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A class number criterion for the

equation (xp − 1)/(x − 1) = pyq

by

Benjamin Dupuy (Bordeaux)

1. Introduction. Let p be an odd prime number and let

Φ(x) = Φp(x) =
xp − 1

x − 1
be the pth cyclotomic polynomial. It is well-known that, for x ∈ Z, the
integer Φ(x) is divisible by at most the first power of p. More precisely,
p ∤ Φ(x) if x 6≡ 1 mod p, and p ‖Φ(x) if x ≡ 1 mod p.

Indeed, if p |Φ(x) then xp ≡ 1 mod p, which implies x ≡ 1 mod p. Now,
using the binomial formula, we obtain

Φ(x) =
(1 + (x−1))p − 1

x − 1
= p +

p−1
∑

k=2

(

p

k

)

(x−1)k−1 + (x−1)p−1 ≡ p mod p2,

which implies p ‖Φ(x).
Let q be another prime number. A classical Diophantine problem, stud-

ied, most recently, by Mihăilescu [6, 7], is whether the p-free part of Φ(x)
can be a qth power. This can be rephrased as follows: given e ∈ {0, 1}, does
the equation Φ(x) = peyq have a non-trivial solution in integers x and y?
(By trivial solutions we mean those with x = e = 0 and x = e = 1.)

The case e = 0, that is, the equation Φ(x) = yq, is (a particular case of)
the classical Nagell–Ljunggren equation. It is known to have several non-
trivial solutions, and, as is commonly believed, no other solutions exist.
See [3] for a comprehensive survey of results on this equation and methods
for its analysis.

In the present note we study the case e = 1, that is, the equation

(1)
xp − 1

x − 1
= pyq.

(As we have seen above, any solution of this equation must satisfy x ≡ 1
mod p.)

2000 Mathematics Subject Classification: Primary 11D41; Secondary 11R18, 11S80.

[391] c© Instytut Matematyczny PAN, 2007



392 B. Dupuy

Let h−

p be the pth relative class number. Mihăilescu [7, Theorem 1]
proved that (1) has no non-trivial solutions if q ∤ h−

p and, in addition, some
complicated technical condition involving p and q is satisfied. In this note
we show that this technical condition is not required.

Theorem 1.1. Let p and q be distinct odd prime numbers, p ≥ 5. As-

sume that q does not divide the relative class number h−

p . Then (1) has no

solutions in integers x, y 6= 1.

In particular, since h−

p = 1 for p ≤ 19, equation (1) has no non-trivial

solutions when 5 ≤ p ≤ 19. (Neither does it have solutions when p = 3, as
was shown long ago by Nagell [8].)

The interest in equation (1) was inspired by the fact that it is closely re-
lated to the celebrated equation of Catalan xp − zq = 1. In fact, Cassels [4]
showed that any non-trivial solution of Catalan’s equation gives rise to a
solution of (1). All major contributions to the theory of Catalan’s equa-
tion, including Mihăilescu’s recent solution [1, 5], have Cassels’ result as the
starting point.

This article is strongly inspired by the work of Mihăilescu [5, 6, 7]. In
particular, the argument in the case q 6≡ 1 mod p (see Section 6) can be
found in [6]. However, the case q ≡ 1 mod p (see Section 7) requires new
ideas.

2. The cyclotomic field. Let p be an odd prime number and let
ζ = ζp be a primitive pth root of unity. In this section we collect several
facts about the pth cyclotomic field K = Q(ζ). As usual, we denote by

K+ = K ∩ R = Q(ζ + ζ) the maximal real subfield of K. (Here and below,
z 7→ z stands for the “complex conjugation” map.) We denote by O the ring
of integers of K; it is well-known that O = Z[ζ].

We denote by p the principal ideal (1 − ζ). It is the only prime ideal of
the field K above p, and pp−1 = (p). For k 6≡ l mod p the algebraic number

ζk − ζ l

1 − ζ

is a unit of K (called cyclotomic or circular unit); in other words, we have

(ζk − ζ l) = p.

In particular,

ζk + ζ l =
ζ2k − ζ2l

1 − ζ

/

ζk − ζ l

1 − ζ

is a unit in K. All this will be frequently used without special reference.
Finally, recall that h+

p |hp, where hp and h+
p are the class numbers

of K and K+, respectively, and the relative class number is defined by
h−

p = hp/h+
p .
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The proofs of all statements above can be found in the first chapters of
any course of the theory of cyclotomic fields; see, for instance, [9].

The following observation provides a convenient tool for calculating
traces of algebraic integers from K modulo p. We denote by Fp the field
of p elements, and we let Tr : K → Q be the trace map.

Proposition 2.1. Let ̺ : O → Fp be the reduction modulo p. Then for

any a ∈ O we have

(2) ̺(a) ≡ −Tr(a) mod p.

Proof. We have ̺(ζn) = 1 for all n ∈ Z, and

(3) Tr(ζn) =

{

−1, p ∤ n,

p − 1, p |n.

Hence (2) holds for a = ζn. By linearity, it extends to O = Z[ζ].

Here is an example of how one can use this.

Corollary 2.2. For any u ∈ Z put

(4) χu =
ζu − ζ

(1 + ζu)(1 − ζ)
.

Then

(5) 2Tr(χu) ≡ u − 1 mod p.

In particular , Tr(χu) 6≡ 0 mod p unless u ≡ 1 mod p.

Proof. For u ≡ 1 mod p we have χu = 0 and there is nothing to prove.
Now let u 6≡ 1 mod p. We may assume that u > 0. We have

̺

(

ζu − ζ

1 − ζ

)

= ̺(−ζ − ζ2 − · · · − ζu−1) = 1 − u.

Also, since 1 + ζu is a unit, we have

̺

(

1

1 + ζu

)

= ̺(1 + ζu)−1 =
1

2
.

Hence ̺(χu) = (1 − u)/2, which implies (5).

In the following example we cannot use (2) because the number we are
interested in is not an algebraic integer.

Proposition 2.3. We have

Tr

(

ζ

(1 − ζ)2

)

=
1 − p2

12
.

Proof. Consider the rational function

F (t) =

p−1
∑

k=1

ζkt

(1 − ζkt)2
.
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Using (3), we obtain

F (t) = −

p−1
∑

k=1

∞
∑

n=1

nζkntn = −
∞

∑

n=1

nTr(ζn)tn

=
∞
∑

n=1

ntn − p2
∞

∑

n=1

ntpn = −
t

(1 − t)2
+

p2tp

(1 − tp)2
.

When t → 1 we have
t

(1 − t)2
=

1

(t − 1)2
+

1

t − 1
,

p2tp

(1 − tp)2
=

1

(t − 1)2
+

1

t − 1
+

1 − p2

12
+ o(1).

Hence

Tr

(

ζ

(1 − ζ)2

)

= F (1) =
1 − p2

12
.

3. Binomial power series. We shall need a property of binomial power
series in the non-archimedean domain. As usual, we denote by Zp and Qp

the ring of p-adic integers and the field of p-adic numbers, and we extend
the standard p-adic absolute value from Qp to the algebraic closure Qp.

Given a ∈ Zp, we let

Ra(t) = (1 + t)a = 1 + at +

(

a

2

)

t2 +

(

a

3

)

t3 + · · ·

be the binomial power series. Its coefficients are p-adic integers, and for
any τ , algebraic over Qp and with |τ |p < 1, our series converges at t = τ in
the field Qp(τ). For any n = 0, 1, . . . we have the obvious inequality

∣

∣

∣

∣

Ra(τ) −
n

∑

k=0

(

a

k

)

τk

∣

∣

∣

∣

p

≤ |τ |n+1
p .

When a is p-adically small, a sharper inequality may hold. For instance,

|Rp(τ) − (1 + pτ)|p ≤ p|τ |2p

when |τ |p is sufficiently small. We shall need a result of this kind for the
second order Taylor expansion.

It will be convenient to use the familiar notation O(·) in a slightly non-
traditional fashion: we say τ = O(υ) if |τ |p ≤ |υ|p.

Proposition 3.1. Assume p ≥ 5 and that |τ | ≤ p−1/(p−3). Then

(6) Ra(τ) = 1 + aτ −
a

2
τ2 + O(a2τ2) + O(aτ3).
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Proof. Since
a(a − 1)

2
τ2 = −

a

2
τ2 + O(a2τ2),

equality (6) is an immediate consequence of

(7) Ra(τ) = 1 + aτ +
a(a − 1)

2
τ2 + O(aτ3),

so it suffices to prove the latter.

We prove (7) by induction on the p-adic order of a. When |a|p = 1,
equality (7) is an immediate consequence of the binomial formula (and holds
even under the weaker assumption |τ |p < 1). Now assume that (7) holds for
some a ∈ Zp, and let us show that it holds with a replaced by pa.

By the induction hypothesis, Ra(τ) = 1 + υ, where

υ = aτ +
a(a − 1)

2
τ2 + O(aτ3).

Then

Rpa(τ) = (1 + υ)p = 1 + pυ +
p(p − 1)

2
υ2 + O(pυ3) + O(υp)(8)

= 1+paτ +
pa(a−1)

2
τ2 +

pa2(p−1)

2
τ2 + O(paτ3) + O((aτ)p)

= 1 + paτ +
pa(pa − 1)

2
τ2 + O(paτ3) + O((aτ)p).

Since |τ | ≤ p−1/(p−3), we have |(aτ)p|p ≤ |papτ3|p ≤ |paτ3|p. Hence the term
O((aτ)p) in (8) can be disregarded. This completes the proof of (7) and of
the proposition.

4. A special unit of the cyclotomic field. We start the proof of
Theorem 1.1. We fix, once and for all, distinct odd prime numbers p and q,
and rational integers x, y 6= 1 satisfying (1). Recall that

x ≡ 1 mod p,

this congruence being frequently used below without special reference. Also,
we use without special reference the notation of Section 2.

In this section, we construct a special unit of the field K, which plays the
central role in the proof of Theorem 1.1. Our starting point is the following
well-known statement.

Proposition 4.1. Put

α =
x − ζ

1 − ζ
.

Then we have the following :
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1. The principal ideal (α) is a qth power of an ideal of K.

2. Assume that q does not divide the relative class number h−

p . Then α/α
is a qth power in K.

Though the proof can be found in the literature, we include it here for
the reader’s convenience. We closely follow [2].

Proof. Since

Φp(x) = (x − ζ) · · · (x − ζp−1), p = Φp(1) = (1 − ζ) · · · (1 − ζp−1),

we may rewrite equation (1) as

(9)

p−1
∏

k=1

x − ζk

1 − ζk
= yq.

Since p = pp−1 | (x − 1), we have p ‖ (x − ζk) for k = 1, . . . , p − 1. Hence the
numbers

αk =
x − ζk

1 − ζk
(k = 1, . . . , p − 1)

are algebraic integers coprime with p.
On the other hand, since

(1 − ζk)αk − (1 − ζ l)αl = ζ l − ζk,

the greatest common divisor of αk and αl should divide p = (ζk − ζ l). Hence
the numbers α1, . . . , αp−1 are pairwise coprime. (In particular, α and α are
coprime, to be used in the proof of Proposition 4.2.) Now (9) implies that
each of the principal ideals (αk) is a qth power of an ideal. This proves
part 1.

Now write (α) = aq, where a is an ideal of K. If q ∤ h−

p then the class of a

belongs to the real part of the class group. In other words, we have a = b(γ),
where γ ∈ K∗ and b is a “real” ideal of K (that is, b = b). Further, bq is
a principal real ideal; in other words, bq = (β), where β ∈ K+. We obtain
(α) = (βγq), that is, α is equal to βγq times a unit of K.

Recall that if η is a unit of a cyclotomic field then η/η is a root of unity.
Since β = β, we deduce that α/α is (γ/γ)q times a root of unity. Since every
root of unity in K is a qth power, we have shown that α/α is a qth power.
This proves part 2.

From now on we assume that q does not divide h−

p . In particular, Propo-
sition 4.1 implies that there exists µ ∈ K such that α/α = µq. Moreover,
this µ is unique because K does not contain non-trivial qth roots of unity.
Similarly, the field K contains exactly one qth root of α/α. Since both µ
and µ−1 are qth roots of α/α, we have

µ−1 = µ.(10)

This will be used in Section 5.



A class number criterion 397

Now we are ready to construct the promised unit.

Proposition 4.2. Let u be the inverse of q modulo p (that is, we have

uq ≡ 1 mod p). Then the algebraic number φ = α(µ + ζu)q is a unit of the

field K.

Proof. Write the principal ideal (µ) as ab−1, where a and b are co-prime
integral ideals of K. Then (α/α) = aqb−q. Moreover, since α and α are
coprime (see the proof of Proposition 4.1), we have (α) = aq and (α) = bq.

Further, we have (µ + ζu) = cb−1, where c is yet another integral ideal
of K. We obtain (φ) = bqcqb−q = cq, which shows that φ is an algebraic
integer.

Next, put

φ′ = αq−1
(

q−1
∑

k=0

µk(−ζu)q−1−k
)q

.

The same argument as above proves that φ′ is an algebraic integer as well.
Further,

φφ′ = αq
(

(µ + ζu)

q−1
∑

k=0

µk(−ζu)q−1−k
)q

= (α(µq + ζuq))q.

Now recall that µq = α/α and that uq ≡ 1 mod p. The latter congruence
implies that ζuq = ζ, and we obtain

φφ′ = (α(α/α + ζ))q = (α + ζα)q = (1 + ζ)q.

Since 1 + ζ is a unit of K, so are φ and φ′.

5. An analytic expression for µ. We shall work in the local field
Kp = Qp(ζ). As before, we extend p-adic absolute value from Qp to Kp, so
that |1 − ζ|p = p−1/(p−1).

Since p totally ramifies in K, every automorphism σ of K/Q extends to
an automorphism of Kp/Qp. In particular, the “complex conjugation” z 7→ z
extends to an automorphism of Kp/Qp (we continue to call it “complex
conjugation”).

Let Ra(t) be the binomial power series, introduced in Section 3. Since
the automorphisms of Kp/Qp (in particular the “complex conjugation”) are
continuous in the p-adic topology, for any τ ∈ Kp with |τ |p < 1 and for any

σ ∈ Gal(Kp/Qp) we have Ra(τ)σ = Ra(τ
σ). In particular, Ra(τ) = Ra(τ).

Put

λ =
x − 1

1 − ζ
,

so that

α = 1 + λ, α = 1 + λ = 1 − ζλ
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(recall that α is defined in Proposition 4.1). Then

|λ|p = |x − 1|pp
1/(p−1) ≤ p−(p−2)/(p−1) < 1,

and similarly for λ. In particular, for any a ∈ Zp, the series Ra(t) converges
at t = λ and t = λ.

We wish to express the quantity µ, introduced in Section 4, in terms of
the binomial power series. Since both µ and R1/q(λ)R−1/q(λ) are qth roots
of α/α, we have

(11) µ = R1/q(λ)R−1/q(λ)ξ,

where ξ ∈ Kp is a qth root of unity. We want to show that ξ = 1.

The field Qp(ξ) is an unramified sub-extension of the totally ramified
extension Kp. Hence Qp(ξ) = Qp, that is, ξ ∈ Qp. It follows that ξ is stable
with respect to all automorphisms of Kp/Qp; in particular, it is stable with

respect to the “complex conjugation”: ξ = ξ.

Applying the “complex conjugation” to (11) and using (10), we obtain
µ−1 = R1/q(λ)R−1/q(λ)ξ, which, together with (11), implies that ξ2 = 1.
Since ξ is a qth root of unity, this is possible only if ξ = 1.

We have shown that

(12) µ = R1/q(λ)R−1/q(λ) = R1/q(−ζλ)R−1/q(λ).

The rest of the proof splits into two cases, depending on whether q 6≡ 1
mod p or q ≡ 1 mod p. The arguments in both cases are quite similar, but
the latter case is technically more involved.

6. The case q 6≡ 1 mod p. We have

µ = R1/q(−ζλ)R−1/q(λ) = 1 −
1 + ζ

q
λ + O(λ2),

where, as in Section 3, we say that τ = O(υ) if |τ |p ≤ |υ|p.

Hence, for the quantity φ, introduced in Proposition 4.2, we have

φ = (1 + λ)

(

1 + ζu −
1 + ζ

q
λ + O(λ2)

)q

(13)

= (1 + ζu)q(1 + λ)

(

1 −
1 + ζ

1 + ζu
λ

)

+ O(λ2)

= (1 + ζu)q

(

1 +
ζu − ζ

1 + ζu
λ

)

+ O(λ2)

= (1 + ζu)q(1 + (x − 1)χu) + O(λ2),

where χu is defined in (4).
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Since the automorphisms of K/Q extend to automorphisms of Kp/Qp,
the same is true for the norm and the trace maps: for any a ∈ K we have

NKp/Qp
(a) = NK/Q(a), TrKp/Qp

(a) = TrK/Q(a).

Below, we shall simply write N (a) and Tr(a). Also, since the automorphisms

are continuous, we have |N (a)|p ≤ |a|p−1
p and |Tr(a)|p ≤ |a|p.

Taking the norm in (13), we obtain

N

(

φ

(1 + ζu)q

)

= 1 + (x − 1)Tr(χu) + O(λ2).

Since both φ and 1 + ζu are units, the norm on the left is ±1. Since −1 6≡ 1
mod p, the norm is 1, and we obtain (x − 1)Tr(χu) = O(λ2).

But, since q 6≡ 1 mod p, we also have u 6≡ 1 mod p. Corollary 2.2 implies
that Tr(χu) is not divisible by p. We obtain

|x − 1|p ≤ |λ|2p = |x − 1|2p p2/(p−1),

which implies |x − 1|p ≥ p−2/(p−1). Since p | (x − 1), this is impossible as
soon as p ≥ 5.

This proves the theorem in the case q 6≡ 1 mod p.

7. The case q ≡ 1 mod p. We have (12). Also, u ≡ 1 mod p and χu = 0,
which means that the first order Taylor expansions are no longer suffi-
cient. We shall use the second order expansion. Put a = (q − 1)/q, so that
|a|p ≤ p−1, and rewrite (12) as

(14) µ = (1 − ζλ)R−a(−ζλ)(1 + λ)−1Ra(λ).

For p ≥ 5 we have

|λ|p ≤ p−(p−2)/(p−1) ≤ p−1/(p−3),

which means that Proposition 3.1 applies to τ = λ. We obtain

R−a(−ζλ) = 1 + aζλ +
ζ2

2
aλ2 + O(aλ3) + O(a2λ2),

Ra(λ) = 1 + aλ −
a

2
λ2 + O(aλ3) + O(a2λ2).

Substituting this into (14), we get

µ = (1 − ζλ)

(

1 + aζλ +
a

2
ζ2λ2

)

(1 + λ)−1

(

1 + aλ −
a

2
λ2

)

+ O(aλ3) + O(a2λ2)

=

(

1 + (−ζ + a + aζ)λ −
(1 + ζ)2

2
aλ2

)

(1 + λ)−1

+ O(aλ3) + O(a2λ2).
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It follows that

φ = (1 + λ)(µ + ζ)q

=

(

1 + (−ζ + a + aζ)λ −
(1 + ζ)2

2
aλ2 + ζ(1 + λ)

)q

(1 + λ)1−q

+ O(aλ3) + O(a2λ2)

= (1 + ζ)q

(

1 + aλ −
1 + ζ

2
aλ2

)1+a/(1−a)

(1 + λ)−a/(1−a)

+ O(aλ3) + O(a2λ2).

Applying Proposition 3.1 with the exponents ±a/(1 − a) and taking into
account the inequality |a|p < 1, we find

(

1 + aλ −
1 + ζ

2
aλ2

)a/(1−a)

= 1 +
a2

1 − a
λ + O(a2λ2),

(1 + λ)−a/(1−a) = 1 −
a

1 − a
λ +

a

2(1 − a)
λ2 + O(aλ3)

= 1 −
a

1 − a
λ +

a

2
λ2 + O(aλ3) + O(a2λ2).

Taking everything together, we obtain

φ

(1 + ζ)q
=

(

1 + aλ −
1 + ζ

2
aλ2

)(

1 +
a2

1 − a
λ

)(

1 −
a

1 − a
λ +

a

2
λ2

)

+ O(aλ3) + O(a2λ2)

= 1 −
ζ

2
aλ2 + O(aλ3) + O(a2λ2)

= 1 −
ζ

2(1 − ζ)2
a(x − 1)2 + O(aλ3) + O(a2λ2).

Now we complete the proof in the same fashion as in Section 6. Taking
the norm, we find

(15) ±1 = 1 −
1

2
Tr

(

ζ

(1 − ζ)2

)

a(x − 1)2 + O(aλ3) + O(a2λ2).

The −1 on the left is again impossible, and if we have 1, then, in view of
Proposition 2.3, we must have the inequality

|x − 1|2p ≤ max{|λ|3p, |a|p|λ|
2
p}

= max{|x − 1|3p p3/(p−1), |a|p|x − 1|2p p2/(p−1)},

which means that either |x − 1|p ≥ p−3/(p−1) or |a|p ≥ p−2/(p−1). But, for
p ≥ 5, neither of the latter inequalities can hold, because |x − 1|p ≤ p−1 and
|a|p ≤ p−1. The theorem is proved in the case q ≡ 1 mod p as well.
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[8] T. Nagell, Des équations indéterminées x2 + x + 1 = yn et x2 + x + 1 = 3yn, Norsk

Matem. Forenings Skrifter I, 2 (1921), 14 pp.; see also: Collected Papers of Trygve

Nagell , ed. by P. Ribenboim, Vol. 1, Queen’s Papers in Pure and Appl. Math. 121,
Kingston, 2002, 79–94.

[9] L. Washington, Introduction to Cyclotomic Fields, 2nd ed., Grad. Texts in Math. 83,
Springer, New York, 1997.

Institut de Mathématiques
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