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1. Introduction. Let K be an imaginary quadratic number field with
discriminant d, and CK denote the ideal class group of K. We mean by the 2-
class field tower of K the sequence of fields K = K0 ⊆ K1 ⊆ . . . ⊆ Ki ⊆ . . . ,
where Ki+1 is the Hilbert 2-class field (i.e. the maximal unramified abelian
2-extension) of Ki. If Ki+1 6= Ki for all i, then we say that the 2-class field
tower of K is infinite.

By the results of Golod–Shafarevich [3] and Vinberg–Gaschütz [12, 15],
the 2-class field tower of K is infinite if 2-rankCK ≥ 5. On the other hand,
Koch [6] and Hajir [4, 5] proved that the 2-class field tower of K is infinite
if 4-rankCK ≥ 3. When 2-rankCK = 3 and 4-rankCK = 0, there are some
examples of infinite families of K with infinite (resp. finite) 2-class field
towers [4, 7]. However, when 2-rankCK = 4, no example of K with finite
2-class field tower has ever been known. It has been conjectured [9] that the
2-class field tower of such a K is always infinite. In this direction, Benjamin
[1, 2] proved that the 2-class field tower of K is infinite if 2-rankCK = 4
and 4-rankCK = 2, except some type of Rédei matrix of K.

In this paper, we study the case where 2-rankCK = 4 and exactly one
negative prime discriminant divides d, and prove that the 2-class field tower
of such a K is infinite, except for one type of Rédei matrix of K. To prove
our theorem, we use Martinet’s inequalities [9] and their corollaries. We also
use some properties of Rédei matrices [10, 11, 13, 14]. A similar problem for
real quadratic number fields is treated by Maire [8], by a different method.

2. Martinet’s inequalities and their corollaries. Let K be an imag-
inary quadratic number field.

Martinet’s inequality (general case, [9]). Let E/F be a quadratic
extension of number fields. Denote by r1 (resp. r2) the number of real (resp.
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imaginary) places of F . Also denote by t (resp. %) the number of finite (resp.
infinite) places of F which ramify in E. If

t ≥ r1 + r2 − %+ 3 + 2
√

2(r1 + r2)− %+ 1,

then the 2-class field tower of E is infinite.

Martinet’s inequality I. Let F be a totally real number field of de-
gree n, and E a totally imaginary quadratic extension of F . Let t be the
number of prime ideals of F which ramify in E. If

t ≥ 3 + 2
√
n+ 1,

then the 2-class field tower of E is infinite.

Proof. Since r1 = % = n and r2 = 0, the assertion follows from the
general case of Martinet’s inequality.

Corollary 1. Let F be a real quadratic number field. Suppose that four
rational primes split in F and ramify in K, or that a rational prime remains
prime in F and three other rational primes split in F and these four rational
primes ramify in K. Then the 2-class field tower of E = FK is infinite.

Proof. Since n = 2 and t ≥ 7 ≥ 3 + 2
√

2 + 1 = 6.464 . . . in these cases,
the 2-class field tower of E = FK is infinite by Martinet’s inequality I.

Corollary 2. Let F be a totally real number field of degree 4. Suppose
that two rational primes split completely in F and ramify in K, or that
a rational prime splits completely in F and two other rational primes are
unramified and split into at least two primes in F and these three rational
primes ramify in K. Then the 2-class field tower of E = FK is infinite.

Proof. Since n = 4 and t ≥ 8 ≥ 3 + 2
√

4 + 1 = 7.472 . . . in these cases,
the 2-class field tower of E = FK is infinite by Martinet’s inequality I.

Martinet’s inequality II. Let F be a totally imaginary number field
of degree n, and E a quadratic extension of F . Let t be the number of prime
ideals of F which ramify in E. If

t ≥ n/2 + 3 + 2
√
n+ 1,

then the 2-class field tower of E is infinite.

Proof. Since r1 = % = 0 and r2 = n/2, the assertion follows from the
general case of Martinet’s inequality.

Corollary 3. Let F be an imaginary quadratic number field. Suppose
that four rational primes split in F and ramify in K. Then the 2-class field
tower of E = FK is infinite.

Proof. Since n = 2 and t ≥ 8 ≥ 2/2+3+2
√

2 + 1 = 7.464 . . ., the 2-class
field tower of E = FK is infinite by Martinet’s inequality II.
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3. The case with one negative prime discriminant. Let K be an
imaginary quadratic number field with discriminant d. First we recall some
properties of Rédei matrices of quadratic number fields [10, 11, 13, 14].

A rational integer is called a discriminant if it is the discriminant of
a quadratic number field or equal to 1. A discriminant which is divisible
by only one prime is called a prime discriminant. Prime discriminants are
denoted by p∗ = (−1)(p−1)/2p (if p is an odd prime), or p∗ = −4, 8 or −8 (if
p is equal to 2). Let d = p∗1p

∗
2 . . . p

∗
t be the unique factorization of d into a

product of prime discriminants. By genus theory, we have 2-rankCK = t−1.
Using Kronecker symbols

(
D
p

)
, where D is a discriminant and p is a

prime number satisfying p -D, we define the Rédei matrix RK = (aij) ∈
Mt×t(Z/2Z) of K by

(−1)aij =





(
p∗i
pj

)
(i 6= j),

(
d/p∗i
pi

)
(i = j).

By the definition of the Kronecker symbol, we have aij = 0 (i 6= j) if and
only if the rational prime pj splits in Q(

√
p∗i ). Note that the sum of all row

vectors of RK is equal to the zero vector 0 in (Z/2Z)t so that rankRK ≤ t−1
and the solution space X of the linear equations xRK = 0 (x ∈ (Z/2Z)t)
contains the vector 1 = (1, 1, . . . , 1) (t times). By the results of Rédei and
Rédei–Reichardt, we have 4-rankCK = t− 1− rankRK .

In the case where p∗i 6= −4 and p∗j 6= −4, we have aij = aji (i 6= j) if
and only if p∗i > 0 or p∗j > 0, by the quadratic reciprocity law. Therefore,
if exactly one negative prime discriminant (6= −4) divides d, then RK is a
symmetric matrix.

Theorem. Let K be an imaginary quadratic number field with discrimi-
nant d. Suppose that 2-rankCK = 4 and exactly one negative prime discrim-
inant divides d. Let d = p∗1 p

∗
2 p
∗
3 p
∗
4 p
∗
5 (p∗1 < 0) be the unique factorization

of d into a product of prime discriminants. Then the 2-class field tower of
K is infinite, except the case where

RK =




0 1 1 1 1

1 1 0 1 1

1 0 1 1 1

1 1 1 1 0

1 1 1 0 1



,

by changing the order of pi’s (2 ≤ i ≤ 5). In the exceptional case, p∗1 6= −4
and the 4-rank of CK is equal to 0.
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Proof. First, suppose that p∗1 = −4. Then we have pj ≡ 1 (mod 4) for
any j (2 ≤ j ≤ 5). Put F = Q(

√
p∗1) = Q(

√
−1). Then the four rational

primes pj (2 ≤ j ≤ 5) split in F and ramify in K. Hence, the 2-class field
tower of E = FK = K(

√
−1) is infinite by Corollary 3. Since E/K is an

unramified 2-extension, the 2-class field tower of K is also infinite.
In the following, we assume that p∗1 6= −4. Therefore, RK is a sym-

metric matrix. For each Rédei matrix RK , if we could find a subfield F =
Q(
√
pi,
√
pj), Q(

√
pi,
√
pjpk) or Q(√pipj ,√pipk) (i, j, k ∈ {2, 3, 4, 5}) of the

genus field Q(
√
p∗1, . . . ,

√
p∗5) of K which satisfies the condition of Corol-

lary 2, then the 2-class field tower of E = FK would be infinite. Since E/K
is an unramified 2-extension, we conclude that the 2-class field tower of K
is also infinite, in those cases.

First, suppose that there exists a column vector aj = (aij) (1 ≤ j ≤ 5) of
RK for which at least two of aij ’s (2 ≤ i ≤ 5, i 6= j) are 0. Then, assuming
that aij = akj = 0 (i 6= j, k 6= j), we put F = Q(

√
pi,
√
pk). Since the

rational prime pj splits completely in F and ramifies in K, and two rational
primes pl, pm ({i, j, k, l,m} = {1, 2, 3, 4, 5}) are unramified and split into at
least two primes in F and ramify in K, the 2-class field tower of E = FK
is infinite by Corollary 2. Hence, the 2-class field tower of K is also infinite.

In the following, we assume that at most one of aij ’s (2 ≤ i ≤ 5, i 6= j)
is 0 for each column vector aj = (aij) (1 ≤ j ≤ 5) of RK .

(i) One of ai1’s (2 ≤ i ≤ 5) is 0: In this case, we may assume that
a21 = 0 and a31 = a41 = a51 = 1 without loss of generality. If a32 = a42 =
a52 = 1, then we put F = Q(

√
p3p4,

√
p3p5). Since

(pipk
pj

)
= (−1)(−1) = 1

for each j ∈ {1, 2} and i, k ∈ {3, 4, 5}, the two rational primes p1 and p2
split completely in F and ramify in K. Therefore, the 2-class field tower of
E = FK is infinite by Corollary 2, and the 2-class field tower of K is also
infinite. On the other hand, if one of ai2’s (3 ≤ i ≤ 5) is 0, then we may
assume that a32 = 0 and a42 = a52 = 1 without loss of generality. So, we
have a23 = 0 and a43 = a53 = 1 by our assumption and

RK =




1 0 1 1 1

0 0 0 1 1

1 0 1 1 1

1 1 1 ∗ ∗
1 1 1 ∗ ∗



,

where the asterisks “∗” mean 0 or 1. We put F = Q(
√
p2,
√
p4p5). Since(p2

pj

)
= 1 and

(p4p5
pj

)
= (−1)(−1) = 1 for j ∈ {1, 3}, the two rational primes

p1 and p3 split completely in F and ramify in K. Therefore, the 2-class field
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tower of E = FK is infinite by Corollary 2, and the 2-class field tower of K
is also infinite.

(ii) a21 = a31 = a41 = a51 = 1: If there exists a column vector aj =
(aij) (2 ≤ j ≤ 5) of RK satisfying aij = 1 for all i (2 ≤ i ≤ 5, i 6= j), then
we put

F = Q(
√
pkpl,

√
pkpm) ({j, k, l,m} = {2, 3, 4, 5}).

In this case, as in the first half of the case (i), we see that the two rational
primes p1 and pj split completely in F and ramify in K. Therefore, the
2-class field tower of E = FK is infinite by Corollary 2, and the 2-class
field tower of K is also infinite. However, if there exists no such column
vector aj (2 ≤ j ≤ 5) of RK , then we cannot find an appropriate field F
which satisfies the condition of Martinet’s inequality. In this case, we have
a23 = a32 = a45 = a54 = 0, by changing the order of pi’s. So, RK is as
described in the assertion of our Theorem. This completes the proof of the
Theorem.

Remark 1. In Theorem 1 of [1], Benjamin classified the case with only
one negative prime discriminant (6= −4) and 2-rankCK = 4 into 32 types,
by using “Kronecker symbol configurations”. Among them, the infinitude
of the 2-class field tower remained unsettled for 5 types. Actually, there are
two more Kronecker symbol configurations

(
p1

p3

)
=
(
p1

p4

)
=
(
p2

p3

)
=
(
p2

p4

)
= 1

with 4-rankCK = 0, and
(
p1

p3

)
=
(
p1

p4

)
=
(
p2

p3

)
=
(
p2

p4

)
= −1

with 4-rankCK = 2. The numbers of Rédei matrices (= the numbers of
Kronecker symbol configurations) with given 4-rank are as follows:

4-rankCK 4 3 2 1 0 total

# of Rédei matrices 1 2 8 10 13 34

In our Theorem, we showed the infinitude of the 2-class field tower for
33 types, except the third case of Theorem 1(C) in [1] where p∗1 is neg-
ative (6= −4) and (

p2

p3

)
=
(
p4

p5

)
= 1.

Examples. The following are some examples of imaginary quadratic
number fields with only one negative prime discriminant (6= −4), 2-rankCK
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= 4 and the Rédei matrix of exceptional type:

Q(
√
−3 · 5 · 29 · 8 · 17), Q(

√
−7 · 5 · 41 · 13 · 17),

Q(
√
−3 · 5 · 41 · 17 · 53), Q(

√
−8 · 5 · 61 · 37 · 53).

Remark 2. In Theorems 1 and 2 of [2], Benjamin proved the infinitude
of the 2-class field tower of an imaginary quadratic number field K with
2-rank CK = 4 and 4-rank CK = 2, in the case where RK is not of the type




∗ 1 1 0 0

∗ 1 1 1 1

∗ 0 0 1 1

1 1 1 ∗ ∗
1 1 1 ∗ ∗




with
p∗1 = −4, p∗2 < 0, p∗3 < 0, p∗4 > 0, p∗5 > 0.

With the methods above one can prove the theorems of Benjamin and Koch–
Hajir as well.
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and A. Fröhlich (eds.), Academic Press, 1967, 231–249.

[13] Y. Sueyoshi, On a comparison of the 4-ranks of the narrow ideal class groups of
Q(
√
m) and Q(

√−m), Kyushu J. Math. 51 (1997), 261–272.
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