
ACTA ARITHMETICA

113.3 (2004)

Fermat’s equation for matrices or quaternions
over q-adic fields

by

Paulo Ribenboim (Kingston)

1. Introduction. We consider Fermat’s equation

(1.1) Xn + Y n = Zn

(with n ≥ 2) and we investigate the existence of solutions which are square
matrices or quaternions over the field Qq of q-adic numbers.

We recall some known facts.

(a) Let p, q be prime numbers. Then the equation

(1.2) Xp + Y p = Zp

has solutions in q-adic integers, all different from zero. This is obvious when
p = 2. If p 6= 2, more precisely, there exists a q-adic integer x 6= 0 such that
xp = 1 + qp. The proof is an application of Hensel’s Lemma (when p 6= q)
or of Hensel–Rychlik’s Lemma (when p = q). See [4, Chapter X, (1A)].

It follows that Fermat’s equation (1.2) has solutions in n × n diagonal
matrices or in quaternions of the form a(1+ i+j+k) with a non-zero q-adic
integer. So we are interested in solutions which are not of the forms just
indicated.

(b) It is easy to give solutions of (1.1) which are non-zero singular ma-
trices. Indeed, let

A =
(

1 0
0 0

)
, B =

(
0 0
0 1

)
, C =

(
1 0
0 1

)
.

For each k ≥ 3 let

Ã =
(
A 0
0 0

)
, B̃ =

(
B 0
0 0

)
, C̃ =

(
C 0
0 0

)
.

So Ã+ B̃ = C̃, the matrices Ã, B̃, C̃ are singular and idempotent, hence for
each n ≥ 2,

Ãn + B̃n = C̃n.
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This was noted by Bolker in 1968 (see [3, p. 275]). So we are interested in
solutions of (1.1) which are not singular matrices.

(c) Bolker also proved (see above reference) that for every n ≥ 2 the
equation (1.1) (with the same exponent n) has solutions in n × n matrices
(which are non-diagonal and non-singular) with entries in any commutative
ring R. Such solutions are explicitly given as follows. Let a, b, c be non-zero
elements of R such that a + b = c. Let π be the circular permutation of
{1, 2, . . . , n} given by π(j) = j + 1 for j = 1, . . . , n − 1, and π(n) = 1. Let
P be the n × n matrix whose (i, j) entry is δπ(i),j , where δr,s denotes the
Kronecker symbol (δr,r = 1, δr,s = 0 when r 6= s). Let

A = diag(a, 1, . . . , 1)P,

B = diag(b, 1, . . . , 1)P,

C = diag(c, 1, . . . , 1)P,

where diag(x1, . . . , xn) denotes the diagonal matrix with diagonal elements
x1, . . . , xn. Then A, B, C are non-singular and non-diagonal n×n matrices
such that An +Bn = Cn.

(d) Not much is known about the solutions of (1.1) in matrices which
are non-diagonal, non-singular but not of size n× n.

Our purpose is to show that (1.2) has indeed many solutions in non-
diagonal, non-singular square matrices of any size with entries which are
q-adic numbers.

Due to the matrix representation of quaternions, we obtain a similar re-
sult about solutions in quaternions with coefficients which are q-adic num-
bers.

It is important to stress that when n ≥ 2 the ring of n×n matrices is, as
we know, not commutative, so it is no more possible to apply the lemmas of
Hensel and of Hensel–Rychlik. Instead, the powerful Fixed Point Theorem is
applied. This theorem holds in ultrametric spaces, even devoid of algebraic
structure, provided the space is spherically complete. This is the case for
space of square matrices with entries which are q-adic integers, as it will be
seen later.

The result obtained in this paper illustrate a method to show the exis-
tence of solutions, applicable to a much wider class of diophantine equations
—but we shall not develop this in the present paper.

2. Preliminaries. The method of proof requires facts about ultrametric
spaces, which we indicate without proof.

Let Γ be a totally ordered set with smallest element denoted by 0. Let
Γ · = Γ \ {0} and let X be a non-empty set. A mapping d : X ×X→ Γ is
called an ultrametric distance (with values in Γ ) when the following prop-
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erties are satisfied:

• d(x, y) = 0 if and only if x = y;
• d(x, y) = d(y, x);
• d(x, y) ≤ max{d(x, z), d(y, z)} for all x, y, z ∈ X.

The triple (X, d, Γ ) is called an ultrametric space.
Let (X, d, Γ ) be an ultrametric space, let γ ∈ Γ ·, x0 ∈ X. The set

Bγ(x0) = {x ∈ X | d(x, x0) ≤ γ} is called a ball. It is immediate to verify
that:

(2.1) If Bγ(x0) ∩Bγ′(x′0) 6= ∅ and γ ≤ γ′ then Bγ(x0) ⊆ Bγ′(x′0).

Any non-empty family of balls which is totally ordered by inclusion is
called a chain of balls.

The ultrametric space is said to be spherically complete if any chain of
balls has a non-empty intersection.

A mapping ϕ : X → X is said to be strictly contracting if d(ϕ(x), ϕ(y)) <
d(x, y) whenever x 6= y.

The important Fixed Point Theorem is the following:

(2.2) Let (X, d, Γ ) be a spherically complete ultrametric space. If ϕ : X →
X is a strictly contracting mapping , there exists a unique z ∈ X such that
ϕ(z) = z. [z is the fixed point of ϕ.]

For the proof of the above theorem, see S. Priess-Crampe [1] or P. Riben-
boim [2]. [We just stated the theorem in the particular case which will be
needed in this paper.]

Let q be a prime number, let Qq denote the field of q-adic numbers. Let
Γ = {0} ∪ {1/qm | m ∈ Z}, so Γ is totally ordered and Γ · = Γ \ {0} is a
multiplicative group. Each element α ∈ Qq, α 6= 0, is written in unique way
in the form α = amq

m + am+1q
m+1 + . . . , where m ∈ Z, am, am+1, . . . ∈

{0, 1, . . . , q − 1}.
We define

|α|q =
1
qm

and |0|q = 0.

So | |q : Qq → Γ is the normalized q-adic absolute value. In particular,
|q|q = 1/q and if p is a prime, p 6= q, then |p|q = 1.

Properties of the q-adic absolute value are very well known and may be
found in many books; see for example [5].

If α, β ∈ Qq, we have:

• |α|q = 0 if and only if α = 0;
• |α+ β|q ≤ max{|α|q, |β|q}; in particular, if |α|q < |β|q, then

|α+ β|q = |β|q.
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We have also
|αβ|q = |α|q|β|q.

Let d(α, β) = |α− β|q. Then

d : Qq ×Qq →
{

1
qm

∣∣∣∣m ∈ Z
}
∪ {0}

is an ultrametric distance.
Since Qq is complete (with respect to its absolute value), the associated

ultrametric space (Qq, d, Γ ) is spherically complete.
Let n ≥ 2 and let R = Rn be the ring of n × n matrices with entries

in Qq. The absolute value | |q on Qq may be canonically extended to R as
follows:

If A = (αij)i,j=1,...,n let |A|q = max{|αij |q | i, j = 1, . . . , n}. It is easy to
verify the following properties. If A = (αij)i,j , B = (βij)i,j ∈ R then:

• |A|q = 0 if and only if A = 0;
• |A+B|q ≤ max{|A|q, |B|q};
• |AB|q ≤ |A|q|B|q.
The mapping | · |q : R→ Γ is an ultrametric norm.
We also have: if |A|q < |B|q then |A + B|q = |B|q and if I denotes the

n× n identity matrix and α ∈ Qq then

|(αI)A|q = |α|q|A|q.
Let d : R × R → Γ be defined by d(A,B) = |A − B|q. Then d is an

ultrametric distance on R. It is also easy to show that (R, d, Γ ) is spherically
complete.

Let

A = {A ∈ R | |A|q ≤ 1}, M =
{
A ∈ R

∣∣∣∣ |A|q ≤
1
q

}
,

M′ =
{
A ∈ R

∣∣∣∣ |A|q ≤
1
q2

}
.

It is clear that A is a subring of R and thatM andM′ are two-sided ideals
of A. We denote by U the multiplicative group of units of A, that is, the
elements U ∈ A such that there exists V ∈ R such that UV = V U = I.

We also note that any chain of balls in (R, d, Γ ) is countable. This follows
from (2.1), because Γ is countable.

3. Fermat’s equation for matrices with q-adic entries. We keep
the notations of Section 2. Moreover, if A,B ∈ R let [A,B] = AB−BA. We
note that if A,B,C ∈ R then [A,BC] = B[A,C] + [A,B]C.
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(3.1) Theorem. Let A,B ∈ R be such that :

(1) |A|q ≤ 1/q or if p = q = 2 then |A|2 ≤ 1/22;
(2) B ∈ U ;
(3) for every Y ∈ M′,

|[B,Y ]|q ≤
1
q2 |Y |q.

Then there exists X ∈ A such that Ap +Bp = Xp.

Proof. Since B ∈ U we have |B|q = 1 and Bp−1 ∈ U , so there exists
U ∈ U such that UBp−1 = Bp−1U = I. Thus |U |q = 1.

The proof will be divided into several steps.

(1◦) For all Y ∈ M′,
|I − U(Y +B)p−1|q ≤ 1/q2.

Indeed, for all j ≥ 1 let Wj be the set of all words W = T1T2 . . . Tp−1

where Ti ∈ {Y,B} and #{i | Ti = Y } = j.
We write

(Y +B)p−1 =
p−1∑

j=1

Sj +Bp−1 where Sj =
∑

W∈Wj

W.

Now, if W ∈ Wj then

|W |q ≤ |Y |jq ≤ |Y |q ≤ 1/q2.

So
∣∣∣
p−1∑

j=1

Sj

∣∣∣
q
≤ 1/q2.

We deduce that

|I − U(Y +B)p−1|q =
∣∣∣I − UBp−1 − U

( p−1∑

j=1

Sj

)∣∣∣
q
≤
∣∣∣
p−1∑

j=1

Sj

∣∣∣
q
≤ 1
q2 .

(2◦) For all Y,Z ∈ M′, Z 6= 0, and for all i ≥ 1,
∣∣∣∣
[Z, (Y +B)i]

pI

∣∣∣∣
q

< |Z|q.

Let C = Y + B, so |C|q = 1. The proof is by induction on i. Let i = 1.
Then ∣∣∣∣

[Z,C]
pI

∣∣∣∣
q

=
|[Z,C]|q
|p|q

.

But
|[Z,C]|q = |[Z, Y ] + [Z,B]|q ≤ max{|[Z, Y ]|q, |[Z,B]|q};
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next
|[Z, Y ]|q = |ZY − Y Z|q ≤ |Z|q|Y |q ≤ |Z|q ·

1
q2

and
|[Z,B]|q ≤ |Z|q ·

1
q2

by hypothesis, so

|[Z,C]|q ≤ |Z|q ·
1
q2 .

If p 6= q then ∣∣∣∣
[Z,C]
pI

∣∣∣∣
q

=
|[Z,C]|q
|p|q

≤ |Z|q ·
1
q2 < |Z|q.

If p = q also ∣∣∣∣
[Z,C]
pI

∣∣∣∣
q

=
|[Z,C]|q

1/q
≤ q|Z|q ·

1
q2 < |Z|q.

Now let i ≥ 2. Then

[Z,Ci] = C[Z,Ci−1] + [Z,C]Ci−1.

Since |C|q = 1, by induction we deduce that
∣∣∣∣
[Z,Ci]
pI

∣∣∣∣
q

≤ max
{∣∣∣∣
C[Z,Ci−1]

pI

∣∣∣∣
q

,

∣∣∣∣
[Z,C]Ci+1

pI

∣∣∣∣
q

}
< |Z|q.

(3◦) For all Y,Z ∈ M′, Z 6= 0,∣∣∣∣Z −
U

pI
{(Z + Y +B)p − (Y +B)p}

∣∣∣∣
q

< |Z|q.

Let C = Y +B, so |C|q = 1. For all j ≥ 1 let W ′j be the set of all words
W ′ = T1 . . . Tp where Ti ∈ {Z,C} and #{i | Ti = Z} = j. We write

(Z + C)p − Cp =
p∑

j=1

S′j where S′j =
∑

W∈W′j

W.

If j ≥ 2 and W ∈ W ′j then
∣∣∣∣
W

pI

∣∣∣∣
q

≤ |Z|
j
q

|p|q
≤ |Z|

2
q

|p|q
.

If p 6= q then
|Z|2q
|p|q

= |Z|2q < |Z|q.

If p = q then
|Z|2q
|p|q

≤ q|Z|q ·
1
q2 < |Z|q.



Fermat’s equation 247

So ∣∣∣
p∑

j=2

S′j

∣∣∣
q
< |Z|q.

On the other hand,

S′1 = Cp−1Z + Cp−2ZC + . . .+ ZCp−1

= pCp−1Z + Cp−2[Z,C] + Cp−3[Z,C2] + . . .+ [Z,Cp−1].

By (2◦),
∣∣∣∣
∑p−1
i=1 C

p−1−i[Z,Ci]
pI

∣∣∣∣
q

≤ max
1≤i≤p−1

{∣∣∣∣
[Z,Ci]
pI

∣∣∣∣
q

}
< |Z|q.

Next by (1◦),
∣∣∣∣Z −

U

pI
pCp−1Z

∣∣∣∣
q

= |{I − U(Y +B)p−1}Z|q ≤
1
q2 |Z|q < |Z|q.

Finally,∣∣∣∣Z −
U

pI
{(Z + C)p − Cp}

∣∣∣∣
q

=
∣∣∣∣Z −

U

pI

{
pCp−1Z +

p−1∑

i=1

Cp−1−i[Z,Ci] +
p∑

j=2

S′j
}∣∣∣∣
q

< |Z|q.

(4◦) Let the mapping ϕ be defined by

ϕ(Z) = Z − U

pI
{(Z +B)p −Bp − Ap} for all Z ∈M′.

If p = q = 2 then ∣∣∣∣
A2

2I

∣∣∣∣
2
≤ |A|

2
2

1/2
<

1
22 .

In the other cases, if p 6= q then∣∣∣∣
Ap

pI

∣∣∣∣
q

≤ |A|pq ≤ |A|2q ≤
1
q2 .

If p = q 6= 2 then ∣∣∣∣
Ap

pI

∣∣∣∣
q

≤
|A|pq
1/q

≤
|A|3q
1/q

≤ 1
q2 .

It follows from (3◦) that ϕ(Z) ∈ M′.
We show that ϕ is a strictly contracting mapping. Let X,Y ∈ M′,

X 6= Y , let Z = X − Y 6= 0 and let C = Y +B. Then

ϕ(X)− ϕ(Y ) = Z − U

pI
{(Z + C)p − Cp}.
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By (3◦),

|ϕ(X)− ϕ(Y )|q =
∣∣∣∣Z −

U

pI
{(Z + C)p − Cp}

∣∣∣∣
q

< |Z|q = |X − Y |q.

So ϕ is a strictly contracting mapping. Since M′ is spherically complete,
there exists T ∈ M′ such that ϕ(T ) = T , hence

U

pI
((T +B)p −Bp − Ap) = 0

and so
Ap +Bp = Xp with X = T +B ∈ A.

(3.2) Note. It is easy to give examples of matrices B satisfying the
conditions (2) and (3) of the theorem. Indeed, let C 6= 0 be such that
|C|q ≤ 1/q2, let B = I − C. Then B ∈ U because

I + C + C2 + . . . ∈ A
and

(I − C)(I + C + C2 + . . .) = (I + C + C2 + . . .)(I − C) = I,

so B ∈ U . Moreover, if Y ∈ M′ then

[B,Y ] = [I, Y ]− [C, Y ] = −[C, Y ].

Hence

|[B,Y ]|q = |Y C − CY |q ≤ |C|q|Y |q ≤
1
q2 |Y |q.

4. Fermat’s equation for quaternions with q-adic coefficients.
We shall establish a theorem about Fermat’s equation for quaternions with
q-adic coefficients. Using the representation of quaternions as 4×4 matrices,
the theorem will follow from (3.1).

Let n = 4, R = R4 and let H be the set of all matrices

A =



a −b −c −d
b a −d c
c d a −b
d −c b a




with a, b, c, d q-adic numbers. Then H is a subfield of R, which is isomorphic
to the field of quaternions.

Explicitly, the isomorphism is given by

1 7→ I, i 7→




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 ,
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j 7→




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 , k 7→




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 .

If X = (xij) ∈ R then X ∈ H if and only if

(∗)





x11 = x22 = x33 = x44,

x12 = −x21 = x34 = −x43,

x13 = −x24 = −x31 = x42,

x14 = x23 = −x32 = −x41.

Let

AH = A ∩H, MH =M∩H, M′H =M′ ∩H, UH = U ∩H.
For each A ∈ H and m ≥ 1 we shall consider the balls

B1/qm(A) = {X ∈ R | |A−X|q ≤ 1/qm}
and

BH1/qm(A) = B1/qm(A) ∩H.
(4.1) M′H is spherically complete.

Proof. It suffices to show that every infinite chain of balls

C : BH1/qm1 (A1) ⊃ BH1/qm2 (A2) ⊃ . . . with m1 < m2 < . . . ,

has a non-empty intersection in M′H . Since M′ is spherically complete, it
follows that there exists C ∈ M′ belonging to the intersection of the balls
B1/qm1 (A1),B1/qm2 (A2), . . .

We show that C ∈ H, hence C ∈ M′H .
Let C = (cij). We show that the entries cij satisfy the conditions in (∗).

Say, for example, that c11 6= c22, and let 1/qmk < |c11 − c22|q. Since
|C − Amk | ≤ 1/qmk , writing Amk = (aij)i,j , we have

|c11 − a11|q ≤
1
qmk

, |c22 − a22| ≤
1
qmk

.

From a11 = a22 it follows that

|c11 − c22| ≤
1
qmk

,

which is a contradiction. With similar proofs, we deduce that C ∈ H, as
required.

(4.2) Note. If B ∈ U ∩H let C ∈ A be such that BC = CB = I. Then
C ∈ H, so B is an invertible element of AH .

Indeed, since H is a field, there exists C ′ ∈ H such that BC ′ = C ′B = I.
Hence B(C − C ′) = 0, so C − C ′ = CB(C − C ′) = 0.
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(4.3) Theorem. Let A,B ∈ H be such that :

(1) |A|q ≤ 1/q or if p = q = 2 then |A|2 ≤ 1/22;
(2) B ∈ UH ;
(3) for all Y ∈ M′H ,

|[B,Y ]|q ≤
1
q2 |Y |q.

Then there exists X ∈ AH such that Ap +Bp = Xp.

Proof. Let U ∈ U be such that UBp−1 = Bp−1U = I. By (4.2), U ∈ H.
Let ϕH be the restriction to M′H of the mapping ϕ defined in step (4◦) of
the proof of (3.1). Since ϕH(M′H) ⊆ M′H , and ϕH is strictly contracting,
and since M′H is spherically complete by (4.1), there exists T ∈ M′H such
that ϕH(T ) = T . Hence

U

pI
((T +B)p −Bp −Ap) = 0.

Thus if X = T +B ∈ AH we have Ap +Bp = Xp.

(4.4) Note. If C ∈ H, C 6= 0, |C|q ≤ 1/q2 and B = I − C then, as in
(3.2), B ∈ UH and

|[B,Y ]|q ≤
1
q2 |Y |q.
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