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On Fleck quotients

by

Zhi-Wei Sun (Nanjing) and Daqing Wan (Irvine, CA)

1. Introduction and main results. Let m ∈ Z+ = {1, 2, . . .}, n ∈
N = {0, 1, . . .} and r ∈ Z, and define

(1.0) Cm(n, r) =
∑

k≡r (modm)

(

n

k

)

(−1)k.

This sum has been studied by various authors and many applications have
been found (cf. [S02] and the references therein). The following well-known
observation is fundamental:

mCm(n, r) =

n
∑

k=0

(

n

k

)

(−1)k
∑

γm=1

γk−r =
∑

γm=1

γ−r(1− γ)n.

Note that

Cm(n+ 1, r) = Cm(n, r)− Cm(n, r − 1)
since x−r(1− x)n+1 = x−r(1− x)n − x−r+1(1− x)n.
Let p be a prime, and let n ∈ N and r ∈ Z. In 1913 A. Fleck (cf. [D,

p. 274]) showed that

ordp(Cp(n, r)) ≥
⌊

n− 1
p− 1

⌋

,

where ordp(α) denotes the p-adic order of a p-adic number α, and ⌊·⌋ is the
well-known floor function. Fleck’s result is fundamental in the recent inves-
tigation of the ψ-operator related to Fontaine’s theory, Iwasawa’s theory,
and p-adic Langlands correspondence (cf. [Co], [SW] and [W]); it also plays
an indispensable role in Davis and Sun’s study of homotopy exponents of
special unitary groups (cf. [DS] and [SD]). In this paper we are interested
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in the Fleck quotient

(1.1) Fp(n, r) := (−p)−⌊(n−1)/(p−1)⌋Cp(n, r) + [[n = 0]].

(Throughout this paper, for an assertion A we let [[A]] take the value 1 or 0
according as A holds or not.)

For a ∈ Z and m ∈ Z+, we use {a}m to denote the least nonnegative
residue of a mod m (thus {a}m/m is the fractional part {a/m} of a/m).
For a prime p and an integer a, we define qp(a) = (a

p−1 − 1)/p, which is an
integer if a 6≡ 0 (mod p).
By a number-theoretic approach related to Gauss sums, we establish the

following explicit result.

Theorem 1.1. Let p be a prime, and let n ∈ N and r ∈ Z. Set n0 = {n}p
and n1 = {n0 − n}p−1 = {−⌊n/p⌋}p−1. If n0 ≤ n1, then

(1.2) Fp(n, r) ≡
(−1)n1
n1!

n0
∑

k=0

(

n0
k

)

(−1)k(k − r)n1 (mod p).

If n0 > n1 = 0, then

(1.3) Fp(n, r) ≡ (−1){r}p
(

n0
{r}p

)

(mod p).

If n0 > n1 > 0, then

(1.4) Fp(n, r) ≡
(−1)n1−1
(n1 − 1)!

n0
∑

k=0

(

n0
k

)

(−1)k(k − r)n1qp(k − r) (mod p).

Corollary 1.1. Let p be a prime and let n ∈ N and r ∈ Z. Then

(1.5) Fp(pn, r) ≡
rn
∗

n∗!
(mod p)

where n∗ = {−n}p−1. Consequently ,

(1.6) Fp

(

p
p− 1
2

, r

)

≡
{

(−1)(h(−p)+1)/2
(

r
p

)

(mod p) if p 6= 3 and 4 | p+ 1,
(−1)(h(p)−1)/2

(

r
p

)

v
2 (mod p) if 4 | p− 1,

where
(

·
p

)

is the Legendre symbol , and h(−p) and h(p) are the class num-
bers of the quadratic fields Q(

√−p) and Q(
√
p) respectively , and for p ≡ 1

(mod 4) we write the fundamental unit of Q(
√
p) in the form (v + u

√
p)/2

with u, v ∈ Z and u ≡ v (mod 2).
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Proof. Note that {pn}p = 0. By Theorem 1.1,

Fp(pn, r) ≡
(−1)n∗

n∗!

0
∑

k=0

(

0

k

)

(−1)k(k − r)n∗ = rn
∗

n∗!
(mod p).

When p 6= 2 and n = (p− 1)/2, we have n∗ = (p− 1)/2 and hence

Fp

(

p
p−1
2

, r

)

≡ r(p−1)/2(−1)(p−1)/2 ((p− 1)/2)!
∏(p−1)/2
k=1 k(p− k)

≡
(

r

p

)

(−1)(p−1)/2 ((p− 1)/2)!
(p− 1)! (by Euler’s criterion)

≡ (−1)(p+1)/2
(

r

p

)

p− 1
2
! (mod p) (by Wilson’s theorem).

If p > 3 and p ≡ 3 (mod 4), then
p− 1
2
! ≡ (−1)(h(−p)+1)/2 (mod p)

by a result of L. J. Mordell [M]. If p ≡ 1 (mod 4) and εp = (v+ u
√
p)/2 > 1

is the fundamental unit of Q(
√
p) with u, v ∈ Z and u ≡ v (mod 2), then by

S. Chowla [C] we have
p− 1
2
! ≡ (−1)(h(p)+1)/2 v

2
(mod p).

Combining the above we immediately obtain (1.6).

Remark. Let n be a positive integer and p > 2n+1 be a prime. By the
first part of Corollary 1.1 in the case r = 0, we have
(

2pn

pn

)

(−1)n + 2
n−1
∑

k=0

(

2pn

pk

)

(−1)k =
2n
∑

k=0

(

2pn

pk

)

(−1)pk ≡ 0 (mod p2n+1)

and hence

(1.7)

(

2pn− 1
pn− 1

)

=
1

2

(

2pn

pn

)

≡
n−1
∑

k=0

(−1)n−1−k
(

2pn

pk

)

(mod p2n+1).

When n = 1 and p > 3, this gives the Wolstenholme congruence

1

2

(

2p

p

)

=

(

2p− 1
p− 1

)

≡ 1 (mod p3).

When n = 2 and p > 5, (1.7) yields the following new congruence:
(

4p− 1
2p− 1

)

=
1

2

(

4p

2p

)

≡
(

4p

p

)

− 1 (mod p5).

Our second approach to Fleck quotients is of combinatorial nature. It
involves Stirling numbers of the second kind as well as higher-order Bernoulli
polynomials.
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Let n ∈ N. The Stirling numbers S(n, k) (k ∈ N) of the second kind are
given by

xn =
∑

k∈N

S(n, k)(x)k,

where

(x)0 = 1 and (x)k = x(x− 1) · · · (x− k + 1) for k = 1, 2, . . . .
Clearly, S(n, n) = 1, and S(n, k) = 0 if k > n. When n+k > 0, S(n, k) is ac-
tually the number of ways to partition a set of cardinality n into k nonempty
subsets. Here is an explicit formula (cf. [LW, p. 126]) for Stirling numbers
of the second kind:

S(n, k) =
1

k!

k
∑

j=0

(

k

j

)

(−1)k−jjn.

As S(i, k) = 0 for all those i ∈ N with i < k, we have Euler’s identity

k
∑

j=0

(

k

j

)

(−1)jP (j) = 0,

where P (x) is any polynomial with degP < k having complex number
coefficients. It is known (cf. [LW, p. 126]) that

∞
∑

n=k

S(n, k)
xn

n!
=
(ex − 1)k

k!
;

in other words,

(ex − 1)k =
∞
∑

n=k

S(n, k)xn with S(n, k) =
k!

n!
S(n, k).

For m = 0, 1, . . . , the mth order Bernoulli polynomials B
(m)
n (t) (n ∈ N)

are defined by

(1.8)
xmetx

(ex − 1)m =
∞
∑

n=0

B(m)n (t)
xn

n!
,

and those B
(m)
n = B

(m)
n (0) are called the mth order Bernoulli numbers.

The usual Bernoulli polynomials and numbers are Bn(t) = B
(1)
n (t) and

Bn = Bn(0) = B
(1)
n respectively. (It is well known that B0 = 1, B1 = −1/2

and B2k+1 = 0 for k = 1, 2, . . . ; the reader may consult [IR, pp. 228–248]
for the basic properties of Bernoulli numbers.) For a formal power series
f(x) =

∑∞
n=0 anx

n, we use [xn]f(x) to denote the coefficient an of the
monomial xn in f(x). Thus
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B(m)n (t) = [x
n]n!

(

x

ex − 1

)m

etx

= [xn]n!
∞
∑

k=0

B
(m)
k

xk

k!

∞
∑

j=0

(tx)j

j!
=
n
∑

k=0

(

n

k

)

B
(m)
k tn−k.

It is also easy to verify that B
(m)
n (m− t) = (−1)nB(m)n (t), and

B
(m)
n (t)

n!
=

∑

k0+···+km−1=n

Bk0(t)

k0!

∏

0<i<m

Bki
ki!

provided m > 0.

If 0 ≤ n < p − 1, then B0, . . . , Bn are p-adic integers by the von Staudt–
Clausen theorem (cf. [IR, p. 233]) or the recurrence

∑l
k=0

(

l+1
k

)

Bk = 0

(l=1, 2, . . .), therefore B
(m)
n (t)∈Zp[t] where Zp is the ring of p-adic integers.

Our discovery of the next theorem was actually motivated by Theo-
rem 1.1.

Theorem 1.2. Let p be a prime, and let n ∈ N and r ∈ Z. Set n∗ =
{−n}p−1. For any integer m ≡ n (mod p), if m ≥ 0 then (−1)nFp(n, r) is
congruent to

n∗
∑

k=0

S(n∗ − k +m,m) (−r)
k

k!
=

n∗
∑

k=0

S(m+ n∗,m+ k)

(−r
k

)

(1.9)

=
m
∑

k=0

(

m

k

)

(−1)m−k (k − r)
m+n∗

(m+ n∗)!

modulo p; if m ≤ 0 then we have
(1.10) Fp(n, r)

≡ (−1)
n∗

n∗!
B
(−m)
n∗ (−r) ≡ −(p− 1− n∗)!B(−m)n∗ (−r) (mod p).

The following consequence determines B
(m)
n (a) modulo a prime p for

m ∈ {1, . . . , p}, n ∈ {0, . . . , p− 2} and a ∈ Z.

Corollary 1.2. Let p be a prime and r ∈ Z. Let n0 ∈ {0, . . . , p − 1}
and n1 ∈ {0, . . . , p− 2}. If n0 ≤ n1, then

(1.11) B
(p−n0)
n1−n0 (−r) ≡

1

(n1)n0

n0
∑

k=0

(

n0
k

)

(−1)n0−k(k − r)n1 (mod p).

If n0 > n1 = 0, then

(1.12) B
(p−n0)
p−n0+n1−1

(−r) ≡ (−1)
{r}p−1

n0!

(

n0
{r}p

)

(mod p).
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If n0 > n1 > 0, then

(1.13) B
(p−n0)
p−n0+n1−1

(−r)

≡ (−1)n1
(n0 − n1)!(n1 − 1)!

n0
∑

k=0

(

n0
k

)

(−1)k(k − r)n1qp(k − r) (mod p).

Proof. Let n be a nonnegative integer with n ≡ n0−pn1 (mod p(p−1)).
Applying (1.10) with m = n0 − p we obtain

Fp(n, r) ≡
(−1)n∗

n∗!
B
(p−n0)
n∗ (−r) ≡ −(p− 1− n∗)!B(p−n0)n∗ (−r) (mod p),

where n∗ = {−n}p−1.
If n0 ≤ n1, then n∗ = n1 − n0 and hence

B
(p−n0)
n1−n0

(−r) ≡ (−1)n1−n0(n1 − n0)!Fp(n, r) (mod p),
which implies (1.11) with the help of (1.2).

Now we consider the case n0 > n1. Clearly n
∗ = n1 − n0 + p − 1 and

p− 1− n∗ = n0 − n1. Therefore

Fp(n, r) ≡ −(n0 − n1)!B(p−n0)n1−n0+p−1
(−r) (mod p).

The case n1 = 0 of this, together with (1.3), yields (1.12). When n1 > 0,
combining the last congruence with (1.4) we obtain (1.13).

Corollary 1.3. Let p be a prime and let n ∈ Z+. Then ordp(Cp(n, r)) =
⌊(n− 1)/(p− 1)⌋ for at least p− n∗ ≥ 2 values of r ∈ {0, . . . , p− 1}, where
n∗ = {−n}p−1.
Proof. For any r ∈ Z, ordp(Cp(n, r)) = ⌊(n − 1)/(p − 1)⌋ if and only if

Fp(n, r) 6≡ 0 (mod p). By Theorem 1.2,

Fp(n, r) ≡
(−1)n∗

n∗!
B
(p−{n}p)
n∗ (−r) (mod p) for all r = 0, . . . , p− 1.

Recall that B
(p−{n}p)
n∗ (x) ∈ Zp[x] is monic and of degree n

∗. Also, a poly-
nomial of degree n∗ over the field Z/pZ cannot have more than n∗ distinct
zeroes in the field (cf. [IR, p. 39]). So the congruence equation Fp(n, r) ≡ 0
(mod p) has at most n∗ solutions with r ∈ {0, . . . , p − 1}. This yields the
desired result.

Corollary 1.4. Let p be a prime, and let n ∈ N and n∗ = {−n}p−1.
Then

(1.14) (−1)nFp(n, 0) ≡ S(n∗ + {n}p, {n}p) ≡
B
(m)
n∗

n∗!
(mod p),

where m is any nonnegative integer with m+ n ≡ 0 (mod p). Also,
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(1.15) (−1)nFp(pn+ p− 1, r)

≡ Bn∗(−r)
n∗!

≡ −(p− 1− n∗)!Bn∗(r + 1) (mod p)

for all r ∈ Z, and in particular

(1.16)

(

2p− 1
p+ r

)

+ (−1)p
(

2p− 1
r

)

≡ (−1)rp2Bp−2(−r) (mod p3)

for every r = 0, . . . , p− 1.

Proof. Applying Theorem 1.2 with r = 0 we immediately get (1.14).

As pn+p−1 ≡ −1 (mod p) and n∗ = {−(pn+p−1)}p−1, by the second
part of Theorem 1.2 and the identity (−1)n∗Bn∗(x) = Bn∗(1−x), whenever
r ∈ Z we have

(−1)n∗Fp(pn+ p− 1, r) ≡
Bn∗(−r)
n∗!

≡ (−1)n∗+1(p− 1− n∗)!Bn∗(−r)

≡ − (p− 1− n∗)!Bn∗(r + 1) (mod p)

and hence (1.15) holds.

Now let r ∈ {0, . . . , p− 1}. By (1.15) in the case n = 1,

−Fp(2p− 1, r) ≡ −(p− 1− (p− 2))!Bp−2(r + 1) (mod p)

and hence

Fp(2p− 1, r) ≡ Bp−2(1− (−r)) = (−1)p−2Bp−2(−r) (mod p),

which is equivalent to (1.16).

Let p be an odd prime, and let hp and h
+
p denote the class numbers of the

cyclotomic field Q(ζp) and its maximal real subfield Q(ζp+ζ
−1
p ) respectively,

where ζp is a primitive pth root of unity in the complex field C. It is well
known that h−p = hp/h

+
p is an integer. If p divides none of the numerators of

the Bernoulli numbers B0, B2, . . . , Bp−3 ∈ Zp, then p is said to be a regular
prime. In 1850 E. Kummer proved that

p ∤hp ⇔ p ∤h−p ⇔ p is regular

⇒ xp + yp = zp has no integer solution with xyz 6= 0.

Furthermore,

h−p ≡
∏

0<n≤(p−3)/2

(

−B2n
4n

)

(mod p)

by the proof of Theorem 5.16 in [Wa, p. 62].
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Corollary 1.5. Let p be a prime.

(i) For every n = 2, . . . , p we have

(1.17)

n
∑

k=1

(−1)pk−1
(

pn− 1
pk − 1

)

≡ (n− 1)!Bp−npn (mod pn+1).

(ii) Suppose that p > 3. Then p does not divide the class number hp of
the pth cyclotomic field Q(ζp) if and only if

ordp

( n
∑

k=1

(−1)k
(

pn− 1
pk − 1

))

= n for all n = 3, 5, . . . , p− 2.

Also,

(1.18)

(p−1)/2
∑

k=1

(−1)k−1
(

p(p− 1)/2− 1
pk − 1

)

≡ [[4 | p+ 1]](−1)(h(−p)+1)/2h(−p)p(p−1)/2 (mod p(p+1)/2),
where h(−p) is the class number of the imaginary quadratic field
Q(
√−p).

Proof. (i) Let n ∈ {2, . . . , p}. Then ⌊(pn−1−1)/(p−1)⌋ = n and hence

Fp(pn− 1,−1) = (−p)−nCp(pn− 1,−1) = (−p)−n
n
∑

k=1

(

pn− 1
pk − 1

)

(−1)pk−1.

By Corollary 1.4, (−1)nFp(pn− 1,−1) is congruent to
(p− 1− {−(n− 1)}p−1)!B{−(n−1)}p−1(−1 + 1) = (n− 1)!Bp−n

modulo p. Therefore (1.17) holds.
(ii) In view of part (i),

ordp

( n
∑

k=1

(−1)k
(

pn− 1
pk − 1

))

= n for n = 3, 5, . . . , p− 2

⇔ Bp−n 6≡ 0 (mod p) for n = 3, 5, . . . , p− 2
⇔ p is regular ⇔ hp 6≡ 0 (mod p).

Taking n = (p− 1)/2 in (1.17) we get
(p−1)/2
∑

k=1

(−1)k−1
(

p(p− 1)/2− 1
pk − 1

)

≡ ((p− 1)/2)!
(p− 1)/2 p(p−1)/2B(p+1)/2 (mod p

(p+1)/2).

If p ≡ 1 (mod 4), then B(p+1)/2 = 0 since (p + 1)/2 ∈ {3, 5, . . .}. If p ≡ 3
(mod 4), then we have h(−p) ≡ −2B(p+1)/2 (mod p) (cf. [IR, p. 238]), and
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((p − 1)/2)! ≡ (−1)(h(−p)+1)/2 (mod p) by Mordell [M]. So (1.18) follows
from the above.

Remark. Let p be an odd prime. If p ≥ 5, then (1.17) in the case n = 2
reduces to Wolstenholme’s congruence

(

2p−1
p−1

)

≡ 1 (mod p3) since Bp−2 = 0.
Taking n = 3 in (1.17) we get

(

3p− 1
p− 1

)

−
(

3p− 1
2p− 1

)

+

(

3p− 1
3p− 1

)

≡ 2Bp−3p3 (mod p4);

as
(

3p−1
2p−1

)

= 2
(

3p−1
p−1

)

this yields the congruence

(

3p− 1
p− 1

)

≡ 1− 2p3Bp−3 (mod p4).

This was first obtained by J. W. L. Glaisher (cf. [G1, p. 21] and [G2, p. 323])
who showed that

(

pn− 1
p− 1

)

≡ 1− n(n− 1)
3

p3Bp−3 (mod p
4) for n = 1, 2, . . . .

Corollary 1.6. Let p be an odd prime, and let n ∈ {3, . . . , p} and
r ∈ Z. Then

(1.19) Fp(pn− 2, r) ≡ −n!
(

Bp−n+1(−r)
n− 1 + (r + 1)

Bp−n(−r)
n

)

(mod p).

Proof. Clearly {−(pn−2)}p−1 = p−n+1. By Theorem 1.2, Fp(pn−2, r)
is congruent to

−(p− 1− (p− n+ 1))!B(2)p−n+1(−r) = −(n− 2)!B
(2)
p−n+1(−r)

modulo p.

Let m = p− n+ 1. By [PS, (2.14)] or [SP, (1.12)],

(−1)m
m

m
∑

k=0

(

m

k

)

BkBm−k(x)−
Bm(1− x)

m
B0

= −
1
∑

k=0

(

1

k

)

B1−k(x)Bm−1+k(1− x)−B1Bm−1(1− x)

= −B1(x)Bm−1(1− x)−B0(x)Bm(1− x)−B1Bm−1(1− x)
= (−1)m((B1(x) +B1)Bm−1(x)−Bm(x))
= (−1)m((x− 1)Bm−1(x)−Bm(x)).
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It follows that

B(2)m (−r) =
m
∑

k=0

(

m

k

)

BkBm−k(−r)

= (1−m)Bm(−r) +m(−r − 1)Bm−1(−r)
≡ (1 + n− 1)Bp−n+1(−r)− (r + 1)(−n+ 1)Bp−n(−r)

≡ n(n− 1)
(

Bp−n+1(−r)
n− 1 + (r + 1)

Bp−n(−r)
n

)

(mod p).

Combining the above we immediately obtain (1.19).

By Theorem 1.1 or 1.2, for any prime p the Fleck quotient Fp(n, r) (with
n ∈ N and r ∈ Z) modulo p only depends on p and r and the remainder of
n modulo p(p− 1). This observation can be further extended as follows.

Theorem 1.3. Let p be a prime, and let a, l, n ∈ N and r ∈ Z. Then

(1.20)
n
∑

k=0

(

n

k

)

(−1)kFp(kpa(p− 1) + l, r) ≡ 0 (mod pan+⌈(n−l
∗)/(p−1)⌉),

where l∗ = {−l}p−1 and ⌈·⌉ is the ceiling function.

The following consequence is somewhat similar to Kummer’s congruence
for Bernoulli numbers (cf. [IR, pp. 238–241]).

Corollary 1.7. Let p be a prime, and let a, l ∈ N and r ∈ Z. Then

Fp(p
a(p− 1) + l, r) ≡ Fp(l, r) (mod pa),

Fp(2p
a(p− 1) + l, r) ≡ 2Fp(pa(p− 1) + l, r)− Fp(l, r) (mod p2a),

Fp(3p
a(p− 1) + l, r) ≡ 3Fp(2pa(p− 1) + l, r)− 3Fp(pa(p− 1) + l, r)

+ Fp(l, r) (mod p
3a).

Proof. Simply apply (1.20) with n = 1, 2, 3.

Let p be a prime, and let a ∈ Z+ and r ∈ Z. In 1977 C. S. Weisman [We]
extended Fleck’s result by showing that if n ≥ pa−1 then

Cpa(n, r) ≡ 0 (mod p⌊(n−p
a−1)/ϕ(pa)⌋),

where ϕ is Euler’s totient function. In view of this, we define the generalized
Fleck quotient

Fpa(n, r) = (−p)−⌊(n−p
a−1)/ϕ(pa)⌋Cpa(n, r) + [[n < pa−1]] ∈ Z.

Note that Fpa(n, r) ≡ 1 (mod p) for n = 0, . . . , pa−1 − 1.
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Theorem 1.4. Let p be a prime, and let a, n ∈ Z+ with n ≥ pa−1.

(i) For any r ∈ Z we have

(1.21) Fpa(n, r) ≡
d
∑

k=0

(

r + k − 1
k

)

Fpa(n+ k, 0) (mod p),

where d = {pa−1 − 1 − n}ϕ(pa) is the least nonnegative integer with
n+ d ≡ pa−1 − 1 (modϕ(pa)).

(ii) We have

(1.22) ordp (Cpa(n, r)) =

⌊

n− pa−1
ϕ(pa)

⌋

(i.e., p ∤Fpa(n, r)) for some r ∈ Z.

If n ≥ 2pa−1, then

(1.23) Fpa(n+ p
a(p− 1), r) ≡ Fpa(n, r) (mod p) for all r ∈ Z.

In view of the first congruence in Corollary 1.7 and the last congruence
in Theorem 1.4, we propose the following conjecture.

Conjecture 1.1. Let p be a prime, and let a, b, n ∈ Z+ and r ∈ Z. If
n ≥ 2pa+b−2, then

Fpa(n+ ϕ(p
a+b), r) ≡ Fpa(n, r) (mod pb).

Theorems 1.1, 1.2 and 1.3 will be proved in Sections 2, 3 and 4 respec-
tively. In Section 5 we will first give a new proof of Weisman’s congruence
via roots of unity, and then establish Theorem 1.4.

2. Proof of Theorem 1.1

Lemma 2.1. Let p be a prime, and let n ∈ N and n∗ = {−n}p−1. Define
G(n) =

∑p−1
a=1 a

nζap and π = 1− ζp, where ζp is a primitive pth root of unity
in the complex field C. Then

(2.1) G(n) ≡ (−1)n∗−1
p−2
∑

m=n∗

s(m,n∗)
πm

m!
(mod p),

where s(m, 0), . . . , s(m,m) are Stirling numbers of the first kind defined by
(x)m =

∑m
k=0(−1)m−ks(m, k)xk.
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Proof. Clearly,

G(n) =

p−1
∑

a=1

an(1− π)a=
p−1
∑

a=1

an
a
∑

m=0

(

a

m

)

(−π)m=
p−1
∑

m=0

(−π)m
m!

p−1
∑

a=1

an(a)m

=

p−1
∑

m=0

(−π)m
m!

p−1
∑

a=1

an
m
∑

k=0

(−1)m−ks(m, k)ak

=

p−1
∑

m=0

(−π)m
m!

m
∑

k=0

(−1)m−ks(m, k)
p−1
∑

a=1

an+k.

Since

1 + x+ · · ·+ xp−1 = xp − 1
x− 1 =

p−1
∏

a=1

(x− ζap ),

we have

p

πp−1
=

p−1
∏

a=1

1− ζap
π
=

p−1
∏

a=1

1− (1− π)a
π

≡
p−1
∏

a=1

a ≡ −1 (modπ)

with the help of Wilson’s theorem. Note also that

p−1
∑

a=1

an+k ≡ −[[p− 1 |n+ k]] (mod p)

by elementary number theory (see, e.g., [IR, pp. 235–236]). Therefore

G(n) ≡
p−2
∑

m=0

πm

m!

m
∑

k=0

(−1)ks(m, k)(−[[k = n∗]])

≡ (−1)n∗−1
p−2
∑

m=n∗

s(m,n∗)
πm

m!
(mod p).

Remark. Let p be an odd prime. For each a ∈ Z let a = a + pZ ∈
Fp = Z/pZ. Let ω be the Teichmüller character of the multiplicative group
F∗p = Fp \ {0}. For a ∈ F∗p, ω(a) is just the (p − 1)th root of unity in the
unique unramified extension of the p-adic field Qp with ω(a) ≡ a (mod p).
(See, e.g., [Wa, p. 51].) If ζp is a primitive pth root of unity in the algebraic
closure of Qp, then for n ∈ N and π = 1− ζp we have

p−1
∑

a=1

anζap ≡
p−1
∑

a=1

ωn(a)ζap ≡ −
(−π)n∗

n∗!
(modπn

∗+1)

with n∗ = {−n}p−1, by Stickelberger’s congruence for Gauss’ sums (cf.
[BEW, pp. 344–345]).
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Lemma 2.2. Let p be a prime, and let ζp be a primitive pth root of unity
in C. Let n = pam + n0 > 0 with a ∈ Z+ and m,n0 ∈ N. Then for any
r ∈ Z we have

π−p
amCp(n, r)− [[p− 1 |m]]Cp(n0, r)

≡ G(pam)

p

n0
∑

k=0

(

n0
k

)

(−1)k(k − r)pam∗ (mod pa−1πmin{n0+1, p−1}),

where π = 1− ζp and m∗ = {−m}p−1.
Proof. Let j ∈ {1, . . . , p− 1}. Then
(

1− ζjp
π

)m

=

(

1− (1− π)j
π

)m

=

( j
∑

i=1

(

j

i

)

(−π)i−1
)m

= jm + βjπ,

where βj is a suitable element in the ring Z of algebraic integers. For i =
0, 1, . . . , if

(

1− ζjp
π

)pim

= jp
im + piπβ

(i)
j

for some β
(i)
j ∈ Z, then

(

1− ζjp
π

)pi+1m

= (jp
im + piπβ

(i)
j )
p = jp

i+1m + pi+1πβ
(i+1)
j

for some β
(i+1)
j ∈ Z. So

(

1− ζjp
π

)pam

≡ jpam (mod paπ).

Observe that

pCp(n, r) =

p−1
∑

j=0

ζ−jrp (1− ζjp)n = πp
am

p−1
∑

j=1

ζ−jrp

(

1− ζjp
π

)pam

(1− ζjp)n0 .

As πn0 divides (1 − ζjp)n0 in the ring Z, by the above π−p
ampCp(n, r) is

congruent to

p−1
∑

j=1

ζ−jrp jp
am

n0
∑

k=0

(

n0
k

)

(−1)kζjkp =
n0
∑

k=0

(

n0
k

)

(−1)kSk−r

modulo paπn0+1, where

Sk−r =

p−1
∑

j=1

jp
amζj(k−r)p .
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If k 6≡ r (mod p), then

Sk−r = (k − r)−p
am

p−1
∑

j=1

(j(k − r))pamζj(k−r)p

≡ (k − r)pam∗
p−1
∑

t=1

tp
amζtp = (k − r)p

am∗G(pam) (mod pa+1).

(Note that if j(k − r) ≡ t (mod p) then (j(k − r))pa ≡ tpa (mod pa+1).)
Choose a primitive root g modulo p. Since

(gp
am − 1)

p−1
∑

j=1

jp
am =

p−1
∑

j=1

(gj)p
am −

p−1
∑

t=1

tp
am ≡ 0 (mod pa+1),

if p − 1 ∤m then gp
am − 1 6≡ 0 (mod p) and so ∑p−1j=1 jp

am ≡ 0 (mod pa+1).
Thus, when k ≡ r (mod p) we have

Sk−r =

p−1
∑

j=1

jp
am ≡ (p− 1)[[p− 1 |m]] (mod pa+1).

Recall that p/πp−1 ≡ −1 (mod π). In view of the above,

π−p
ampCp(n, r)−

n0
∑

k=0

(

n0
k

)

(−1)k(k − r)pam∗G(pam)

≡
n0
∑

k=0
p|k−r

(

n0
k

)

(−1)k([[p− 1 |m]](p− 1)− (k − r)pam∗G(pam))

≡ Cp(n0, r)[[p− 1 |m]]p (mod paπmin{n0+1, p−1}),
where we have noted that if p− 1 | m (i.e., m∗ = 0) then

p− 1−G(pam) ≡ p−
p−1
∑

t=0

ζtp = p−
1− ζpp
1− ζp

= p (mod pa+1).

Therefore the desired congruence follows.

Proof of Theorem 1.1. In the case n = 0, (1.2) holds since n1 = n0 = 0
and Fp(n, r) = −pCp(0, r) + 1. Below we assume n > 0.
Let ζp be a primitive pth root of unity in C, and set π = 1 − ζp. By

Lemma 2.2 in the case a = 1,

π−p⌊n/p⌋Cp(n, r)− [[n1 = 0]]Cp(n0, r)

≡ G(p⌊n/p⌋)
p

n0
∑

k=0

(

n0
k

)

(−1)k(k − r)pn1 (modπmin{n0+1, p−1}).
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In view of Lemma 2.1,

G

(

p

⌊

n

p

⌋)

≡ G
(⌊

n

p

⌋)

≡ (−1)n1−1
p−2
∑

m=n1

s(m,n1)
πm

m!
(mod p).

If n0 > n1, then

n0
∑

k=0

(

n0
k

)

(−1)k(k − r)pn1 ≡
n0
∑

k=0

(

n0
k

)

(−1)k(k − r)n1 = 0 (mod p),

where we have applied Fermat’s little theorem and Euler’s identity (men-
tioned in Section 1). Therefore

π−p⌊n/p⌋Cp(n, r)− [[n1 = 0]]Cp(n0, r)

≡ (−1)
n1−1

p

p−2
∑

m=n1

s(m,n1)
πm

m!

n0
∑

k=0

(

n0
k

)

(−1)k(k − r)pn1

(modπ[[n0>n1]] min{n0+1, p−1}).

Recall that −p/πp−1 ≡ 1 (modπ). Since s(n1, n1) = 1 and
p[[n0≤n1]]

πn1
π[[n0>n1]] min{n0+1, p−1} ≡ 0 (modπ),

by the above we have

p[[n0≤n1]]Cp(n, r)

πp⌊n/p⌋+n1
− p[[n0=0]][[n1 = 0]]Cp(n0, r)

≡ (−1)
n1−1/n1!

p[[n0>n1]]

n0
∑

k=0

(

n0
k

)

(−1)k(k − r)pn1 (modπ).

Note that
⌊

n− 1
p− 1

⌋

=

⌊

p⌊n/p⌋+ n0 − 1
p− 1

⌋

=
p⌊n/p⌋+ n1

p− 1 − [[n0 ≤ n1]]

and hence

(−p)[[n0≤n1]]Cp(n, r)
πp⌊n/p⌋+n1

=
Cp(n, r)

(−p)⌊(n−1)/(p−1)⌋
( −p
πp−1

)(p⌊n/p⌋+n1)/(p−1)

≡ Fp(n, r) (modπ).
In view of the above,

(−1)[n0≤n1]Fp(n, r)− [[n0 > n1 = 0]]Cp(n0, r)

≡ (−1)
n1−1/n1!

p[[n0>n1]]

n0
∑

k=0

(

n0
k

)

(−1)k(k − r)pn1 (modπ).
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As the rational p-adic integer

D = Fp(n, r)− [[n0 > n1 = 0]]Cp(n0, r)

− (−1)n1
(−p)[[n0>n1]] · n1!

n0
∑

k=0

(

n0
k

)

(−1)k(k − r)pn1

is divisible by π, we have Dp−1 ≡ 0 (mod p) and hence D ≡ 0 (mod p). Thus

(2.2) Fp(n, r)− [[n0 > n1 = 0]]Cp(n0, r)

≡ (−1)n1
(−p)[[n0>n1]] · n1!

n0
∑

k=0

(

n0
k

)

(−1)k(k − r)pn1 (mod p).

In the case n0 ≤ n1, (2.2) reduces to (1.2). When n0 > n1 = 0,
(2.2) yields (1.3) since Cp(n0, r) = (−1){r}p

(

n0
{r}p

)

and
∑n0
k=0

(

n0
k

)

(−1)k =
(1− 1)n0 = 0.
Now assume that n0 > n1 > 0. As

∑n0
k=0

(

n0
k

)

(k − r)n1 = 0 by Euler’s
identity, (2.2) implies that

Fp(n, r) ≡
(−1)n1−1

n1!

n0
∑

k=0

(

n0
k

)

(−1)k (k − r)
pn1 − (k − r)n1

p
(mod p).

If n1 = 1, then

(k − r)pn1 − (k − r)n1
p

= (k − r)n1n1qp(k − r);

if n1 ≥ 2 and k ≡ r (mod p), then
(k − r)pn1 − (k − r)n1

p
≡ 0 ≡ (k − r)n1n1qp(k − r) (mod p);

if a = k − r 6≡ 0 (mod p), then
(k − r)pn1 − (k − r)n1

p
= an1

(1 + p · qp(a))n1 − 1
p

≡ an1n1qp(a) (mod p).

Therefore (1.4) follows.

3. Proof of Theorem 1.2. The following lemma is a refinement of an
induction technique used by Sun [S06].

Lemma 3.1. Let p be a prime, and let n ∈ N with n ≥ p. Then

(3.1) Fp(n, r) ≡ −
p−1
∑

j=1

1

j

j−1
∑

i=0

Fp(n− p+ 1, r − i) (mod p).
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Proof. Set n′ = n− (p− 1) > 0. By the Chu–Vandermonde convolution
identity (cf. [GKP, (5.27)]),

Fp(n, r) = (−p)−⌊(n−1)/(p−1)⌋
∑

0≤k≤n
k≡r (mod p)

k
∑

j=0

(

p− 1
j

)(

n′

k − j

)

(−1)k

= − 1
p

p−1
∑

j=0

(

p− 1
j

)

(−p)−⌊(n′−1)/(p−1)⌋
∑

j≤k≤n
p|k−r

(

n′

k − j

)

(−1)k

= − 1
p

p−1
∑

j=0

(

p− 1
j

)

(−1)jFp(n′, r − j).

For any j = 0, . . . , p− 1, clearly
(

p− 1
j

)

(−1)j =
∏

0<i≤j

(

1− p

i

)

≡ 1−
∑

0<i≤j

p

i
≡ (−1)p−1 + p

∑

j<k<p

1

k
(mod p2).

(Note that 2
∑p−1
k=1 1/k =

∑p−1
k=1(1/k + 1/(p− k)) ≡ 0 (mod p).) Also,

p−1
∑

j=0

Fp(n
′, r − j) = (−p)−⌊(n′−1)/(p−1)⌋

n′
∑

k=0

(

n′

k

)

(−1)k = 0.

Therefore

Fp(n, r) ≡ −
p−1
∑

j=0

∑

j<k<p

Fp(n
′, r − j)
k

= −
p−1
∑

k=1

1

k

k−1
∑

j=0

Fp(n
′, r − j) (mod p).

This proves (3.1).

Proof of Theorem 1.2. (i) Suppose m ≥ 0. Then
n∗
∑

k=0

S(m+ n∗ − k,m) (−r)
k

k!

= [xm+n
∗

]
∞
∑

l=m

S(l,m)xl
∞
∑

k=0

(−rx)k
k!

= [xm+n
∗

](ex − 1)me−rx

= [xn
∗

]

(

ex − 1
x

)m

e−rx = [xm+n
∗

]

m
∑

k=0

(

m

k

)

(−1)m−ke(k−r)x

=

m
∑

k=0

(

m

k

)

(−1)m−k (k − r)
m+n∗

(m+ n∗)!
.
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By the identity (2.4) of Sun [S03], for any l = 0, 1, . . . we have

m
∑

k=0

(

m

k

)

(−1)m−k(k + l)m+n∗ =
l
∑

j=0

(

l

j

)

(m+ j)!S(m+ n∗,m+ j)

=
n∗
∑

j=0

(

l

j

)

(m+ j)!S(m+ n∗,m+ j).

Thus

m
∑

k=0

(

m

k

)

(−1)m−k(k + x)m+n∗ =
n∗
∑

j=0

(

x

j

)

(m+ j)!S(m+ n∗,m+ j)

and hence

m
∑

k=0

(

m

k

)

(−1)m−k (k − r)
m+n∗

(m+ n∗)!
=
n∗
∑

j=0

(−r
j

)

S(m+ n∗,m+ j).

If m ≤ 0, then

B
(−m)
n∗ (−r)
n∗!

= [xn
∗

]

(

x

ex − 1

)−m

e−rx = [xn
∗

]

(

ex − 1
x

)m

e−rx.

Note also that

1

n∗!
=

∏p−1−n∗

j=1 (p− j)
(p− 1)! ≡ (−1)n∗+1(p− 1− n∗)! (mod p)

by Wilson’s theorem.

In view of the above, whether m ≥ 0 or m ≤ 0, we only need to show
that

(−1)nFp(n, r) ≡ [xn
∗

]

(

ex − 1
x

)m

e−rx (mod p).

(ii) All those formal power series f(x) =
∑∞
k=0 akx

k with ak ∈ Q and
a0, . . . , an∗ ∈ Zp form a ring Rn∗ under the usual addition and multiplica-
tion. In particular, this ring contains

e−rx =
∞
∑

k=0

(−r)k x
k

k!
,

ex − 1
x
=
∞
∑

k=0

xk

(k + 1)!
,

x

ex − 1 =
∞
∑

k=0

Bk
xk

k!
.

(Recall that n∗ < p − 1 and B0, . . . , Bn∗ ∈ Zp.) If f(x) =
∑∞
k=0 akx

k and
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g(x) =
∑∞
k=0 bkx

k belong to Rn∗ , then

[xn
∗

]f(x)g(x)p = [xn
∗

]
n∗
∑

j=0

ajx
j
(

n∗
∑

k=0

bkx
k
)p

≡ [xn∗ ]
n∗
∑

j=0

ajx
j
n∗
∑

k=0

bpkx
pk = an∗b

p
0

≡ [xn∗ ]f(x)[x0]g(x) (mod p).

Consequently, for any a ∈ Z we have

[xn
∗

]

(

ex − 1
x

)m

eax ≡ [xn∗ ]
(

ex − 1
x

)n

eax (mod p)

since m ≡ n (mod p). From this and part (i), it suffices to use induction on n
to show that

(3.2) (−1)nFp(n, r) ≡ [xn
∗

]

(

ex − 1
x

)n

e−rx (mod p).

(iii) Obviously

(−1)0Fp(0, r) = −pCp(0, r) + 1 ≡ 1 = [x0]
(

ex − 1
x

)0

e−rx (mod p).

So (3.2) holds for n = 0.

Suppose that 0 < n ≤ p− 1. Then n∗ = p− 1− n and

[xn
∗

]

(

ex − 1
x

)n

e−rx = [xp−1](ex − 1)ne−rx

=
n
∑

k=0

(

n

k

)

(−1)n−k[xp−1]e(k−r)x =
n
∑

k=0

(

n

k

)

(−1)n−k (k − r)
p−1

(p− 1)!

≡ (−1)n−1
∑

k 6≡r (mod p)

(

n

k

)

(−1)k (mod p).

(To get the last congruence we have applied Wilson’s theorem and Fermat’s
little theorem.) Since

−
∑

k 6≡r (mod p)

(

n

k

)

(−1)k =
∑

k≡r (mod p)

(

n

k

)

(−1)k = Fp(n, r),

the desired (3.2) follows.
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Now fix n ≥ p and assume that (3.2) holds for smaller values of n. Clearly
n′ = n− (p− 1) > 0 and {−n′}p−1 = n∗. In light of Lemma 3.1,

Fp(n, r) ≡ −
p−1
∑

j=1

1

j

j−1
∑

k=0

Fp(n
′, r − k) (mod p).

By the induction hypothesis and part (ii),

(−1)n′Fp(n′, r − k) ≡ [xn
∗

]

(

ex − 1
x

)n′

e−(r−k)x

≡ [xn∗ ]
(

ex − 1
x

)n+1

e(k−r)x (mod p).

Thus (−1)n−1Fp(n, r) is congruent to
p−1
∑

j=1

1

j

j−1
∑

k=0

(

[xn
∗

]

(

ex − 1
x

)n+1

e(k−r)x
)

= [xn
∗

]

(

ex − 1
x

)n+1

e−rx
p−1
∑

j=1

(

1

j
· e
jx − 1
ex − 1

)

= [xn
∗

]

(

ex − 1
x

)n

e−rx
p−1
∑

j=1

ejx − 1
jx

modulo p. This yields

(−1)nFp(n, r) ≡ − [xn
∗

]

(

ex − 1
x

)n

e−rx
p−1
∑

j=1

p−1
∑

k=1

(jx)k−1

k!

≡ [xn∗ ]
(

ex − 1
x

)n

e−rx (mod p),

since n∗ < p− 1 and ∑p−1j=1 jk−1 ≡ −[[p− 1 | k − 1]] (mod p).
In view of the above, we have completed the proof.

4. Proof of Theorem 1.3. Let ζp be a primitive pth root of unity in C,
and set π = 1− ζp. For any k = 0, . . . , n, we have

pCp(kp
a(p− 1) + l, r) =

p−1
∑

j=0

ζ−jrp (1− ζjp)kp
a(p−1)+l

=

p−1
∑

j=1

ζ−jrp (1− ζjp)kp
a(p−1)+l + [[k = l = 0]]
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and thus

Fp(kp
a(p− 1) + l, r)
= (−p)−⌊(kpa(p−1)+l−1)/(p−1)⌋Cp(kpa(p− 1) + l, r) + [[k = l = 0]]

= −(−p)−kpa−⌊(l−1)/(p−1)⌋−1
p−1
∑

j=1

ζ−jrp (1− ζjp)kp
a(p−1)+l.

Therefore, for Sn =
∑n
k=0

(

n
k

)

(−1)kFp(kpa(p− 1) + l, r) we have

(4.1) Sn = −
p−1
∑

j=1

ζ−jrp (1− ζjp)l(−p)−⌊(l−1)/(p−1)⌋−1cn,j ,

where

cn,j =

n
∑

k=0

(

n

k

)

(−1)k(−p)−kpa(1− ζjp)kp
a(p−1)

= (1− (−p)−pa(1− ζjp)p
a(p−1))n.

Let j ∈ {1, . . . , p− 1}. Clearly
(

1− ζjp
π

)p−1

=

(

1− (1− π)j
π

)p−1

≡ jp−1 ≡ 1 (modπ)

and hence

bj :=
(1− ζjp)p−1
−p =

(

1− ζjp
π

)p−1
πp−1

−p ≡ 1 (modπ).

(Recall the congruence p/πp−1 ≡ −1 (modπ).) It follows that bp
a

j ≡ 1
(mod paπ) and

(4.2) cn,j = (1− bp
a

j )
n ≡ 0 (mod panπn).

Since (1 − ζjp)l ≡ 0 (modπl) and ordp(π) = 1/(p − 1), in view of (4.1)
and (4.2) we have

ordp(Sn) ≥
l + n

p− 1 + an−
⌊

l − 1
p− 1

⌋

− 1 = an+ l + n

p− 1 −
l + l∗

p− 1 = an+
n− l∗
p− 1

and hence ordp(Sn) ≥ an+ ⌈(n− l∗)/(p− 1)⌉. This proves (1.20).

5. On generalized Fleck quotients

Lemma 5.1. Let d, q ∈ Z+, n ∈ N and r ∈ Z. Let ζdq be a primitive dqth
root of unity in C. Then

(5.1) Cdq(n, r) =
1

d

n
∑

k=0

(

n

k

)

Cq(k, r)
d−1
∑

j=0

ζ
j(k−r)
dq (1− ζjdq)n−k.
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Proof. Note that ζ = ζddq is a primitive qth root of unity. Thus

q

n
∑

k=0

(

n

k

)

Cq(k, r)

d−1
∑

j=0

ζ
j(k−r)
dq (1− ζjdq)n−k

=
n
∑

k=0

(

n

k

) q−1
∑

s=0

ζ−sr(1− ζs)k
d−1
∑

j=0

ζ
j(k−r)
dq (1− ζjdq)n−k

=

q−1
∑

s=0

d−1
∑

j=0

ζ
−(ds+j)r
dq

n
∑

k=0

(

n

k

)

(ζjdq(1− ζdsdq ))k(1− ζ
j
dq)
n−k

=

q−1
∑

s=0

d−1
∑

j=0

ζ
−(ds+j)r
dq (1− ζds+jdq )

n =

dq−1
∑

t=0

ζ−trdq (1− ζtdq)n = dqCdq(n, r).

So we have (5.1).

With the help of Lemma 5.1 we can prove the following result via roots
of unity.

Theorem 5.1 (Weisman, 1977). Let p be a prime, and let a ∈ Z+, n ∈ N
and r ∈ Z. Then Fpa(n, r) ∈ Z.

Proof. We use induction on a.

The case a = 1 reduces to Fleck’s result. A proof of Fleck’s result via
roots of unity was given by A. Granville [Gr].

Now let a ≥ 2 and assume that Fpa−1(n′, r′) ∈ Z for all n′ ∈ N and
r′ ∈ Z. If n < pa, then ⌊(n − pa−1)/ϕ(pa)⌋ ≤ 0 and hence Fpa(n, r) ∈ Z.
Below we suppose n ≥ pa and let ζpa be a primitive path root of unity in C.

By Lemma 5.1,

(5.2) Cpa(n, r) =
1

p

n
∑

k=0

(

n

k

)

Cpa−1(k, r)

p−1
∑

j=0

ζ
j(k−r)
pa (1− ζjpa)n−k.

Observe that

pa−1
∏

j=1
p∤j

(1− ζjpa) =
∏

γp
a
=1

γpa−1 6=1

(1− γ) = lim
x→1

xp
a − 1

xpa−1 − 1 =
pa

pa−1
= p.

If p ∤ j, then (1− ζjpa)/(1− ζpa) is a unit in the ring Z[ζpa ] and thus

ordp(1− ζjpa) = ordp(1− ζpa) =
1

ϕ(pa)
.
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From this and the induction hypothesis, for any k = 0, . . . , n we have

ordp

(

Cpa−1(k, r)

p−1
∑

j=0

ζ
j(k−r)
pa (1− ζjpa)n−k

)

≥ max
{

0,

⌊

k − pa−2
ϕ(pa−1)

⌋}

+
n− k
ϕ(pa)

= max

{

0,
pk − pa−1
ϕ(pa)

−
{

k − pa−2
ϕ(pa−1)

}}

+
n− k
ϕ(pa)

= max

{

n− k
ϕ(pa)

,
n− pa−1
ϕ(pa)

+
k

pa−1
−
{

k − pa−2
ϕ(pa−1)

}}

>
n− pa−1
ϕ(pa)

.

(Note that if k ≥ pa−1 then k/pa−1 ≥ 1 > {(k−pa−2)/ϕ(pa−1)}.) Therefore,
from (5.2) we get

ordp(Cpa(n, r)) >
n− pa−1
ϕ(pa)

− 1 ≥
⌊

n− pa−1
ϕ(pa)

⌋

− 1.

So Fpa(n, r) = (−p)−⌊(n−p
a−1)/ϕ(pa)⌋Cpa(n, r) ∈ Z as desired.

Proof of Theorem 1.4. (i) Write n+d = pa−1− 1+mϕ(pa) with m ∈ N.
Then, for any k = 0, . . . , d we have

⌊

n+ k − pa−1
ϕ(pa)

⌋

=

⌊

m− d− k + 1
ϕ(pa)

⌋

= m− 1.

Below we use induction on d to show the desired congruence (1.21).

In the case d = 0 (i.e., n− pa−1 ≡ −1 (modϕ(pa))), we have Fpa(n, r) ≡
Fpa(n, 0) (mod p) because

Fpa(n, i)− Fpa(n, i− 1) = (−p)−m+1Cpa(n+ 1, i) = −pFpa(n+ 1, i)

for all i ∈ Z. Furthermore, by a result of Weisman [We] (see also [SW,
Theorem 1.5]), Fpa(n, r) ≡ 1 (mod p) if d = 0.
Now let d > 0 and assume that the desired result holds for smaller values

of d. Clearly, (n+ 1) + (d− 1) = pa−1 − 1 +mϕ(pa) and
⌊

n+ 1 + k − pa−1
ϕ(pa)

⌋

= m− 1 for k = 0, . . . , d− 1.

If r ≥ 0 then

Cpa(n, r)−Cpa(n, 0) =
∑

0<i≤r

(Cpa(n, i)−Cpa(n, i−1)) =
∑

0<i≤r

Cpa(n+1, i);
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if r < 0 then

Cpa(n, r)− Cpa(n, 0) =
∑

r<i≤0

(Cpa(n, i− 1)− Cpa(n, i))

= −
∑

r<i≤0

Cpa(n+ 1, i).

Therefore

Fpa(n, r)− Fpa(n, 0) =















∑

0<i≤r

Fpa(n+ 1, i) if r ≥ 0,

−
∑

r<i≤0

Fpa(n+ 1, i) if r < 0.

By the induction hypothesis, whenever i ∈ Z we have

Fpa(n+ 1, i) ≡
d−1
∑

k=0

(

i+ k − 1
k

)

Fpa(n+ 1 + k, 0) (mod p).

For any k = 0, . . . , d− 1, if r ≥ 0 then
∑

0<i≤r

(

i+ k − 1
k

)

=
r+k−1
∑

j=0

(

j

k

)

=

(

r + k

k + 1

)

by an identity of S.-C. Chu (cf. [GKP, (5.10)]); if r < 0 then

−
∑

r<i≤0

(

i+ k − 1
k

)

= (−1)k+1
∑

r<i≤0

(−i
k

)

= (−1)k+1
−r−1
∑

j=0

(

j

k

)

= (−1)k+1
( −r
k + 1

)

=

(

r + k

k + 1

)

.

Thus, by the above, Fpa(n, r) is congruent to

Fpa(n, 0) +
d−1
∑

k=0

(

r + k

k + 1

)

Fpa(n+ 1 + k, 0) =
d
∑

k=0

(

r + k − 1
k

)

Fpa(n+ k, 0)

modulo p. This concludes the induction proof of (1.21).

(ii) In the case a = 1, the desired results in Theorem 1.4(ii) follow from
Corollaries 1.3 and 1.7.
Now we let a ≥ 2 and r ∈ Z. Write n = pa−2(pn1 + n0) + s and r =

pa−2(pr1+ r0)+ t, where s, t ∈ {0, . . . , pa−2− 1}, n0, r0 ∈ {0, . . . , p− 1} and
n1 ∈ N and r1 ∈ Z.
If pa−1 ≤ n < pa, then

Fpa(n, r) = Cpa(n, r) =

(

n

{r}pa

)

(−1){r}pa ,

and in particular ordp(Cpa(n, 0)) = 0 = ⌊(n− pa−1)/ϕ(pa)⌋.
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Below we assume that n ≥ 2pa−1 (i.e., n1 ≥ 2). By [SD, Theorem 1.7],

Fpa(n, r) ≡ (−1)t
(

s

t

)

Fp2(pn1 + n0, pr1 + r0) (mod p).

If p |n1, or p− 1 ∤n1− 1, or n0 = r0 = p− 1, then by [SW, Theorem 1.2]
in the case l = 0, we have

Fp2(pn1 + n0, pr1 + r0) ≡ (−1)r0
(

n0
r0

)

Fp(n1, r1) (mod p)

and hence Fpa(n, r) ≡ bn,rFp(n1, r1) (mod p), where

bn,r := (−1){r}pa−1
({n}pa−1
{r}pa−1

)

= (−1)pa−2r0+t
(

pa−2n0 + s

pa−2r0 + t

)

≡ (−1)t
(

s

t

)

(−1)r0
(

n0
r0

)

(mod p) (by Lucas’ theorem (cf. [HS])).

By Corollary 1.3, there is an r′1 ∈ Z such that Fp(n1, r
′
1) 6≡ 0 (mod p). Thus,

if p | n1 or p− 1 ∤n1 − 1, then

Fpa(n, p
a−1r′1) ≡ Fp(n1, r′1) 6≡ 0 (mod p).

If n0 = p− 1, then

Fpa(n, p
a−2(pr′1 + p− 1)) ≡ (−1)p−1

(

p− 1
p− 1

)

Fp(n1, r
′
1) 6≡ 0 (mod p).

When p ∤n1, p − 1 |n1 − 1 and n0 < r0, by applying the second part of
[SW, Theorem 1.2] in the case l = 0, we have

Fp2(pn1 + n0, pr1 + r0) ≡ [[n1 > 1]]
(−1)n0n1
r0
(

r0−1
n0

) =
(−1)n0n1
r0
(

r0−1
n0

) (mod p)

and hence

Fpa(n, r) ≡ (−1)n0+t
n1
(

s
t

)

r0
(

r0−1
n0

) (mod p).

In particular, if p ∤n1, p− 1 | n1 − 1 and n0 < p− 1, then

Fpa(n, p
a−2(n0 + 1)) ≡

(−1)n0n1
n0 + 1

6≡ 0 (mod p).

In view of the above, we already have (1.22).

To prove the congruence in (1.23), we also have to consider the case
p ∤n1, p− 1 | n1 − 1 and n0 ≥ r0. By [SW, Lemmas 3.2 and 3.3],
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p−⌊(pn1+n0−p)/ϕ(p
2)⌋Cp2(pn1 + n0, pr1 + r0)

−(−1)r0
(

n0
r0

)

p−⌊(n1−1)/(p−1)⌋Cp(n1, r1)

≡ (−1)n1−1p−⌊(n1−1−1)/(p−1)⌋Cp(n1 − 1, r1)(−1)n1+r0n1
(

n0
r0

)

σn0,r0(n1)

p

≡ −(−1)r0
(

n0
r0

)

p−(n1−1)/(p−1)+1Cp(n1 − 1, r1)n1
σn0,r0(n1)

p
(mod p),

where

σn0,r0(n1) = 1 + (−1)p
∏

1≤i≤p, i6=p−r0
(p(n1 − 1) + r0 + i)

∏

1≤i≤p, i6=p−(n0−r0)
(n0 − r0 + i)

≡ 0 (mod p).

Therefore

Fp2(pn1 + n0, pr1 + r0)− (−1)r0
(

n0
r0

)

Fp(n1, r1)

≡ (−1)r0
(

n0
r0

)

Fp(n1 − 1, r1)n1
σn0,r0(n1)

p
(mod p)

and hence

Fpa(n, r) ≡ bn,r
(

Fp(n1, r1) + Fp(n1 − 1, r1)n1
σn0,r0(n1)

p

)

(mod p).

Observe that n+pa(p−1) = pa−2(pn′1+n0)+s with n′1 = n1+p(p−1).
Clearly Fp(n

′
1, r1) ≡ Fp(n1, r1) (mod p) by Corollary 1.7, and σn0,r0(n

′
1) ≡

σn0,r0(n1) (mod p
2) if n0 ≥ r0. Thus, by the above, Fpa(n+ pa(p− 1), r) ≡

Fpa(n, r) (mod p).
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