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Let A be an abelian variety of dimension d defined over a Galois CM
number field K of degree 2d, with full complex multiplication by the ring
of integers Ok of K. Let {K;01,...,04} be a CM-type of A, and p an odd
prime number of good reduction for A which splits completely in K with
POk = l,eq(x /) ™ Ok, where 7 is a prime element of K and G(K/Q) is
the Galois group of K over Q. In this paper we prove the following theorem
which is a generalization of [1, p. 365]:

THEOREM. Let A, K, p, m and d be as above, Ky the Galois extension
obtained by adjoining the m-torsion points of A, and K. the Z,-extension
of Ky obtained by adjoining the w-power torsion points of A. Then K., has
A-invariant greater than or equal to r — d, where v is the Og-rank of the
K -rational points A(K).

Proof. We call the above r the Og-Mordell-Weil rank of A. We denote
by Tor(A(K)) the torsion parts of A(K). Then there exists an isomorphism
¢ of the factor group A(K)/Tor(A(K)) onto the direct sum a; & --- @ a,,
where aq, ..., a, are ideals of K.

Since pOg = HaeG(K/Q) m°0Ok, we may assume that aj,...,a, are
prime to m. Let wj1,w;so,...,w;2q be a basis of a; over Z. We may assume
that w;; is prime to 7. Then there exists an element P; of A(K) with
©(P; mod Tor(A(K))) = wii. We denote by K, the nth layer of the Z,-
extension Ko /Kp. Let @ be an element of A(K,_1) with 7"Q =7, &P
for some &1, ...,& € Og. Let t, be a generator of the w™-torsion points A;n,
oo a generator of G(K,_1/K) and s an integer with t3° = st,, (cf. [4, Propo-
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sition 3.1]). Then s mod p" is a generator of (Z/p"Z)*, which means that
s —1 is prime to p. Since 7"(Q7° — Q) = 0, there exists an element ¢ of An
with Q7° — @ = t?° — t. Hence we have Q —t € A(K), which means that
there exists an element «; of a; with ¢((Q —t) mod Tor(A(K))) = > i i,
which shows &w;1 = 7", for ¢ = 1,...,7r. This implies & = 0 (mod7")
because wj; is prime to 7. Hence

GKpa(r "Py,...,m "P)/Kn_1) = (Z/p"Z)"

by Kummer theory (cf. [3]) and K,—1(7 " Py,..., 7 "P.)/K,_1 is unrami-
fied outside {7%; j =1,...,d} by [4, Lemma 5.1].

Let p be a prime ideal of K which is one of {77 Ok; j =1,...,d}. Let
Ky be the completion of K at p, and Ok, be the ring of integers of Kj.
Let p,—1 be the unique prime ideal of K,,_1 lying above p, and Dy, _, the
decomposition group of p,,—1 in the extension K,_i (7~ "Py,..., 7 "P.) over
K, 1.

Let Fa,p be the formal group law over Z, = Ok, on the kernel of reduc-
tion of A mod p. Let N be the order of A(Z/pZ), where A is the reduction
of A at p. By [4, Proposition 2.9], F4 , is strictly isomorphic to a product
g = @?21 G; of d one-dimensional formal groups G; of Lubin-Tate type
over Ok,. We denote by g the isomorphism of F4 , onto G and define the
endomorphism ¢; of G by

by : (tl,...,tj,...,td) — (0,...,tj,...,0)
for j=1,...,d. Weput f; = g Lor;0pfor j=1,...,d. The f;’s are endo-
morphisms of F4 , over O Kk, - Then there exists an element P in F, 4,p(pO K,,)
such that fi(P),..., fa(P) are free over Z, (e.g. P =0 '(p,...,p)). We put

m = (Fap(pOk,) : (f1(P), ..., fa(P))z,)-
Then mNP; € (f1(P),..., fa(P))z, fori=1,... 7.

Hence K, 1Kp(n "Py,...,m7 "P,) C Knp_1Ky(m 'N~-177"P). This
shows that there exists an integer ¢, independent of n, such that the or-
der of Dy, is less than p"*¢. Hence there exists an unramified extension
of K,,_1 whose Galois group is isomorphic to (Z/p"_c/Z)T_d, where ¢ is a
non-negative integer independent of n. This means A > r — d by Iwasawa
theory (cf. [2, p. 249]). =

EXAMPLE. Let k = Q(e?>™/%), C the curve defined by the equation y* =
25 4+ 13, and J the Jacobian variety of C. Then the Oy-rank of J(k) is 3.
Since d = 2, the A-invariant in the Theorem is positive in this case. The
above computation is due to Dr. K. Matsuno. The authors would like to
express their hearty thanks for him.
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