6)) is

R̄(n) = R̄(n; 5, u) := {2(2/3)n+u+1(4n+ 1)/5}2/n.
For the rest, we focus almost exclusively on the more delicate case when

q = 5. Then R̄(113; 5, 48) < 4.98. So assume n ≤ 112, in which case since
Q ≤ (5n−1)/4, necessarily ω(Q) ≤ 45. Moreover, since in (6.3), R(106; 5) <
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4.991 (with u = 44, ρ = 1/3, s = 3), we can suppose that n ≤ 105. Indeed,
by repetition of this argument using R(n; 5) and smaller values of u, we
conclude that we can suppose n ≤ 90.

The next stage for n ≤ 90 is to calculate the true value of ω(Q) and s
and use R(n; 5). We find that each relevant (5, n) (n 6= 12) is a PFF pair.
The smallest (most delicate) values are tabulated below. When the same
exercise is applied to F7, the only outstanding degree is n = 9, in which case
apply Proposition 6.3 in full, using the form (6.2) for R(n). We tabulate the
outcome below.

q n s ρ Q u t δ R(n)

5 9 6 2/9 19 · 31 · 829 3 0 1 4.49

5 18 6 2/9 33 · 7 · 19 · 31 · 829 · 5167 4 0 1 3.85

5 24 2 1/6 2 · 32 · 7 · 13 · 31 · 313 · 601 · 390001 8 0 1 3.91

7 9 3 1/3 3 · 19 · 37 · 1063 1 3 0.919 4.82

For the pair (5, 12), Proposition 6.3 fails: in that case we have the explicit
PFF polynomial x12 + x11 + x3 − x2 − 2x− 2.

As a consequence, Proposition 6.6 is established.

7. Very small fields. In this section, we study the smallest fields Fq
when 2 ≤ q ≤ 4. For these it is imperative to use a smaller value of ρ than
provided by Lemma 6.1.

Lemma 7.1 ([5]). Assume that n > 4 (p - n). Then the following hold:

(i) Suppose q = 4. Then ρ(4, 9) = 1/3; ρ(4, 45) = 11/45; otherwise
ρ(4, n) ≤ 1/5.

(ii) Suppose q = 3. Then ρ(3, 16) = 5/16; otherwise ρ(3, n) ≤ 1/4.
(iii) Suppose q = 2. Then ρ(2, 5) = 1/5; ρ(2, 9) = 2/9; ρ(2, 21) =

4/21; otherwise ρ(2, n) ≤ 1/6.

When n = n∗, i.e., p - n, variations of Lemma 6.2 are also invoked where
appropriate. When n > n∗, i.e., p |n, although, in the main, Lemma 3.7
suffices, more attention has to be paid than heretofore. Thus, with n = pbn∗,
a combination of (6.3) and (3.6) (in the spirit of (4.8)) yields the criterion

(7.1) q > R5(n) :=
(
c22ρn∗+1

( 2n∗(1−ρ)
s − 1

1− 2n∗(1−ρ)
sqs

+ 2
)) 4

pbn∗

for (q, n) to be a PFF pair. Here c = 2.9 if q = 2 or 4 whereas c = 3.2 if
q = 3. Moreover, although we can assume n∗ > 4 (by Propositions 3.8 and
4.3), note that Lemma 6.5 does not apply if n∗ = 5 or 7 and we address
these cases first (when, as it happens, always ρ = 1/n∗). Note that, for
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other variables fixed, R5 decreases as b increases. Further, the least values
of b satisfying (7.1) can be tabulated as follows:

n∗ q s b R(n) q s b R(n) q s b R(n)

5 4 2 2 2.68 3 4 2 1.47 2 4 3 1.53

7 4 3 1 3.94 3 6 1 2.28 2 3 3 1.45

It follows that, when n > n∗, only the pairs (q, n)=(4, 10), (3, 15), (2, 10),
(2, 20), (2, 14), (2, 28) remain. Otherwise we may assume n∗ ≥ 8.

7.1. The field F4. Here n∗ = n if and only if n is odd, whereas Q, a
divisor of 4n − 1, is always odd.

Proposition 7.2. Suppose q = 4 and n 6= 3. Then (q, n) is a PFF pair.

Proof. For the main working suppose n∗ ≥ 8 and s > 1. By Lemma 7.1,
ρ(n) ≤ 1/5, except when n∗ = 9 (ρ = 1/3) or n∗ = 45 (ρ = 11/45). Further,
s = 2 when n∗ = 15; s = 3 when n∗ divides 63; otherwise s ≥ 4.

Start from the sufficient condition (6.1) with R(n) given by (6.3) and
u = ω(Q). It involves the expression

(7.2) E :=
2n∗(1−ρ)

s − 1

1− 2n∗(1−ρ)
sqs

+ 2,

for which 2ρn
∗
E is increasing with ρ in conformity with Lemma 6.5.

First suppose n∗ = 15 (the only situation in which Lemma 6.5 does not
apply); thus ρ = 1/5. Since here E = 46 and the (crude) bound W (Q) <
2.9 · 4n/4 holds (by Lemma 3.7), it follows from (4.8) with b = 1 that, when
n∗ < n, then inequality (6.1) certainly holds whenever

4 > (2.9 · 2 · 46)2/n
∗

= (266.8)2/15 = 2.106 . . . ,

which leaves only the case n = 15 itself.
Now suppose that n∗ 6= 15. Indeed, first assume n > 63 is odd, i.e.,

n = n∗ and s ≥ 4. In order to construct a suitable starter function for larger
values of n, by Lemma 6.5 replace ρ by 1/5. By Lemma 3.7, W (Q) < 2.9qn/4.
Using n < qs and s/(s− 2(1− ρ)) > 1, we see that, by (4.8) with b = 0, the
condition 4 > R6(n) suffices, where

R6(n) = R6(n; s) =
{

5.8
(

8n
5s− 8

+ 1
)}20/n

.

Here R6(n) decreases both as a function of s and as a function of n. Hence,
for n > 83, R6(n) ≤ R6(84, 4) < 4 and (q, n) is a PFF pair.

Assume n is even so that n = 2bn∗ with b ≥ 1 and s ≥ 3. By Lemma
6.5, replace ρ by 1/3 so that by (7.1) we can use
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R7(n) = R7(n; s, b) =
{

5.8
(

4n∗

3s− 4
+ 1
)} 12

n∗(3·2b−4)

.

In fact, R7(42; 3, 1), R(16; 3, 2) and R7(7; 3, 3) are each less than 4 so that
(q, n) is a PFF pair for n ≥ 84.

It follows that for a putative exception n to Proposition 7.2 we may
assume n ≤ 83. For the remaining possibilities, we evaluate R(n) given by
(6.3) with precise values for s, ρ and u = ω(Q): if it is less than q = 4 then
there does exist a PFF polynomial for that value of n. For larger values
of n and those for which n∗ is prime (in which case ρ = 1/n), comfortably
R(n) < 4. We tabulate the outcome in the more delicate cases with n ≥ 10:
in particular, the column headed R lists R(n) truncated to three decimal
places.

n s ρ u R n s ρ u R

45 6 11/45 11 3.187 25 10 1/5 4 3.238

36 3 1/3 12 2.277 21 3 1/7 6 3.063

35 6 1/7 9 2.532 18 3 1/3 8 3.815

33 5 1/11 8 2.195 15 2 1/5 6 5.539

30 2 1/5 11 2.965 11 5 1/11 4 3.238

27 9 5/27 6 2.729 10 2 1/5 5 4.337

We conclude that if there is no PFF polynomial of degree n, then n ∈
{15, 10, 9, 7, 5}. For the values n = 10, 7, using also multiplicative sieving
yields the result. Specifically, suppose n = 10. Then Q = 32 · 52 · 11 · 31 · 41,
which has 5 prime factors. In (6.2), take u = 1, t = 4. Then δ > 0.6524,
which yields R(10) < 3.73 < 4. For n = 7, Q = 32 · 43 · 127. In this case,
take u = 1, t = 2, so that δ > 0.9688 and R(7) < 3.93 < 4.

Finally, we exhibit explicit PFF polynomials for the remaining degrees
(including n = 6, held over from Proposition 4.3).

n PFF polynomial

15
x15 + x14 + (u+ 1)x12 + (u+ 1)x10 + x9 + x8 + x7

+ ux6 + ux5 + ux4 + x2 + ux+ u+ 1

9 x9 + (u+ 1)x8 + ux7 + (u+ 1)x6 + ux5 + ux3 + (u+ 1)x+ u

6 x6 + ux5 + (u+ 1)x4 + (u+ 1)x3 + ux+ u+ 1

5 x5 + ux4 + ux3 + x+ u+ 1

For these, we use F4 = F2(u), where u2 + u+ 1 = 0.

7.2. The ternary field F3. For the main part, again suppose n∗ ≥ 8
and s ≥ 2. Here any version of Lemma 3.7 valid for all integers is inadequate:
the following numerical bound for large integers will be needed.
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Lemma 7.3. Suppose h is indivisible by 3 and ω(h) ≥ 52. Then

W (h) < h4/25.

Proposition 7.4. Suppose q = 3 and n 6= 4. Then (q, n) is a PFF pair.

Proof. By Lemma 7.1, unless n∗ = 16, we have ρ(n) ≤ 1/4, whereas
ρ(16) = 5/16. Again, start from the sufficient condition (6.1) with R(n)
given by (6.3) and u = ω(Q).

Suppose 3 |n (i.e., n > n∗). By Lemma 6.5 we may replace ρ in E (given
by (7.2)) by 5/16 and then use the facts that n∗ < qs and s ≥ 2 to yield
E < 3n− 2. Since cQ < 3.2 and p = 3 it follows from Lemma 3.7 and (4.8)
that (3, n) is a PFF pair whenever

3/25/(2·3b) > (6.4(3n− 2))4/(3
bn∗)

and this holds if n∗ ≥ 11 for b = 1 and n∗ ≥ 3 for b ≥ 2. Hence when 3 |n,
we can assume n = 3n∗ ≤ 30.

Now suppose 3 - n (so that n∗ = n). With Lemma 7.3 in view, suppose
ω(Q) ≥ 52 so that certainly ρ ≤ 1/4 and s ≥ 4. Moreover, n = n∗ 6= 8; so in
R(n) replace ρ by 1/4 by Lemma 6.5. From (6.3) and Lemma 7.3, we derive
the sufficient condition

317/25/2 >
(

2(3n+ 2)
5

)2/n

,

which holds whenever n ≥ 205 and therefore whenever ω(Q) ≥ 52.
Continue to suppose 3 - n with n ≥ 55 and n 6= 80 (so that ρ ≤ 1/4 and

s ≥ 5) but assume now that ω(Q) ≤ 51. We introduce a multiplicative aspect
to the sieve by invoking R(n) as in (6.2). To show that R(n) is increasing
with ρ, analogously to Lemma 6.5 consider

(7.3) τ(ρ) = log
[
22ρn

(
2(1− ρ)(n/s) + t− 1
δ − 2(1− ρ)n/(sqs)

)]
,

with q = 3. Here we suppose δ is bounded below by 0.42, an assumption that
will be realised in applications. (In the first place, since ρ > 0 and s ≥ 5,
this guarantees that δ− 2(1− ρ)/s and so δ− 2(1− ρ)n/(sqs) are positive.)
For fixed s, differentiate τ(ρ) to obtain

(7.4) τ ′(ρ) = 2n log 2− 1
(1− ρ) + s(t− 1)/(2n)

− 1
δsqs/(2n)− (1− ρ)

,

with q = 3. Since 0 < ρ ≤ 1/4, n < 3s, s ≥ 5 and δ ≥ 0.42 it follows that
τ ′(ρ) ≥ 2n log 2− 4/3− 3.4, which is positive.

Granted that δ ≥ 0.42 it can be concluded that, for a given n and t,
τ(n) and so R(n) are maximised when s = 5 and ρ = 1/4. This yields the
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condition 3 > R6(n), where

(7.5) R6(n) = 2
(

21+u

(
3n+ 10(t− 1)

10δ − 3
+ 2
))2/n

,

with t denoting the number of multiplicative sieving primes and u those
of the multiplicative core m0 (which divides Q). To use (7.5), let the least
u = 6 primes in Q contribute to the core m0. Then t ≤ 45 is the number of
sieving primes and

δ ≥ 1−
(

1
19 + 1

23 + · · ·+ 1
239

)
= 0.42734 . . . .

Since R6(55.4) < 3 there exists a PFF polynomial of degree n whenever
n ≥ 55 (n 6= 80).

Next, for values of n ≤ 53 (indeed ≤ 30 if 3 |n) and n = 80 calculate
R(n) given by (6.3). Only those degrees which produce a value of R(n) > 2.2
are tabulated; none has n∗ < n.

n s ρ u R n s ρ u R

52 6 11/52 6 2.403 14 6 1/7 3 2.780

44 10 7/44 8 2.273 13 3 1/13 1 2.243

32 8 7/32 6 2.811 11 5 1/11 2 2.520

28 6 3/28 6 2.234 10 4 1/5 3 4.208

24 2 1/4 7 2.532 8 2 1/4 3 8.122

22 5 1/11 5 2.298 7 6 1/7 1 3.023

20 4 3/20 5 2.903 5 4 1/5 1 4.720

16 4 5/16 4 5.085

To supplement this table note that when n = 7 we can successfully use
(6.2) by sieving also with the single prime divisor of Q = 1093: this yields
R(7) < 2.694 < 3. Including cases held over from Proposition 3.8, this leaves
n ∈ {16, 12, 10, 8, 6, 5, 3}, for which we obtain a PFF polynomial in every
case by direct verification of the properties.

n PFF polynomial

16 x16 − x15 + x7 − x− 1

12 x12 + x11 + x3 + x2 + x− 1

10 x10 + x9 + x7 + x3 − x− 1

8 x8 + x7 + x4 − x3 − x2 + x− 1

6 x6 + x5 + x3 + x2 + x− 1

5 x5 + x4 − x+ 1

3 x3 + x2 − x+ 1

In fact when n = 3 there is only one pair of PFF polynomials.
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We remark that we incorporated multiplicative sieving as a device to
treat general values of n ≥ 55 (with 3 - n) in Proposition 7.4. Nevertheless,
it is likely that, for any specific value of n ≥ 55, additive sieving using (6.3)
would suffice. A similar remark would apply to the proof of Proposition 7.6
below.

7.3. The binary field F2. A suitable numerical result on W (h) here is
the following.

Lemma 7.5. Suppose the odd integer h is such that ω(h) ≥ 175. Then
W (h) < h3/25.

Proposition 7.6. Suppose q = 2 and n 6= 3, 4. Then (q, n) is a PFF
pair.

Proof. The cases (2, n), n = 6, 10, 14, 12, 14, 20, 24, 28, have been held
over. Otherwise, suppose that n∗ ≥ 8, so that s ≥ 4. Here Q = 2n − 1. By
Lemma 7.1, if n∗ > 21, then ρ ≤ 1/6.

Suppose first that n is even. If n∗ = 21, then ρ = 5/21, s = 6 and (7.1)
holds for b = 2. This leaves n = 42. The same occurs if n∗ = 9; then ρ = 2/9,
s = 6, and only n = 18 is left. For other values of n, by Lemma 6.5, increase
ρ in R5(n) to 1/6. Then as before use n∗ < qs and s/(s − 2(1 − ρ)) > 1
(where s ≥ 4) to obtain the starter function

(7.6) R8(n) = R8(n; b) :=
(

5.8(5n∗ + 7)
7

) 12

n∗(3·2b−4)

.

Then R8(n; 1) < 2 whenever n∗ ≥ 46 and R8(n; 2) < 2 whenever n∗ ≥ 8. It
follows that except possibly for (relevant) values of n = 2n∗ ≤ 90 there is a
PFF polynomial of given even degree n.

Now suppose n (> 64) is odd, so that n∗ = n, ρ ≤ 1/6 and s ≥ 7.
By Lemma 6.5 we can replace ρ by 1/6 in R(n) given by (6.3). In order
to apply Lemma 7.5 suppose (temporarily) that additionally ω(Q) ≥ 175.
Since 1/2 − 1/3 − 3/25 = 7/150, n < qs and s ≥ 7 we deduce that there is
a PFF polynomial of degree n whenever

2 > R(n) =
(

2(5n+ 11)
16

)150/(7n)

and so whenever n ≥ 139. Easily, this is implied by ω(Q) ≥ 175.
Accordingly, we can now suppose ω(Q) ≤ 174. Introduce a multiplicative

dimension to the sieve by applying the criterion of Proposition 6.3 with R(n)
given by (6.2). By (7.3) with q = 2 and provided δ > 0.42, τ(n) is increasing
for 0 < ρ ≤ 1/6, since τ ′(ρ) ≥ 2n log 2 − 7/6 − 100/47 ≥ 2n log 2 − 4 is
positive. Hence in R(n) we may replace ρ by 1/6 and s by 7, to obtain the
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sufficient condition

2 > R9(n) :=
{

2u+1

(
5n+ 21(t− 1)

21δ − 5
+ 2
)}6/n

,

provided δ > 0.42, where u is the number of prime integers in the multi-
plicative core.

First take u = 13 so that t ≤ 161. Then δ > 0.4354 and R9(144) < 2.
Hence we can suppose n ≤ 143. This implies ω ≤ 27. Thus u + t ≤ 28.
Repeat the above process with u = 4, t ≤ 23 and so δ > 0.4353. Then
R9(77) < 2 and we can suppose n ≤ 75. Then ω(Q) ≤ 16. Repeat once more
with u = 3, δ > 0.4787 to yield R9(66) < 2.

Consequently, for the last stage, assume n ≤ 65 (n odd) or n ≤ 90 (n =
2n∗ even), and calculate R(n) given by (6.3). The table lists the outcome
for values of n with n ≥ 11 which produce a value of R(n) exceeding 1.8.
Also included are the even values of n held over (as listed at the start of
this proof).

n s ρ u R n s ρ u R

45 12 1/9 6 1.963 21 6 4/21 3 2.662

42 6 4/21 6 1.801 20 4 1/5 5 1.952

35 12 4/35 4 1.856 18 6 1/9 4 2.290

30 4 2/15 6 1.953 15 4 2/15 3 2.892

28 3 1/7 6 1.811 14 3 1/7 3 2.438

27 3 1/9 3 1.839 13 12 1/13 1 1.814

24 2 1/3 6 1.887 11 10 1/11 2 2.293

Beyond this table, degrees n = 11, 18 and 21 can be treated theoretically.
For n = 11 use (6.2) by sieving also with the two prime divisors of Q = 23·89.
This yields R(11) = 1.968 . . . < 2. Similarly, when n = 18, sieve also with
the 4 prime divisors of Q = 33 · 7 · 19 · 73. This yields R(18) = 1.980 . . . < 2.
Finally when n = 21, for this occasion only, modify the key strategy for the
additive sieve as follows. Over F2, we have x21−1 = P1 ·P2 ·P31 ·P32 ·P61 ·P62,
where the P ’s are distinct irreducible polynomials of degree indicated by
the first subscript. For the sieve take the “core” to be P1P2 and the sieving
irreducibles to be those of degrees 3 and 6 together with the three prime
factors ofQ = 72·127·337. The crucial denominator satisfies δ−4/23−4/26 =
0.2838 . . . , and R(21) = 1.963 . . . < 2.

A final table of PFF polynomials is as follows.
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n PFF polynomial

15 x15 + x14 + x4 + x+ 1

14 x14 + x13 + x5 + x3 + x2 + x+ 1

12 x12 + x11 + x9 + x4 + x3 + x+ 1

10 x10 + x9 + x4 + x+ 1

9 x9 + x8 + x5 + x4 + x3 + x+ 1

8 x8 + x7 + x2 + x+ 1

7 x7 + x6 + x3 + x+ 1

6 x6 + x5 + x2 + x+ 1

5 x5 + x4 + x2 + x+ 1

We remark that, for n = 6 and n = 5, there is a single pair of reciprocal
PFF polynomials.
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