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Let A be an abelian variety of dimension d defined over a Galois CM
number field K of degree 2d, with full complex multiplication by the ring
of integers OK of K. Let {K; σ1, . . . , σd} be a CM-type of A, and p an odd
prime number of good reduction for A which splits completely in K with
pOK =

∏
σ∈G(K/Q) πσOK , where π is a prime element of K and G(K/Q) is

the Galois group of K over Q. In this paper we prove the following theorem
which is a generalization of [1, p. 365]:

Theorem. Let A, K, p, π and d be as above, K0 the Galois extension

obtained by adjoining the π-torsion points of A, and K∞ the Zp-extension

of K0 obtained by adjoining the π-power torsion points of A. Then K∞ has

λ-invariant greater than or equal to r − d, where r is the OK-rank of the

K-rational points A(K).

Proof. We call the above r the OK-Mordell–Weil rank of A. We denote
by Tor(A(K)) the torsion parts of A(K). Then there exists an isomorphism
ϕ of the factor group A(K)/Tor(A(K)) onto the direct sum a1 ⊕ · · · ⊕ ar,
where a1, . . . , ar are ideals of K.

Since pOK =
∏

σ∈G(K/Q) πσOK , we may assume that a1, . . . , ar are
prime to π. Let ωi1, ωi2, . . . , ωi,2d be a basis of ai over Z. We may assume
that ωi1 is prime to π. Then there exists an element Pi of A(K) with
ϕ(Pi mod Tor(A(K))) = ωi1. We denote by Kn the nth layer of the Zp-
extension K∞/K0. Let Q be an element of A(Kn−1) with πnQ =

∑r
i=1 ξiPi

for some ξ1, . . . , ξr ∈ OK . Let tn be a generator of the πn-torsion points Aπn ,
σ0 a generator of G(Kn−1/K) and s an integer with tσ0

n = stn (cf. [4, Propo-
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sition 3.1]). Then s mod pn is a generator of (Z/pnZ)×, which means that
s− 1 is prime to p. Since πn(Qσ0 −Q) = 0, there exists an element t of Aπn

with Qσ0 − Q = tσ0 − t. Hence we have Q − t ∈ A(K), which means that
there exists an element αi of ai with ϕ((Q− t) mod Tor(A(K))) =

∑r
i=1 αi,

which shows ξiωi1 = πnαi for i = 1, . . . , r. This implies ξi ≡ 0 (modπn)

because ωi1 is prime to π. Hence

G(Kn−1(π
−nP1, . . . , π

−nPr)/Kn−1) ∼= (Z/pnZ)r

by Kummer theory (cf. [3]) and Kn−1(π
−nP1, . . . , π

−nPr)/Kn−1 is unrami-
fied outside {πσj ; j = 1, . . . , d} by [4, Lemma 5.1].

Let p be a prime ideal of K which is one of {πσjOK ; j = 1, . . . , d}. Let
Kp be the completion of K at p, and OKp

be the ring of integers of Kp.
Let pn−1 be the unique prime ideal of Kn−1 lying above p, and Dpn−1

the
decomposition group of pn−1 in the extension Kn−1(π

−nP1, . . . , π
−nPr) over

Kn−1.
Let FA,p be the formal group law over Zp = OKp

on the kernel of reduc-

tion of A mod p. Let N be the order of Ã(Z/pZ), where Ã is the reduction
of A at p. By [4, Proposition 2.9], FA,p is strictly isomorphic to a product

G =
⊕d

j=1 Gj of d one-dimensional formal groups Gj of Lubin–Tate type
over OKp

. We denote by ̺ the isomorphism of FA,p onto G and define the
endomorphism ιj of G by

ιj : (t1, . . . , tj, . . . , td) → (0, . . . , tj , . . . , 0)

for j = 1, . . . , d. We put fj = ̺−1 ◦ ιj ◦ ̺ for j = 1, . . . , d. The fj ’s are endo-
morphisms of FA,p over OKp

. Then there exists an element P in FA,p(pOKp
)

such that f1(P ), . . . , fd(P ) are free over Zp (e.g. P = ̺−1(p, . . . , p)). We put

m = (FA,p(pOKp
) : 〈 f1(P ), . . . , fd(P ) 〉Zp

).

Then mNPi ∈ 〈f1(P ), . . . , fd(P )〉Zp
for i = 1, . . . , r.

Hence Kn−1Kp(π
−nP1, . . . , π

−nPr) ⊂ Kn−1Kp(m
−1N−1π−nP ). This

shows that there exists an integer c, independent of n, such that the or-
der of Dpn is less than pn+c. Hence there exists an unramified extension

of Kn−1 whose Galois group is isomorphic to (Z/pn−c′Z)r−d, where c′ is a
non-negative integer independent of n. This means λ ≥ r − d by Iwasawa
theory (cf. [2, p. 249]).

Example. Let k = Q(e2πi/5), C the curve defined by the equation y2 =
x5 + 13, and J the Jacobian variety of C. Then the Ok-rank of J(k) is 3.
Since d = 2, the λ-invariant in the Theorem is positive in this case. The
above computation is due to Dr. K. Matsuno. The authors would like to
express their hearty thanks for him.
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